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SUMMARY

Methionine-1 (M1)-linked ubiquitin chains regulate
the activity of NF-kB, immune homeostasis, and re-
sponses to infection. The importance of negative
regulators of M1-linked chains in vivo remains poorly
understood. Here, we show that theM1-specific deu-
biquitinase OTULIN is essential for preventing TNF-
associated systemic inflammation in humans and
mice. A homozygous hypomorphic mutation in
humanOTULIN causes a potentially fatal autoinflam-
matory condition termed OTULIN-related autoin-
flammatory syndrome (ORAS). Four independent
OTULIN mouse models reveal that OTULIN defi-
ciency in immune cells results in cell-type-specific
effects, ranging from over-production of inflamma-
tory cytokines and autoimmunity due to accumula-
tion of M1-linked polyubiquitin and spontaneous
NF-kB activation in myeloid cells to downregulation
of M1-polyubiquitin signaling by degradation of
LUBAC in B and T cells. Remarkably, treatment
with anti-TNF neutralizing antibodies ameliorates
inflammation in ORAS patients and rescues mouse
phenotypes. Hence, OTULIN is critical for restrain-
ing life-threatening spontaneous inflammation and
maintaining immune homeostasis.
INTRODUCTION

Protein ubiquitination regulates virtually every aspect of cellular

homeostasis, in large part through structurally and functionally

distinct polyubiquitin (polyUb) signals (Komander and Rape,

2012). PolyUb chains can be linked via one of seven Ub Lys (K)

residues (e.g., K63-linked chains) or via Ub Met1 (M1), forming
Cell 166, 1215–1230, Au
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M1-linked (also known as linear) chains. The latter have impor-

tant roles in regulating the immune system, in which they

contribute to regulating nuclear factor-kB (NF-kB) transcription

factors that orchestrate immune responses (Bonizzi and Karin,

2004).

Ub chains regulate canonical NF-kB activation by mediating

timed degradation of the inhibitor of kB (IkB) proteins but also

serve as a scaffolding, recruitment, and activation platform in re-

ceptor signaling complexes. Non-degradative K63- and M1-

linked chains mediate the key upstream event of recruiting the

TGFb-activated kinase (TAK1) and the IkB kinase (IKK) com-

plexes, respectively (Jiang and Chen, 2012). K63 and M1 link-

ages occur in the same Ub polymers (Emmerich et al., 2013),

facilitating TAK1 and IKK co-localization and cross-activation.

M1-linked chains are generated by the linear ubiquitin chain

assembly complex (LUBAC) consisting of HOIP, HOIL-1, and

SHARPIN (Fiil and Gyrd-Hansen, 2014; Iwai et al., 2014). LUBAC

is recruited tomany immune receptors, including TNF-R1, IL-1R,

CD40, TLRs, and NOD2, in a Ub-dependent manner. At the

receptors, LUBAC ubiquitinates a host of targets, including

RIPK1, RIPK2, MyD88, IRAKs, and NEMO, directly or on pre-ex-

isting Ub chains (Fiil and Gyrd-Hansen, 2014; Iwai et al., 2014).

Genetic loss of LUBAC components leads to immunodefi-

ciency (MacDuff et al., 2015) and inflammatory phenotypes in

mice (Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga et al.,

2011; 2009), which can be rescued by co-deletion of TNF-R1

(Gerlach et al., 2011; Kumari et al., 2014; Peltzer et al., 2014;

Rickard et al., 2014). Mutations in LUBAC components also

cause inflammatory conditions in humans (Boisson et al., 2015;

2012). Hence, loss of M1-linked chains imbalances immune

signaling.

Several deubiquitinating enzymes (DUBs), including A20,

CYLD, and Cezanne, act as negative regulators of NF-kB

signaling and are essential for resolving inflammation and the re-

turn to homeostasis (Harhaj and Dixit, 2012). OTULIN (also

known as FAM105B or Gumby) is the only DUB known to specif-

ically cleave M1 linkages (Keusekotten et al., 2013; Rivkin et al.,
gust 25, 2016 ª 2016 The Authors. Published by Elsevier Inc. 1215
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Mutations in OTULIN in Patients with a Systemic Autoinflammatory Syndrome

(A) Segregation of the inflammatory symptoms (filled symbols) and the c.815T>C substitution in OTULIN in the affected kindred. B, females;,, males; double

lines, consanguineous relationship; crossed symbols, deceased individuals; D, miscarriage; >, stillbirths. Roman numerals indicate generations.

(B and C) Lifetime measurements of (B) C-reactive protein (CRP) serum concentrations and (C) white blood cell (WBC, black line) and neutrophil numbers (cyan

line) in blood from patients IV:3, IV:4, and V:2. Reference ranges (dotted lines) are indicated on the graphs. Patient V:2 was treated with Infliximab as indicated

(orange shade).

(legend continued on next page)
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2013). OTULIN directly binds the LUBAC component HOIP, and

knockdown of OTULIN in human cell lines increases M1-linked

chains on LUBAC and its substrates (Elliott et al., 2014; Fiil

et al., 2013; Keusekotten et al., 2013; Rivkin et al., 2013;

Schaeffer et al., 2014). Strikingly, while LUBAC translocates to

receptor signaling complexes (RSCs), OTULIN is not stably

associated with TNF or NOD2 RSCs (Draber et al., 2015), and

how it regulates signaling complexes, e.g., TNF signaling, is un-

clear (Hrdinka et al., 2016). Indeed, the physiological role of

OTULIN in the immune system has remained unstudied, since

OTULIN loss-of-function mutations lead to early embryonic

lethality (E12.5–E14) in mice due to defective Wnt signaling

and angiogenesis (Rivkin et al., 2013).

Here, we describe that a homozygous hypomorphic OTULIN

mutation in a consanguineous family causes a potentially fatal

autoinflammatory disorder termed OTULIN-related autoinflam-

matory syndrome (ORAS), which can be managed by Infliximab

(anti-TNF neutralizing antibody). We recapitulate key features of

ORAS in mouse models of OTULIN deficiency. In an acute

model, induced loss of OTULIN in immune cells leads to multi-

organ inflammation and deterioration of animals within a few

days; this can be ameliorated by anti-TNF, but not by neutraliza-

tion of other upregulated cytokines. In addition, loss of OTULIN

in myeloid cells generates a chronic model in which mice display

increased serum levels of inflammation-associated cytokines

and chemokines and develop splenomegaly and autoimmunity.

In bone-marrow-derived macrophages (BMDMs), loss of

OTULIN leads to overproduction of M1-linked Ub chains and

dysregulated NF-kB activation and cytokine secretion. Strik-

ingly, while mice lacking OTULIN in B or T cells do not display

overt inflammatory phenotypes, further analysis indicates that

these OTULIN-deficient cells have downregulated LUBAC com-

ponents HOIP and SHARPIN, but not HOIL-1.

Together, the data from mouse models and human patients

clearly establish OTULIN and M1-linked polyUb chains as key

regulators of immune homeostasis, inflammation, and autoim-

munity and reveal cell-type-specific effects of OTULIN in im-

mune cells.

RESULTS

Hypomorphic OTULIN Germline Mutation in Patients
with Idiopathic Inflammatory Disease
From the late 1990s, three premature newborns (born at week

34, week 36, and week 28+6, respectively) from a consanguin-

eous family (Figure 1A) displayed severe idiopathic inflammatory

symptoms. Within days to weeks after birth, they had repeated

episodes of systemic inflammation with diarrhea and elevated

serum C-reactive protein (CRP; Figure 1B) and white blood cell

(WBC) and neutrophil count (Figure 1C) without evidence of
(D) OTULIN DNA sequence chromatograms identifying the homozygous single-b

(E) Schematic of the cardinal symptoms of OTULIN-related autoinflammatory sy

(F) Superimposed structures of OTULIN’s catalytic domain (blue) without substra

3znz [Keusekotten et al., 2013]), showing the position of Leu272 in the distal Ub

(G) Met1-linked diUb hydrolysis by OTULINWT and OTULINL272P.

(H) Immunoblot showing the levels of Met1-linked polyUb, total Ub, OTULIN, and

See also Figure S1 and Tables S1–S3.
infection. All three eventually developed relapsing nodular panni-

culitis with neutrophil infiltrate and recurrent fevers. The patients

showed reduced growth parameters and also exhibited painful

swollen joints as well as elevated immunoglobulin levels and au-

toantibodies in serum (Table S1 and Experimental Models and

Subject Details). Genetic testing excluded Mediterranean fever,

chronic infantile neurological cutaneous articular syndrome, tu-

mor necrosis factor-receptor associated periodic syndrome,

and hyper IgD syndrome as the cause of the symptoms (Exper-

imental Models and Subject Details).

SNP array analysis of the three affected individuals identified

three regions of extended homozygosity at chromosomes 5

and 15 shared by all three individuals (Figure S1A and Tables

S2 and S3). The largest region of shared homozygosity was

at chromosome 5p15 from 13,802,063 to 16,722,976 bp be-

tween rs795541 and rs4702171. Genotyping of all available fam-

ily members with microsatellite markers D5S817, D5S1991,

D5S1992, D5S1963, and D5S416 confirmed linkage to this

candidate region. Within the �3 Mb candidate region of chro-

mosome 5p15, sequencing of FAM105A, FBXL7, MARCH11,

ZNF622, and FAM34B revealed no candidate pathogenic vari-

ants. However, we detected a homozygous missense substitu-

tion in OTULIN/FAM105B in all affected individuals (c.815T>C;

p.Leu272Pro) (Figure 1D). The parents of patient V:2 (IV:1 and

IV:2) were both heterozygous for the substitution (Figure 1D),

and none of the healthy siblings were homozygous for the

c.815T>C variant (data not shown). Moreover, the variant

was not present in the �12,000 and �120,000 alleles

represented in the Exome Variant Server and EXaC datasets,

respectively, either. Consistently, whole-exome sequencing

of patient V:2 revealed no other homozygous or previously

annotated pathogenic variants likely to cause the disease

phenotype (Tables S2 and S3). Thus, we termed the described

syndrome OTULIN-related autoinflammatory syndrome (ORAS)

(Figure 1E).

Leu272 is located in a helix of the catalytic OTU domain that

forms part of the binding pocket for M1-linked diUb, and muta-

tion to Pro would be predicted to disrupt OTULIN Ub binding

(Figure 1F). Recombinant OTULINL272P displayed small differ-

ences in overall fold and reduced thermal stability (Figures S1B

and S1C), and expression of OTULINL272P in HEK293 cells

consistently led to significantly reduced levels of OTULINL272P

as compared to wild-type protein (Figure S1D). OTULINL272P,

although less stable, maintained its interaction with HOIP

(Figure S1D).

In addition to reduced stability, OTULINL272P was 1,000–

10,000 times less active toward M1-linked di- and tetraUb (Fig-

ures 1G and S1E). M1-diUb binding to catalytically inactive

OTULINC129A/L272P was significantly diminished yet not com-

pletely abrogated (Figure S1F). OTULINL272P was still M1-linkage
ase substitution (c.815 T>C, p.Leu272Pro, arrowhead).

ndrome (ORAS). The efficacy of trialed treatments are indicated in the table.

te and bound to Met1 diUb (green [only distal Ub shown]; PDB: 3znv and PDB:

binding site.

LUBAC in buffy coat cells from patient V:2.

Cell 166, 1215–1230, August 25, 2016 1217
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specific (Figure S1G), as the affected Ub binding site does not

dictate OTULIN specificity (Keusekotten et al., 2013).

Reduced stability and activity of OTULIN suggested an impact

on M1-linked polyUb in ORAS patients. Patient blood samples

confirmed the presence of OTULIN, albeit at slightly reduced

levels as compared to control samples, as well as the presence

of SHARPIN (Figure 1H). Strikingly, while samples from age-

matched controls showed barely detectable levels of M1-linked

chains, this chain type was strongly increased in the ORAS pa-

tient sample.

We conclude that loss of OTULIN function and increased

levels of M1-linked polyUb in human cells may indeed lead to

the severe inflammation and autoimmunity observed in ORAS.

Neutralization of TNF Ameliorates Systemic
Inflammation in ORAS
Importantly, ORAS can be managed by treatment with the anti-

TNF antibody Infliximab. Treatment of affected patients with

prednisolone (general corticosteroidal immunosuppressant),

azathioprine, and methotrexate (anti-proliferative immunosup-

pressive drugs), as well as Anakinra (recombinant IL-1R-antago-

nist), had little or no effect on the symptoms (Figure 1E and

Experimental Models and Subject Details). Patient IV:3 died at

16 months of age of pneumococcal septicemia, and patient

IV:4 died from an episode of systemic inflammation leading to

acute renal failure and pulmonary edema at age 5. Of note,

neither patient IV:3 nor IV:4 were treated with Infliximab. By

contrast, patient V:2 responded well to treatment with Infliximab

(Figures 1B and 1C) and is currently alive (age 11) with well-

controlled disease. Infliximab treatment drastically reduced the

symptoms, and serum levels of CRP as well as WBC and neutro-

phil counts in blood, returned to normal ranges after treatment

(Figures 1B, 1C), suggesting a TNF-mediated pathogenesis in

the patients.

Deletion of Otulin in Mouse Immune Cells Drives Acute
Systemic Inflammation
To understand how OTULIN deficiency caused autoinflamma-

tion and autoimmunity, we attempted to recapitulate ORAS in

mouse models. Due to embryonic lethality (Rivkin et al., 2013),

heterozygous Otulin+/LacZ mice (Figures S2A and S2B) were

bred with appropriate inducible and/or tissue-specific Cre ex-

pressing mouse strains. OTULIN was expressed in several tis-

sues in Otulin+/LacZ embryos and adult wild-type mice, including
Figure 2. Deletion of Otulin in Immune Cells Causes Acute Systemic In

(A) OTULIN immunoblot on immune cells from wild-type mice. NK cell, natural k

(B) Schematic representation of mixed bone marrow chimera generation. Wild-ty

(C) Body weight following i.p. administration of tamoxifen (tx; arrows) to CreERT

(D) Neutrophil and lymphocyte counts from blood of CreERT2-Otulinflox chimera

(E and F) Luminex multiplex analysis of serum cytokines and chemokines from

concentration of all analytes between CreERT2-Otulin+/flox and CreERT2-Otulin

increased in CreERT2-OtulinLacZ/flox chimeras. Data were pooled from two indep

(G and H) Flow cytometry analysis of CD11b+Gr-1+ neutrophils in total cellular in

CreERT2-Otulinflox chimeras presented as (G) representative dot plots with perc

(I) Micrographs of hematoxylin and eosin (H&E) stained sections reveal inflammato

CreERT2-Otulin+/flox and 14 CreERT2-OtulinLacZ/flox chimeras from two independ

(C, D, F, and H) Data are presented as mean ± SEM, and n represents number o

See also Figure S2 and Table S4.
spleen and thymus (Figures S2C and S2D). In immune cells,

OTULIN was expressed in T cells, B cells, and natural killer

(NK) cells and prominently in dendritic cells and macrophages

(Figure 2A).

We generated CreERT2-OtulinLacZ/flox mice, in which Otulin

can be ablated in all cells with tamoxifen administration. Tamox-

ifen administration led to mice becoming moribund within a day

(data not shown), suggesting strong phenotypes also in adult

mice in addition to reported developmental defects (Rivkin

et al., 2013). This prevented further study, and to investigate

the role of OTULIN in the immune system, we generated

CreERT2-Otulinflox mixed bone marrow chimeras (Figure 2B),

which were healthy (data not shown) and showed similar levels

of CD45.1+ and CD45.2+ cells in vivo (Figure S2E).

Six to eight weeks after reconstitution, chimeric mice were

treated with tamoxifen to induce Otulin ablation (Figure S2F).

Strikingly, this resulted in rapid weight loss in CreERT2-

OtulinLacZ/flox chimeras as compared to controls (Figures 2C

and S2G). Weight loss was accompanied by a pronounced

increase in the number of circulating neutrophils in CreERT2-

OtulinLacZ/flox chimeras (Figure 2D), while the number of lympho-

cytes and monocytes and the overall number of blood cells or

splenocytes did not change (Figures 2D, S2E, and S2H). We

also observed a marked increase in the pro-inflammatory cyto-

kines TNF and IL-6, the neutrophil cytokines G-CSF and KC,

and the monocyte/macrophage chemokine MCP-1 in serum of

CreERT2-OtulinLacZ/flox chimeras compared with CreERT2-

Otulin+/flox chimeras and vehicle-treated controls (Figures 2E

and 2F and Table S4). These cellular and molecular mediators

are indicative of an inappropriate and damaging inflammatory

response mediated by OTULIN-deficient myeloid cells. As ex-

pected in the short timeframe, cytokines associated with adap-

tive immunity were not elevated (Figure 2E and Table S4).

Necropsy of the chimeras did not reveal any gross anatomical

changes, but flow cytometry analysis showed substantial infiltra-

tion of CD11b+Gr-1+ neutrophils in the peritoneal lavage (PL),

spleen, and liver and, to some extent, lung and kidney in

CreERT2-OtulinLacZ/flox chimeras compared with CreERT2-

Otulin+/flox or vehicle-treated controls (Figures 2G, 2H, and

S2I–S2L). Histological analysis confirmed immune cell infiltration

in the livers of CreERT2-OtulinLacZ/flox chimeras with inflamma-

tory foci scattered in the parenchyma (Figure 2I, arrowheads).

With the exception of PL, where neutrophils were recovered in

lower numbers after tamoxifen treatment, tissue-infiltrating
flammation in Mice

iller cell; DC, dendritic cell; MF, macrophage.

pe (WT) B6.SJL cells are CD45.1+, and CreERT2-Otulinflox cells are CD45.2+.

2-Otulinflox chimeric mice.

s and vehicle-treated controls at day 5 following tamoxifen administration.

terminal bleeds on day 5 presented as (E) a heatmap of relative changes in
LacZ/flox chimeras and (F) serum concentrations of cytokines and chemokines

endent experiments.

filtrate (CD45.1+ and CD45.2+) in peritoneal lavage (PL), spleen, and liver from

entage of cells in gate indicated and (H) total cell number.

ry foci (arrowheads) in liver parenchyma. Micrographs are representative of 13

ent experiments. Scale bars, 200 mm.

f mice.
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neutrophils consisted of overall similar numbers of CD45.1+ wild-

type cells and CD45.2+ OTULIN-deficient cells (Figure S2M).

This suggests that loss of OTULIN does not cause aberrant

cell death in immune cells (Figure S2E) and that the high levels

of cytokines and chemokines present activate the entire immune

cell population.

Collectively, this shows that deletion of Otulin in immune cells

leads to spontaneous and severe acute systemic inflammation

characterized by rapid weight loss, increased levels of pro-in-

flammatory cytokines (in particular, TNF, G-CSF, and IL-6) in

serum, neutrophilia with all the hallmarks of emergency granulo-

poiesis (see Figures S3A–S3C), and infiltration of neutrophils

into multiple tissues. This highly pro-inflammatory phenotype

of the OTULIN-deficient adult mice is unlikely to arise from de-

fects in Wnt signaling during development (Rivkin et al., 2013)

but indeed shows several of the cardinal symptoms of ORAS

(Figure 1E).

Rescue of Systemic Inflammation in OTULIN-
Deficient Mice
We next tested whether the strong ORAS-like phenotype can be

reversed by antibody treatments, as observed in the human dis-

ease. It was unclear whether any of the upregulated cytokines

were independently regulated by OTULIN/M1-linked chains.

Hence, we tested whether neutralization of TNF, G-CSF, or

IL-6 impacted on the weight loss and emergency granulopoiesis

observed in CreERT2-OtulinLacZ/flox chimeric mice.

In accordance with the effective treatment of ORAS patients

with Infliximab, we found that anti-TNF neutralizing antibodies,

administered in parallel with tamoxifen-induced Otulin deletion,

completely ameliorated weight loss (Figure 3A). While the

numbers of blood neutrophils were still elevated (Figure 3B), infil-

trating neutrophils in spleen and PL of CreERT2-OtulinLacZ/flox

were reduced to a level comparable to isotype-treated

CreERT2-Otulin+/flox controls (Figure 3C). In contrast, anti-G-

CSF or anti-IL-6 were unable to rescue the phenotype fully.

While anti-G-CSF treatment strongly reduced blood neutrophil

count and infiltration, it failed to rescue weight loss and mice re-

mained cachexic (Figures 3D–3F). Anti-IL-6 treatment had no

impact on neutrophilia, but weight loss was partially rescued

(Figure 3G–3I). This differential amelioration extended to neutro-

phil production in the bone marrow, where anti-G-CSF, but not

anti-IL-6, reduced the number of uncommitted blood cells

(‘‘LSK’’ cells, for Lin�Sca1+c-Kit+ cells) and immature neutro-
Figure 3. Neutralization of TNF Ameliorates Inflammation Caused by O

(A–J) Measurements from tamoxifen (tx)-treated (arrows) CreERT2-Otulinflox bon

(data were pooled from two independent experiments), (D–F) anti-G-CSF-neutr

isotype control as indicated.

(A, D, and G) Body weight of CreERT2-Otulinflox chimeric mice treated with neut

(B, E, and H) Blood neutrophil counts from CreERT2-Otulinflox chimeric mice trea

(C, F, and I) Total number of infiltrating CD11b+Gr-1+ neutrophils in spleen and

chimeric mice treated as indicated.

(J) Heatmap of Luminex multiplex analysis of cytokines and chemokines in serum

Numbers indicate relative change compared to isotype-treated del/flox mice wi

ELISA. Asterisks (*) indicate the level of statistical significance.

(K) Model of TNF-driven systemic inflammation and the contributions from differ

(A–J) Data are presented as mean ± SEM, and n represents number of mice.

See also Figure S3.
phils to levels observed in isotype-treated controls (Figures

S3D–S3F). This confirms that G-CSF drives emergency granulo-

poiesis in CreERT2-OtulinLacZ/flox chimeras and may contribute

to the neutrophilia observed in ORAS patients (Figure 1D). Strik-

ingly, anti-TNF treatment of CreERT2-OtulinLacZ/flox chimeras

resulted in a global reduction of cytokines, including G-CSF,

KC, and TNF itself. IL-6 was reduced to background levels (Fig-

ures 3J and S3G). Anti-G-CSF did not affect TNF or IL-6 levels

and, in fact, caused elevated production of KC and G-CSF itself

(although its functional blockade ameliorated neutrophilia) (Fig-

ures 3J and S3H). Anti-IL-6 increased MCP-1 levels, possibly

indicating a pathway for compensation in the absence of IL-6

(Figures 3J and S3I).

Together, these data implicate TNF as the pre-eminent factor

in driving inflammation in OTULIN-deficient mice, although other

cytokines and chemokines clearly contribute to the composite

phenotype (Figure 3K). This finding correlates with the fact that

anti-TNF treatment reverses the inflammatory symptoms in the

ORAS patient and therefore suggests that OTULIN-deficient

mice provide a good model to understand the mechanisms un-

derlying ORAS.

Differential Effects of OTULIN Deletion in Cells of the
Immune System
To dissect immune mechanisms contributing to the strong

OTULIN deficiency phenotype, we employed mouse models in

which Otulin can be constitutively ablated in specific immune

cell lineages, namely T cells (‘‘CD4Cre’’ mice, expressing Cre re-

combinase under control of the Cd4 promoter), B cells

(‘‘MB1Cre’’ mice, expressing Cre under control of the Mb1 pro-

moter), and myeloid cells (‘‘LysMCre’’ mice, expressing Cre

under control of the LysM promoter, leading to knockout in mac-

rophages, neutrophils, and some dendritic cells).

Surprisingly, loss of OTULIN in T cells or B cells generated

healthy mice with no overt inflammatory phenotypes, as as-

sessed by phenotypic, blood cell, cytokine, and serum IgG anal-

ysis (Figures 4 and S4A–S4C and Tables S5 and S6). Closer

inspection of the B cell subsets in the MB1Cre-OtulinLacZ/flox

mice indicated a trend toward lower B1 cell numbers but did

not reach statistical significance (Figure S4C).

In stark contrast, deletion of OTULIN in myeloid cells resulted

in a strong inflammatory phenotype. LysMCre-OtulinLacZ/flox

mice were born at Mendelian ratios, appeared healthy at wean-

ing, and showed similar survival as compared to controls but
TULIN Deficiency

e marrow chimeras injected with (A–C) anti-TNF neutralizing antibodies (aTNF)

alizing antibodies (aG-CSF), (G–I) anti-IL-6-neutralizing antibodies (aIL-6), or

ralizing antibodies as indicated.

ted as indicated.

peritoneal lavage (PL) measured by flow cytometry from CreERT2-Otulinflox

from terminal bleeds on days 6 or 7 from chimeric mice treated as indicated.

thin each experiment. G-CSF levels for aG-CSF and aIL-6 were measured by

ent cytokines in OTULIN-deficient mice.
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Figure 4. Specific Deletion of Otulin in Myeloid Cells, but Not T or B Cells, Causes Systemic Inflammation

(A, C, and E) Spleens and spleen weights, thymuses, and inguinal lymph nodes from (A) 2- to 3-months-old CD4Cre-Otulinflox mice (n = 6), (C) 3- to 4-months-old

MB1Cre-Otulinflox mice (n = 4), (E) 3- to 9-months-old LysMCre-Otulinflox mice (n = 8).

(B, D, and F) Blood cell counts from (B) 2- to 3-months-old CD4Cre-Otulinflox mice (n = 6); (D) 3- to 4-months-old MB1Cre-Otulinflox mice (n = 7); and (F) 3- to

9-months-old LysMCre-Otulinflox mice (n = 11).

(legend continued on next page)
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were slightly smaller in terms of body weight (Figures S4D and

S4E). Indeed, closer inspection of 3- to 9-month-old LysMCre-

OtulinLacZ/flox mice revealed a marked increase in the size of

lymphoid organs and liver (Figures 4E and S4F) and prominent

leukocytosis with increased numbers of circulating neutrophils,

lymphocytes, and monocytes (Figures 4F) as compared to

controls.

Deletion of Otulin in Myeloid Cells Leads to Chronic
Inflammation and Autoimmunity
Strikingly, serum analysis showed that 16 out of 25 tested cyto-

kines and chemokines were markedly elevated in LysMCre-

OtulinLacZ/flox mice (Figures 4G and 4H and Table S7), including

the pro-inflammatory cytokines TNF, IL-6, and IL-1b; the neutro-

phil and monocyte attractants/activators MCP-1 and MIP-1a;

and G-CSF. Interestingly, cytokines associated with T cell acti-

vation and adaptive immunity, such as IL-2, IL-4, IFNg, and

RANTES, were also elevated (Figures 4G and 4H and Table

S7), as were serum IgG levels (Figure 4I). Collectively, these

findings indicate ongoing, systemic inflammation in LysMCre-

OtulinLacZ/flox mice involving both innate and adaptive immune

cells.

Histological analysis revealed substantial immune cell infiltra-

tion in livers of LysMCre-OtulinLacZ/flox mice, particularly around

veins but also in the parenchyma, and a distorted splenic archi-

tecture (Figures 5A and 5B). Collagen deposits in liver (Figure 5A,

right) and spleen (Figure 5B, right) were visible and consistent

with chronic inflammation. Moreover, germinal center activation

was evident in LysMCre-OtulinLacZ/flox spleens (Figure 5B, left),

suggesting B cell hyperactivation and potential for immunoglob-

ulin-mediated pathology. Flow cytometric analysis showed that

LysMCre-OtulinLacZ/flox mice had greater numbers of both

CD11b+Gr-1+ neutrophils and CD11b+Gr-1� macrophages in

PL, spleen, liver, lungs, and kidney compared with LysMCre-

Otulin+/flox mice (Figures 5C, 5D, S5A, and S5B). LysMCre-

OtulinLacZ/flox mice also had increased numbers of CD8+ T cells

in liver and kidney (Figures 5D, S5C, and S5D), consistent with

systemic chronic inflammation and involvement of the adaptive

immune system. The number of CD4+ T cells remained normal

(data not shown).

High-serum IgG and the appearance of active germinal cen-

ters in LysMCre-OtulinLacZ/flox mice suggested B cell hyperacti-

vation, leading to higher levels of antibodies in the serum, a

hallmark of autoimmunity. Indeed, the amounts of serum immu-

noglobulin isotypes IgG1, IgG2a and b, IgA, and IgM were

elevated in LysMCre-OtulinLacZ/flox serum, while IgG3 levels

were unchanged when compared to LysMCre-Otulin+/flox (Fig-

ure 5E). This indicated polyclonal B cell activation and sug-

gested that LysMCre-OtulinLacZ/flox mice could be autoimmune.

Consistent with this, ELISA analysis revealed higher anti-

body reactivity against extractable nuclear antigens (ENA),
(G and H) Luminex multiplex analysis of serum cytokine and chemokine concentr

4-months-old MB1Cre-Otulinflox mice, and 4- to 9-months-old LysMCre-Otu

between OTULIN-deficient mice and their respective +/flox controls and (H) serum

OtulinLacZ/flox mice.

(I) ELISA measurements of total IgG concentrations in serum from CD4Cre-Otuli

Data are presented as mean ± SEM, and n represents number of mice. See also
double-stranded DNA (dsDNA), and Smith antigen in LysMCre-

OtulinLacZ/flox serum (Figure 5F). B cell activating factor (BAFF)

is the primary cytokine that governs peripheral B cell tolerance,

and increased BAFF levels can lead to T-cell-independent

B cell activation and immunoglobulin production (Groom et al.,

2007). Indeed, we found that LysMCre-OtulinLacZ/flox mice had

elevated levels of BAFF in serum (Figure 5G), suggesting that

secretion of BAFF resulting from OTULIN deficiency leads to

breakdown of peripheral tolerance and activation of autoreactive

B cells.

Collectively, these results show that OTULIN is essential in

myeloid cells to prevent unwarranted secretion of cytokines

leading to inflammation, as well as autoimmunity (Figure 3K).

OTULIN Deficiency Leads to Sterile Autoactivation of
Inflammatory Pathways
We next investigated the molecular mechanisms resulting in the

strong inflammatory phenotypes, using BMDMs from LysMCre-

Otulin+/flox, LysMCre-OtulinLacZ/flox, or LysMCre-Otulindel/flox

mice, which were cultured and studied for pathway activation

bywestern blotting in the absence of any exogenous stimulation.

Interestingly, in agreement with the patient samples, the levels of

M1-linked Ub chains were markedly increased (�8-fold on

average) in OTULIN-deficient BMDMs, in particular in the high-

molecular-weight range, while K63-linked, K48-linked, or total

Ub levels were unchanged (Figure 6A). Strikingly, this resulted

in NF-kB activation evidenced by degradation of IkBa and

increased phosphorylation of p65/RelA in the absence of exog-

enous stimuli (Figure 6B). Cycloheximide chase experiments

confirmed the increased turnover of IkBa (Figure 6C), a hallmark

of NF-kB pathway activation. This correlated with increased

transcription of NF-kB target genes such as Tnf, Nfkbia (IkBa),

Il6, and Tnfaip3 (A20) (Figure 6D) and concomitant secretion of

TNF and IL-6 (Figure 6E). Also, LysMCre-Otulin+/flox and LysM-

Cre-OtulinLacZ/flox BMDMs were similarly viable when left un-

treated or when treated with LPS, TNF, or Staurosporine

(Figure 6F), suggesting no apparent sensitization to cell death

in these cells.

Importantly, while SHARPIN levels were slightly reduced,

the levels of HOIP and HOIL-1 were unchanged in LysMCre-

OtulinLacZ/flox BMDMs (Figure 6G), consistent with strong pro-

duction of M1-linked polyUb in these cells (Figure 6A). Protein

levels of NEMO/IKKg, A20, and CYLD were similar to controls

(Figure 6G). LUBAC signaling may impact alternative inflamma-

tory pathways, yet in LysMCre-Otulindel/flox BMDMs, NF-kB-

inducing kinase (NIK) was not stabilized (indicating no activation

of non-canonical NF-kB), and IRF-3 or p38 phosphorylation was

not increased (suggesting that IRF or MAPK signaling pathways

were not active) (Figure 6H).

Finally, we examined the response of BMDMs to TNF. Since

these cells secrete TNF (Figure 6E), the observed cellular
ations from terminal bleeds of 2- to 3-months-old CD4Cre-Otulinflox mice, 3- to

linflox mice presented as (G) a heatmap of relative changes of analytes

concentrations of selected cytokines and chemokines increased in LysMCre-

nflox (n = 6), MB1Cre-Otulinflox (n = 7), and LysMCre-Otulinflox (n = 14) mice.

Figure S4 and Tables S5–S7.
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response may, in part, originate from autocrine signaling.

Indeed, when MEFs were treated with anti-TNF antibodies,

exogenous TNF was unable to induce IkBa degradation and

p65 phosphorylation (Figure S6A). Importantly, when TNF was

neutralized in the culture medium of untreated BMDMs, IkBa

levels decreased with similar kinetics as compared to isotype-

treated BMDMs (Figure 6C, quantified in Figure 6I). This provided

further strong evidence for a cell-autonomous activation of

NF-kB in OTULIN-deficient BMDMs.

Autocrine signaling would be further enhanced in a positive

feedback mechanism if loss of OTULIN would strengthen the

response to TNF. Indeed, stimulation of BMDMs with TNF led

to stronger transcriptional upregulation of Tnf in cells from

LysMCre-Otulindel/flox (Figure 6J), consistent with a role of

OTULIN as a negative regulator in this pathway.

Together, this shows that OTULIN-deficient macrophages are

unable to control LUBAC-mediated production of M1-linked

polyUb chains and that this signal leads to stimulus-independent

basal NF-kB activation and ‘‘sterile’’ inflammatory signaling,

possibly enhanced by autocrine feedback. The idea of sterile

inflammation is further supported in CreERT2-OtulinLacZ/flox chi-

meras that have been treated with broad-spectrum antibiotics

to reduce the microbial load; these mice display an identical

inflammatory phenotype as compared to untreated CreERT2-

OtulinLacZ/flox chimeras (Figures S6B–S6G, compare Figure 2).

Cell-Type-Specific Differences in Response to OTULIN
Deficiency
While loss of OTULIN from myeloid cells and the concomitant

dysregulation of M1-linked polyUb resulted in a profound inflam-

matory phenotype, this was not evident in mice lacking OTULIN

in B or T cells (Figure 4). This is surprising since M1 signaling has

recently been implicated in T cell signaling (Park et al., 2016; Re-

decke et al., 2016) and B cell signaling (Sasaki et al., 2013;

Satpathy et al., 2015; Yang et al., 2016). The DUB-regulating

M1-linked polyUb in B and T cells has not been elucidated.

To understand this, theM1-Ub signaling cascade was charac-

terized in purified T and B cells from respective knockout mice.

To our great surprise, this revealed an almost complete loss of

LUBAC components HOIP and SHARPIN, but not HOIL-1, in

either of the two independent models (Figures 7A and 7B). As

discussed above, LysMCre-OtulinLacZ/flox BMDMs showed

mildly reduced SHARPIN levels but no difference in HOIP levels.
Figure 5. OTULIN Deficiency in Myeloid Cells Leads to Neutrophil Infi

Autoimmunity

(A and B)Micrographs of H&E andMasson’s trichome stained sections of livers an

in and fibrosis (right, arrowheads) of liver parenchyma and (B) distorted spleen ar

arrowheads) in LysMCre-OtulinLacZ/flox mice. Scale bars, 200 mm. Micrograph

experiments.

(C and D) Flow cytometry analysis of total cellular infiltrate (CD45.1+ and CD45.2+

presented as (C) representative dot plots of neutrophils with percent of cells in ga

T cells.

(E) Concentrations of immunoglobulins in serum from 4- to 9-months-old LysMC

(F) ELISA analysis of serum autoantibody reactivity to ENA, dsDNA, and Smith a

(G) ELISA analysis of serum B cell activating factor (BAFF) concentration from 3-

(E–G) Data are mean of two technical replicas.

(D–F) Data are presented as mean ± SEM, and n represents number of mice.

See also Figure S5.
Further evaluation of myeloid cells purified from various tissues

likewise showed no loss of HOIP or HOIL-1 and only marginally

reduced SHARPIN levels (Figure 7C). Such tissue- and sub-

unit-specific regulation of LUBAC components has not been

observed previously.

We next investigated the mechanism of OTULIN-dependent

LUBAC regulation. Transcription of HOIP (Rnf31), SHARPIN

(Sharpin), and HOIL-1 (Rbck1) genes was unaltered in CD4Cre-

Otulindel/flox T cells and MB1Cre-OtulinLacZ/flox B cells (Figures

7D and 7E). In contrast, SHARPIN (but not HOIP) levels were

partially rescued in purified T and B cells after MG132 treatment,

indicating that loss of SHARPIN is due to proteasomal degrada-

tion (Figures 7F and 7G). This reveals a role for OTULIN in the

stabilization of LUBAC components that warrants further

investigation.

DISCUSSION

We provide genetic evidence that OTULIN is a crucial in vivo

regulator of inflammation in mice and humans, identify TNF as

a key driver of the phenotypes caused by OTULIN deficiency,

and show that OTULIN deficiency and ORAS can be treated

with anti-TNF/Infliximab in mice and humans.

The discovery of an OTULINmutation in human patients with a

severe inflammatory syndrome, ORAS, highlights how deregula-

tion of a single Ub chain signal, M1-linked polyUb, causes

human disease.Mutations of LUBAC components are also asso-

ciated with inflammatory syndromes (Boisson et al., 2012, 2015),

yet these constitute loss-of-function mutations with regards to

M1-polyUb signaling. In contrast, loss of function of OTULIN

leads to an amplification of the M1-polyUb signal (Figure 1H).

Strikingly, the net result, inflammation, is the same, highlighting

how the essential M1-polyUb signal is delicately balanced to

determine a cellular output.

Many DUBs have been identified to play key roles in regulating

signaling pathways; however, we are unaware of another

enzyme that, when removed from cells, has such global effects

on a single chain type. The marked upregulation of M1-linked

chains in OTULIN-deficient BMDMs and ORAS patient samples

suggests that there is little redundancy for regulation of this chain

type. Two recent reports implicate CYLD in the regulation of M1-

polyUb signaling at receptor complexes (Draber et al., 2015;

Hrdinka et al., 2016). Quantitative mass spectrometry analysis
ltration, Multi-organ Inflammation, Hyper-Immunoglobulinemia, and

d spleens from 4- to 9-months-old LysMCre-Otulinflox mice reveal (A) infiltration

chitecture with germinal center activation (left, arrowheads) and fibrosis (right,

s are representative of five mice of each genotype from two independent

) in peritoneal lavage (PL), spleen, liver, and kidney of LysMCre-Otulinflox mice

te indicated and (D) total cell number of neutrophils, macrophages, and CD8+

re-Otulinflox mice.

ntigen from 3- to 9-months-old LysMCre-Otulinflox mice.

to 9-months-old LysMCre-Otulinflox mice.
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Figure 6. OTULIN Deficiency Leads to Autoactivation of Macrophages

(A) Immunoblots of different polyUb chains in whole-cell lysate from untreated (i.e., no exogenous stimulation after differentiation) LysMCre-Otulinflox BMDMs.

(Right) Densitometry analysis of the Met1-Ub signal from above the 51 kDa marker in immunoblot experiments.

(B) Immunoblots of NF-kB signaling proteins from untreated LysMCre-Otulinflox BMDMs.

(C) Immunoblot analysis of IkBa stability in LysMCre-Otulinflox BMDMs treated with anti-TNF neutralizing antibodies or isotype control and cycloheximide (CHX)

as indicated.

(D) Relative mRNA levels of Tnf,Nfkbia, Il6, and Tnfaip3 from untreated LysMCre-Otulinflox BMDMsmeasured by quantitative RT-PCR. Each data point is mean of

two technical replicas. Statistical significance was determined using two-tailed Student’s t test.

(E) Luminex analysis of TNF and IL-6 from cell culture supernatants of untreated LysMCre-Otulinflox BMDMs. Cells were split, washed in PBS, and reseeded in

fresh cell culture medium 24 hr prior to analysis. Results were pooled from two independent experiments.

(F) Viability of LysMCre-Otulinflox BMDMs 10 hr after treatment. Each experiment was performed as biological duplicates. Results were normalized to LysMCre-

Otulin+/flox.

(G and H) Immunoblots of signaling proteins from untreated LysMCre-Otulinflox BMDMs.

(I) Densitometry analysis of IkBa stability from experiments performed as in (C).

(J) Relative mRNA levels of Tnf measured by quantitative RT-PCR in LysMCre-Otulinflox BMDMs treated with 1 ng/mL TNF as indicated (n = 3).

Data are presented as mean ± SEM, and n represents number of biological replicas. See also Figure S6.
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showed that OTULIN is not present at TNF and NOD2 RSCs, but

while one group suggests that OTULIN’s role is restricted to

LUBAC homeostasis (Draber et al., 2015), our work suggests

that, while OTULIN might not stably associate with the receptor

complexes, it plays active roles in receptor signaling (Hrdinka

et al., 2016) (see above, Figure 6J).

Physiologically, our data support a model whereby the unre-

stricted accumulation of M1-linked Ub chains leads to sterile

inflammation due to stimulation-independent activation of

NF-kB (Figure 7H). Importantly, the role of OTULIN in NF-kB in-

hibition is conceptually distinct from other NF-kB-induced nega-

tive feedback regulators, such as A20 (Harhaj and Dixit, 2012).

OTULIN is not under transcriptional control by NF-kB (Fiil et al.,

2013; Keusekotten et al., 2013) but appears to constitutively

and efficiently remove M1-linked polyUb signals. In the absence

of OTULIN, LUBAC activity is unrestricted, and such signals

accumulate in a deregulated fashion to initiate uncoordinated

NF-kB activation and sterile inflammation. The downstream

effects of this include secretion of pro-inflammatory cytokines,

immune cell activation, and infiltration, culminating in severe in-

flammatory phenotypes (Figures 3K and 7H).

Strikingly, this is not always the case. Mice with OTULIN defi-

ciency in B or T cells do not show overt phenotypes, and this is

due to downregulation of LUBAC components HOIP and

SHARPIN, but not HOIL-1, at the protein level, in OTULIN-defi-

cient cells (Figures 7A, 7B, 7H). Genetic loss of SHARPIN in

cpdm mice destabilizes both HOIP and HOIL-1 (Gerlach et al.,

2011; Ikeda et al., 2011; Tokunaga et al., 2011), contrasting the

stability of HOIL-1 in our models. This may point to differentiated

use of LUBAC components in immune cells. Second, OTULIN

only cleaves non-degradative M1-linked polyUb. Knockdown

of OTULIN leads to M1 polyubiquitination of all three LUBAC

components (Fiil et al., 2013; Hrdinka et al., 2016). It is possible

that these chains, at least on HOIP and SHARPIN, are extended

or edited in T and B cells by an unidentified E3 ligase to turn a

non-degradative into a degradative signal. The mechanism of

OTULIN-regulated LUBAC degradation requires further study,

but the findings clearly suggest that whole-body OTULIN defi-

ciency generates a complex composite phenotype, signified

by cell-type-specific regulation of M1 signaling.

There are also subtle but important differences in the observed

inflammatory phenotypes comparing CreERT2-OtulinLacZ/flox

chimeras and LysMCre-OtulinLacZ/flox mice, which present differ-

ently in terms of severity of symptoms of disease, e.g., cachexia/

weight loss. The nearly identical absolute levels of serum TNF,

the key mediator of the inflammatory phenotype (Figures 1

and 3) indicates that myeloid cells are responsible for TNF pro-

duction, but this does not explain the phenotypic difference.

Rescue experiments suggest that G-CSF regulates emergency
Figure 7. OTULIN Deficiency in T and B Cells Leads to Repression of t

(A–C) Immunoblot of OTULIN, CYLD, and linear ubiquitin chain assembly (LUBAC)

(B) splenic CD19+ B cells from MB1Cre-Otulinflox mice, and (C) CD11b+ myeloid

(D and E) Relative mRNA expression of LUBAC components from (D) splenic CD

B cells from MB1Cre-Otulinflox mice (n = 3). Data are presented as mean ± SEM

(F and G) Immunoblot of LUBAC components in (F) splenic CD4+ and CD8+ T ce

Otulinflox mice treated with 10 mM MG132 proteasomal inhibitor for 6 hr as indica

(H) Schematic showing a model of the cellular effect of OTULIN deficiency in my
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granulopoiesis, but not cachexia. Instead, we uncover a promi-

nent role of IL-6, a key mediator of TNF- and inflammation-

induced cachexia (Morley et al., 2006). This cytokine is higher

in CreERT2-OtulinLacZ/flox chimeras as compared to LysMCre-

OtulinLacZ/flox mice (Figures 2F and 4H), explaining, in part, the

difference in the severity of phenotypes. Further differences

include the temporal profile, with the chimera model being an

induced, acute model and the myeloid-specific knockout being

a constitutive, lifetime model. Finally, the numerous other upre-

gulated cytokines in LysMCre-OtulinLacZ/flox mice, which in-

cludes anti-inflammatory IL-10, will generate a delicate balance

of responses, enabling these mice to deal with inflammation

induced by loss of OTULIN.

We show that excess M1-linked polyUb in cells of the immune

system is harmful, but it most likely also affects other cell types

and organs. For example, ORAS patients suffer from panniculi-

tis, and it will be informative to study the role of OTULIN in skin

homeostasis and inflammation. Moreover, the roles of OTULIN

in embryonic development, potentially due to effects in the

Wnt signaling pathway (Rivkin et al., 2013), require further inves-

tigation. Our immune-specific mouse models are not suitable to

investigate this in detail. Significantly, the fact that the here-

described OTULIN-related autoinflammatory syndrome/ORAS

can be treated with TNF-neutralizing antibodies suggests a

potential therapeutic strategy to treat conditions caused by

excessive M1-linked polyUb signaling.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

InVivoMAb anti-mouse TNF (neutralizing) (clone XT3.11) BioXcell Cat#BE0058; RRID: AB_1107764

InVivoMAb anti-mouse IL-6 (neutralizing) (clone MP5-

20F3)

BioXcell Cat#BE0046; RRID: AB_1107709

anti-mouse G-CSF (neutralizing) (clone 67604) R&D Systems Cat#MAB414; RRID: AB_2085954

InVivoMAb Rat IgG1 isotype control (clone HRPN) BioXcell Cat#BE0088; RRID: AB_1107775

anti-B220 conjugated to FITC (clone RA3-6B2) eBioscience Cat#11-0452-81; RRID: AB_465053

anti-CD3ε conjugated to FITC (clone 145-2C11) BioLegend Cat#17-0031-81; RRID: AB_312670

anti-CD3ε conjugated to PE-Cy7 (clone 145-2C11) BioLegend Cat#100319; RRID: AB_312684

anti-CD3ε conjugated to APC (clone 145-2C11) eBioscience Cat#17-0031; RRID: AB_469314

anti-CD4 conjugated to Alexafluor700 (clone GK1.5) eBioscience Cat#56-0041-82; RRID: AB_493999

anti-CD4 conjugated to Alexafluor647 (clone GK1.5) eBioscience Cat#50-0041-82; RRID: AB_469773

anti-CD4 conjugated to biotin (clone GK1.5) BioLegend Cat#100403; RRID: AB_312688

anti-CD4 conjugated to FITC (clone H129.19) BD Biosciences Cat#561831; RRID: AB_10892800

anti-CD4 conjugated to BrilliantViolet785 (clone RM4-5) BioLegend Cat#100551; RRID: AB_11218992

anti-CD5 conjugated to BrilliantViolet-510 (clone 53-7.3) BioLegend Cat#100627; RRID: AB_2563930

anti-CD5 conjugated to FITC (clone 53-7.3) BD Biosciences Cat#553020; RRID: AB_394558

anti-CD8a conjugated to FITC (clone 53-6.7) eBioscience Cat#11-0081-81; RRID: AB_464914

anti-CD8a conjugated to APC (clone 53-6.7) eBioscience Cat#17-0081-81; RRID: AB_469334

anti-CD8a conjugated to PE-Cy7 (clone 53-6.7) eBioscience Cat#25-0081-81; RRID: AB_469583

anti-CD8a conjugated to PE (clone 53-6.7) eBioscience Cat#12-0081-81; RRID: AB_465529

anti-CD8a conjugated to biotin (clone 53-6.7) eBioscience Cat#13-0081-81; RRID: AB_466345

anti-CD11b conjugated to PE-Cy7 (clone M1/70) eBioscience Cat#25-0112-81; RRID: AB_469587

anti-CD11b conjugated to eFluor-450 (clone M1/70) eBioscience Cat#48-0112-82; RRID: AB_1582236

anti-CD11b conjugated to BrilliantViolet-421 (cloneM1/70) BioLegend Cat#101235; RRID: AB_10897942

anti-CD11b conjugated to FITC (clone M1/70) BioLegend Cat#101205; RRID: AB_312788

anti-CD11c conjugated to PE (clone N418) BioLegend Cat#117307; RRID: AB_313776

anti-CD11c conjugated to FITC (clone N418) eBioscience Cat#11-0114-81; RRID: AB_464939

anti-CD19 conjugated to FITC (clone eBio1D3) eBioscience Cat#11-0193-81; RRID: AB_657667

anti-CD19 conjugated to PerCP-Cy5.5 (clone eBio1D3) eBioscience Cat#45-0193-82; RRID: AB_1106999

anti-CD19 conjugated to Alexafluor700 (clone 6D5) BioLegend Cat#115528; RRID: AB_493735

anti-CD21/CD35 conjugated to APC (clone 7E9) BioLegend Cat#123411; RRID: AB_940395

anti-CD23 conjugated to PE-Cy7 (clone B3B4) eBioscience Cat#25-0232-81; RRID: AB_469603

anti-CD25 conjugated to BrilliantViolet-421 (clone PC61) BioLegend Cat#102033; RRID: AB_10895908

anti-CD43 conjugated to PE (clone S7) BD Biosciences Cat#553271; RRID: AB_394748

anti-CD44 conjugated to PE (clone IM7) eBioscience Cat#12-0441-81; RRID: AB_465663

anti-CD45.1 conjugated to eFluor-450 (clone A20) eBioscience Cat#48-0453-82; RRID: AB_1272189

anti-CD45.1 conjugated to BrilliantViolet-510 (clone A20) BioLegend Cat#110741; RRID: AB_2563378

anti-CD45.2 conjugated to Alexafluor700 (clone 104) eBioscience Cat#56-0454-81; RRID: AB_657753

and anti-CD62L conjugated to BrilliantViolet-421 (clone

MEL-14)

BioLegend Cat#104435; RRID: AB_10900082

anti-cKit/CD117 conjugated to PerCP-Cy5.5 (clone 2B8) BioLegend Cat#105823; RRID: AB_2131598

anti-FcεRIa conjugated to FITC (clone MAR-1) BioLegend Cat#134305; RRID: AB_1626102

anti-IgD conjugated to BrilliantViolet-650 (clone 11-

26c.2a)

BioLegend Cat#405721; RRID: AB_2562731

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

anti-IgM conjugated to PerCP-Cy5.5 (clone RMM-1) BioLegend Cat#406511; RRID: AB_2075944

anti-Ly6G/Gr-1 conjugated to FITC (clone RB6-8C5) eBioscience Cat#11-5931-81; RRID: AB_465313

anti-Ly6G/Gr-1 conjugated to PE (clone RB6-8C5) eBioscience Cat#12-5931-81; RRID: AB_466044

anti-Ly6G/Gr-1 conjugated to APC (clone RB6-8C5) eBioscience Cat#17-5931-81; RRID: AB_469475

anti-NK1.1 conjugated to BrilliantViolet-421 (clone PK136) BioLegend Cat#108731; RRID: AB_10895916

anti-NK1.1 conjugated to FITC (clone PK136) BioLegend Cat#108705; RRID: AB_313392

anti-Sca1 conjugated to PE-Cy7 (clone D7) eBioscience Cat#25-5981-81; RRID: AB_469668

anti-Ter-119 conjugated to FITC (clone TER-119) eBioscience Cat#11-5921; RRID: AB_2206887

anti-A20 Cell Signaling Technology Cat#4625; RRID: AB_2204524

anti-Actin (clone C4) Millipore Cat#MAB1501R; RRID: AB_94235

anti-CYLD Santa Cruz Biotechnology Cat#sc-74435; RRID: AB_1122022

anti-GAPDH Ambion Cat#AM4300; RRID: AB_437392

anti-HOIL-1/RBCK1 Novus Biologicals Cat#NBP2-27105; RRID: AB_2576210

anti-HOIL-1/RBCK1 Santa Cruz Biotechnology Cat#sc-49718; RRID: AB_2175281

anti-HOIP/RNF31 Abcam Cat#46322; RRID: AB_945269

anti-mouse HOIP/RNF31 Laboratory of Kazuhiro Iwai Tokunaga et al., 2011; RRID: N/A

anti-IkBa Cell Signaling Technology Cat#9242; RRID: AB_10694550

anti-IRF-3 Santa Cruz Biotechnology Cat#sc-9082; RRID: AB_2264929

anti-phospho-IRF-3 (pS396) Cell Signaling Technology Cat#4947; RRID: AB_823547

anti-Lys63-linked ubiquitin (clone Apu3) Millipore Cat#05-1308; RRID: AB_1587580

anti-Lys48-linked ubiquitin (clone Apu2) Millipore Cat#05-1307; RRID: AB_1587578

anti-Met1-linked/linear ubiquitin (clone LUB9) LifeSensors Cat#AB130; RRID: AB_2576211

anti-Met1-linked/linear ubiquitin (clone 1E3) Millipore Cat#MABS199; RRID: AB_2576212

anti-NIK Santa Cruz Biotechnology Cat#sc-8417; RRID: AB_628021

anti-NEMO/IKKg Santa Cruz Biotechnology Cat#sc-8330; RRID: AB_2124846

anti-OTULIN Cell Signaling Technology Cat#14127; RRID: AB_2576213

anti-p38 (clone M138) Abcam Cat#ab31828; RRID: AB_881839

anti-phospho-p38 (pT180/pY182) (clone ERP18120) Abcam Cat#ab195049; RRID: AB_2576214

anti-p65/RelA Cell Signaling Technology Cat#8242; RRID: AB_10860244

anti-phospho-p65/RelA (pS563) (clone 93H1) Cell Signaling Technology Cat#3033; RRID: AB_331284

anti-SHARPIN Proteintech Cat#14626-1-AP; RRID: AB_2187734

anti-ubiquitin (clone UBI-1) Novus Biologicals Cat#NB300-130; RRID: AB_2238517

anti-mouse CD19-coupled MACS MicroBeads Miltenyi Biotec Cat#130-052-201; RRID: N/A

anti-mouse CD11b-couple MACS MicroBeads Miltenyi Biotec Cat#130-049-601; RRID: N/A

anti-Biotin-coupled MACS MicroBeads Miltenyi Biotec Cat#130-090-485; RRID: N/A

Chemicals, Peptides, and Recombinant Proteins

Recombinant mouse M-CSF R&D Systems Cat#416-ML-050

Recombinant mouse TNF GIBCO Cat#PMC3014

Ultrapure LPS from E. coli K12 InvivoGen Cat#tlrl-peklps

Staurosporine from Streptomyces sp. Sigma-Aldrich Cat#S6942; CAS 62996-74-1

MG132 (Z-Leu-Leu-Leu-al) Sigma-Aldrich Cat#C2211; CAS 133407-82-6

Tamoxifen Sigma Cat#T5648-1G; CAS 10540-29-1

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliym

bromide (MTT)

Sigma Cat#M2128-250MG; CAS 298-93-1

Collagenase D Roche Cat#11088866001

Liberase Roche Cat#5401020001

DNase I Sigma-Aldrich Cat#D5025

Percoll PLUS GE Healthcare Cat#17-5445-02

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant OTULIN-WT Laboratory of David Komander Keusekotten et al., 2013

Recombinant OTULIN-C129A/L272P This paper N/A

Critical Commercial Assays

MILLIPLEX MAP Cytokine/Chemokune Magnetic Bead

Panel – Premixed 25-plex

Merck Millipore Cat#MCYTOMAG-70K-PMX

Mouse BAFF/BLyS/TNFSF13B Quantikine ELISA kit R&D Systems Cat#MBLYS0

Mouse G-CSF Quantikine ELISA kit R&D Systems Cat#MCS00

Mouse anti-nuclear antigen/ENA IgA+G+M ELISA kit Alpha Diagnostics Cat#5210

Mouse anti-Smith antigen IgA+G+M ELISA kit Alpha Diagnostics Cat#5405

Mouse anti-dsDNA IgA+G+M ELISA kit Alpha Diagnostics Cat#5110

Mouse Total IgG Ready-Set-Go ELISA kit eBioscience Cat#88-50400-22

IgG Mouse ELISA kit Abcam Cat#ab151276

Mouse Isotyping Panel 1 multiplex sandwich

electrochemiluminescence immunoassay kit

Meso Scale Discovery Cat#K15183-1

MACS Dead Cell Removal Kit Miltenyi Biotec Cat#130-090-101

Experimental Models: Organisms/Strains

Mouse: ACTB-FLPe Laboratory of Susan M. Dymeki Rodrı́guez et al., 2000

Mouse: ROSA26-CreERT2 Laboratory of Ernesto Bockamp Hameyer et al., 2007

Mouse: LysM-Cre Laboratory of Irmgard Förster Clausen et al., 1999

Mouse: Mb1-Cre Laboratory of Michael Reth Hobeika et al., 2006

Mouse: Cd4-Cre Laboratory of Christopher

B. Wilson

Lee et al., 2001

Experimental Models: Cell Lines

Otulin/Fam105b-targeted JM8A3.N1 ES cells EuMMCR Fam105btm1a(EUCOMM)Hmgu

HEK293 N/A N/A

Recombinant DNA

pEGFP-N1-OTULIN-WT Laboratory of David Komander Keusekotten et al., 2013.

pEGFP-N1-OTULIN-L272P This paper N/A

Sequence-Based Reagents

For primer sequences, please see Table S8.

Software and Algorithms

HomozygosityMapper Seelow et al., 2009 http://www.homozygositymapper.org/

Annovar / wAnnovar Yang and Wang, 2015 http://wannovar.usc.edu/index.php

SAMtools Li et al., 2009 http://samtools.sourceforge.net/

Other

Exome Variant Server NHLBI GO Exome Sequencing

Project (ESP)

http://evs.gs.washington.edu/EVS/

EXaC Browser Exome Aggregation Consortium http://exac.broadinstitute.org/gene/

ENSG00000154124
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author David Komander

(dk@mrc-lmb.cam.ac.uk).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

ORAS Patients
Consent Information

Written informed consent was obtained for all subjects and familymembers (n = 7). The studywas approved by the South Birmingham

Research Ethics Committee and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.
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Clinical Description of ORAS Patients, Related to Figure 1 and Tables S1, S2, and S3
Patient IV:3

The consultand is the first child born to consanguineous parents (III:3 and III:4) (Figure 1A) at 34 weeks gestation via normal vaginal

delivery and was small for gestational age. She presented at 3 weeks of age with protracted diarrhea and failure to thrive. She

required total parenteral nutrition (TPN) and later nasogastric tube feeds. During her lengthy admission she was noted to have recur-

rent episodes of a widespread nodular erythematous rash associated with fever, elevated white blood cell count, neutrophilia, raised

C-reactive protein (CRP) (Figures 1B-D), and an exacerbation of her diarrhea. An initial skin biopsy, taken as the rash was resolving,

showed non-specific changes. Duodenal biopsies showed microvillous dystrophy. She also had mild hepatomegaly. A liver biopsy

showed TPN-associated liver disease with micronodular cirrhosis and macrovisicular steatosis. Liver function later returned to

normal, although hepatomegaly and the permanent damage from cirrhosis persisted. There are no records of splenomegaly in

this patient. Echocardiogram identified an atrial septal defect.

The patient was extensively investigated to identify the cause of her protracted diarrhea and episodic skin rash including a number

of immunological investigations. Of note she had normal alpha 1 anti-trypsin level, normal functional antibodies, normal lymphocyte

subsets although with a modest increase in CD19+ B cells (2120 cells/mm3; normal 500-1500), normal lymphocyte function tests,

neutrophil function test, and normal NBT tests. She did have elevated IgG, IgM, and IgA levels (Table S1), raised CRP (Figure 1C),

elevated C1q (171mg/L; normal 80-150 mg/L) and C3 (2.75 g/L; normal 0.75-1.75 g/L), and she was positive for anti-neutrophil cyto-

plasmic antibody (ANCA) and anti-smooth muscle antibody (SMA), both 1:100 titers. When she was treated with intravenous meth-

ylprednisolone, her fever, diarrhea, and rash would resolve, but these clinical features would return when attempts were made to

change to oral prednisolone. Azathioprine and methotrexate were also trialed. In a course of 3 months she had three cases of severe

bilateral pneumonia progressing to sepsis and renal tubular necrosis, hematuria, proteinuria, and raised urea and creatinine requiring

admittance to the pediatric intensive care unit. She survived two episodes, but sadly died at 16 months during the third episode of

pneumococcal septicemia, which led to respiratory collapse.

Patient IV:4

The consultand is the second child born to consanguineous parents (III:3 and III:4) (Figure 1A) at 36 weeks gestation via normal

vaginal delivery with a birth weight of 2 kg. She was diagnosed with relapsing nodular panniculitis at 3 days of age. A skin biopsy

showed no evidence of vasculitis. This rash, similarly to her sister (patient IV:3) and cousin (patient V:2), was episodic and associated

with diarrhea (bloody at presentation), vomiting, fever, and painful swollen joints and difficulty sleeping. She had elevated white

blood cell counts with pronounced neutrophilia as well as raised CRP levels (Figures 1B-D), as well as elevated C3 (2.77 g/L; normal

0.75-1.75 g/L), but was negative for ANCA autoantibodies (she was not tested for other autoantibodies). She had normal lymphocyte

subsets. There are no records of hepatosplenomegaly in this patient. She required nasogastric tube feeds for failure to thrive. All

growth parameters were below the 0.4th centile. She also had bilateral cataracts diagnosed at the age of 5 months and develop-

mental delay. The cataracts were not present in the neonatal period on formal ophthalmological examination andwere not secondary

to steroid use.

She was treated with prednisolone from the age of 1 month, and with azathioprine and Anakinra (recombinant IL-1R-antagonist)

unsuccessfully. She had recurrent urinary tract infections and viral illnesses, which coincided with immunosuppressive therapy. Dur-

ing a severe episode of inflammation at the age of five she demonstrated features consistent with a high cell turnover including

elevated potassium, phosphate, uric acid, LDH, elevated white blood cell count and a metabolic acidosis. She was admitted to pe-

diatric intensive care with acute renal failure, pulmonary edema and an ileus, but sadly passed away just before turning 5 years old.

Treatment had included intubation and ventilation, intravenous methylprednisolone, dexamethasone, and methotrexate. In this pa-

tient, Familial Mediterranean Fever, Chronic Infantile Neurological Cutaneous Articular syndrome, Tumor necrosis factor Receptor-

Associated Periodic Syndrome, and Hyper IgD syndrome had all been excluded by genetic analysis.

Patient V:2

The consultand is the second child born prematurely at 28+6 weeks gestation to consanguineous parents (IV:1 and IV:2) (Figure 1A)

with a birth weight of 1.23 kg. He developed relapsing nodular panniculitis at 8 weeks of age while he was in the neonatal intensive

care unit. Prior to the appearance of his skin rash, he had repeated episodes of possible infection with raised CRP levels and elevated

white blood cell count and neutrophilia (Figures 1B-D), but no focus of infection could be identified. The rash was biopsied and this

confirmed inflammation in the dermis extending into the subcutaneous layer with a mixed inflammatory cell infiltrate. No granulomas

or vasculitis was seen. He has had frequent flare-ups involving widespread painful lumps in the skin lasting 2 days to 2 weeks. During

these episodes he was systemically unwell with fever, vomiting, diarrhea (sometimes bloody), inflamed painful joints, swollen feet,

and weight loss associated with elevated CRP levels and white blood cell count (Figures 1C and 1D), with a neutrophilia showing

toxic granulation and a left shift. He would lose his appetite, lose weight, and become dehydrated, which required admission to

the high dependency unit on some occasions. These episodes appeared to resolve with an increase in the dose of prednisolone.

In addition, he seemed susceptible to frequent infections especially viral illnesses including varicella zoster virus (VZV), influenza

A, respiratory syncytial virus (RSV), adenovirus, and cytomegalovirus (CMV), although these coincidedwith immunosuppressive ther-

apy. He had poor weight gain, slow linear growth, developmental delay, mild learning difficulties, congenital hydroceles, dental

caries, a pathological osteoporotic tibial fracture and he developed juvenile cortical cataracts at 2-3 years of age, which were treated

with a bilateral lensectomy and vitrectomy. There are no records of hepatosplenomegaly in this patient.
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On examination, his growth parameters were all less than the 0.4th centile. He had a prominent nodular rash in keeping with a flare

of panniculitis. He had coarse hair with bushy eyebrows, slight hyper-telorism, broad nasal bridge, prominent nose, protruding nor-

mally formed ears and a prominent chin.

He had comprehensive immunological investigations which were normal including lymphocyte subset panel and proliferation

analysis, a normal neutrophil oxidative burst, and normal expression of CD11a,b,c, CD18, CD55, CD95, MHCI, MHCII, and

CD25. He had increased IgA and IgM levels (Table S1) in serum and a single strongly positive anti-smooth muscle antibody

(SMA; 1:320 titer), but no other autoantibodies. He does not have alpha-1 antitrypsin deficiency or pancreatitis. The most recent

skin biopsy demonstrated inflammatory infiltrates composed of lymphocytes and neutrophils within the subcutis, associated

with foci of fat necrosis where neutrophils are particularly prominent. The inflammation seemed predominantly septal, but with

extension into the lobules. Some of the septal blood vessels showed edema of their walls, but no frank vasculitis was identified.

The features were very similar to those seen in the biopsy from his cousin (patient IV:4) and suggested a neutrophil-rich panniculitis

with fat necrosis favoring septal distribution.

He has been treated both with systemic steroids and Anakinra (recombinant IL-1R-antagonist). Neither medication successfully

prevented the exacerbations or additional symptoms. Infliximab (TNF neutralizing antibody) was introduced eight years ago (at

age �3) and has successfully controlled the disease. He has had a couple of minor exacerbations when the frequency of the Inflix-

imab treatments was decreased, or the dose per kg fell to nearly 5 mg/kg. In addition to this, he takes prophylactic methotrexate,

azithromycin, and aciclovir.

Mice
All animal experiments were undertaken with the approval of the UKHomeOffice. All mice were on a C57BL/6 or B6.SJL background

and maintained under specific pathogen-free conditions in individually ventilated cages (Techniplast GM500, Techniplast) on Ligno-

cel FS14 spruce bedding (IPS, Ltd.) with environmental enrichment (fun tunnel, chew stick, and Enviro-Dri nesting material (LBS)) at

19-23�C with light from 7.00 a.m. to 7.00 p.m. and fed Dietex CRM pellets (Special Diet Services) ad libitum.

Otulin/Fam105b-targeted JM8A3.N1 (C57BL/6 background strain) ES cells (Fam105btm1a(EUCOMM)Hmgu) were obtained from

EUCOMM and used to generate mice bearing neomycin selection and LacZ cassettes and a loxP-flanked exon 3 of Otulin, termed

the targeted ‘‘LacZ‘‘ or ‘‘LZ’’ (figures) allele (see also Figure S1). HeterozygousOtulin+/LacZmice were normal and asymptomatic (data

not shown), but intercrossing of Otulin+/LacZ mice failed to generate viable OtulinLacZ/LacZ offspring, consistent with previous work

(Bonizzi and Karin, 2004; Rivkin et al., 2013). The neomycin selection and LacZ cassettes were removed from the targeted allele

by intercrossing with FLPe-recombinase expressing mice (Rodrı́guez et al., 2000) to generate the conditional, floxed allele, which

can be conditionally ablated by the Cre recombinase leading to a frameshift and a premature stop codon (p.Glu77Glyfs*Ter3) (Figures

S2A andS2B), and theOtulinflox strain (Otulin+/flox andOtulinLacZ/flox mice).Otulinfloxmicewere bredwithRosa26-Cre-ERT2 (Hameyer

et al., 2007) (CreERT2-Otulinflox), LysM-Cre (Clausen et al., 1999) (LysMCre-Otulinflox),CD4-Cre (Lee et al., 2001) (CD4Cre-Otulinflox),

andMb1-Cre (Hobeika et al., 2006) (MB1Cre-Otulinflox) mice to facilitate conditional deletion ofOtulin. Pilot experiments showed that

CreERT2-OtulinLacZ/flox mice reacted adversely to tamoxifen administration, becoming moribund within a day ofOtulin deletion (data

not shown).

In individual experiments, mice were matched for age and background strain. All experiments, except for embryo staining (see

below) were performed on adult mice. For ERT2Cre-Otulinflox bone marrow chimeric mice, recipient mice were 2-3 months old

and in each experiment were either all male or all female. No differences in results were observed between experiments performed

onmale and femalemice. For LysMCre-Otulinflox, CD4Cre-Otulinflox, MB1Cre-Otulinfloxmice, experiments were performedwith amix

of male and female mice in experimental groups. LysMCre-Otulinflox, CD4Cre-Otulinflox, MB1Cre-Otulinflox mice used in experiments

were 2-9 months old. Mice were allocated to experimental groups based on genotype. Grouping of mice into cages was determined

at weaning, but where possible animals of equivalent age and gender were allocated to each experimental group. Where multiple

groups of the same genotype were required, these were allocated randomly to the particular treatment conditions. Sample sizes

were estimated using pilot experiments.

Bone Marrow-Derived Macrophages
Bonemarrow-derived macrophages (BMDMs) were generated from bonemarrow cells derived from tibias, femurs, and pelvic bones

from LysMCre-Otulin+/flox, LysMCre-OtulinLacZ/flox or LysMCre-Otulindel/flox mice. Bones were flushed in PBS supplemented with 3%

(v/v) FCS and cells were cultured and differentiated in RPMI 1640 + GlutaMAX supplemented with 10% (v/v) FCS, Penicillin/Strep-

tomycin, 5 mM b-mercapto ethanol, nonessential amino acids (GIBCO), and 20 ng/mL recombinant mouse M-CSF (R&D Systems,

Minneapolis, MN) as described previously (Damgaard et al., 2012). BMDMs denoted ‘untreated’ in experiments indicates no exog-

enous stimulation of these cells after differentiation.

Cell Lines
HEK293 cells and mouse embryonic fibroblasts (MEFs) were cultured in DMEM + GlutaMAX supplemented with 10% (v/v) FCS

and Penicillin/Streptomycin at 37�C in a humidified atmosphere at 5% CO2 unless otherwise indicated in figure legends or method

details.
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METHOD DETAILS

Molecular Genetic Analysis
Blood genomic DNA was isolated using the DNeasy kit (QIAGEN). A genome-wide linkage scan was carried out using the Affymetrix

250K SNP microarray with DNA from the three affected patients (V:2, IV:3 and IV:4). Homozygous regions were identified in affected

patients using the program HomozygosityMapper (http://www.homozygositymapper.org/) (Seelow et al., 2009) and further analyzed

to confirm or refute linkage by typing microsatellite markers in all family members from whom DNA was available. Direct sequencing

of the genes within the identified region was prioritised according to putative function and position. The genomic DNA sequence of

candidate genes was taken from Ensembl (http://www.ensembl.org/index.html) and primer pairs for the translated exons were de-

signed using ExonPrimer software (https://ihg.gsf.de/ihg/ExonPrimer.html). Individual exons and flanking sequences were amplified

using standard polymerase chain reaction (PCR) (primer details and conditions on request). PCR products were directly sequenced

by the Big Dye Terminator Cycle Sequencing kit and run on an ABI PRISM 3730 DNA Analyzer (Applied Biosystem). Sanger

sequencing was repeated on at least two independent PCR products to confirm sequence variants. DNA sequences were analyzed

using the Chromas software (Technelysium). Whole Exome Sequencing was performed as described previously (Clark et al., 2014).

Exon capture was performed with the SureSelect All Exon 50Mb Target Enrichment System (Agilent) and massively parallel DNA

sequencing was undertaken on an Illumina AnalyserIIx with 76bp paired end reads. Single nucleotide substitutions and small inser-

tion deletions were detected and quality filtered within the SamTools software package (http://samtools.sourceforge.net/) (Li et al.,

2009) and in-house software tools. Variants were annotated with the Annovar tool (http://wannovar.usc.edu/index.php) (Yang and

Wang, 2015). Filtering of variants for novelty was performed by comparison to dbSNP132 and 1000 Genomes SNP calls (June

2011) and patient variants were compared to variants identified in 250 control exomes sequenced and analyzed in a similar manner.

The Exome Variant Server (http://evs.gs.washington.edu/EVS/) and the EXaC Browser (http://exac.broadinstitute.org/gene/

ENSG00000154124) datasets were accessed October 2015.

b-Galactosidase Staining of Mouse Embryos
E13.5 Otulin+/LacZ and Otulin+/+ embryos were dissected from the uterine tracts and immediately transferred to ice cold 4% PFA in

PBS and left to fix for 1 hr. Fixed embryos were washed in rinse buffer (5 mM EGTA, 0.01% (w/v) deoxycholate, 0.02% NP-40 (v/v),

2 mMMgCl2 in PBS) and transferred to staining buffer (5 mMK3[Fe(CN)6], 5 mMK4[Fe(CN)6], 5 mM EGTA, 0.01% deoxycholate (w/v),

0.02% NP-40 (v/v), 2 mM MgCl2, 1 mg/mL 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-gal) in PBS) and left to incubate

24 hr in the dark at 37�C. After staining, embryos were washed in rinse buffer and post-fixed in 4% PFA in PBS for 48 hr at room

temperature. Embryos were then washed in PBS and dehydrated by sequential washes in increasing concentrations of ethanol

ending with 100% ethanol for 30 min and then cleared in methyl salicylate (Sigma Aldrich) for 30 min. Embryos were allocated to

experimental groups based on genotype. This experiment was performed on embryos from two independent litters, and a total of

five Otulin+/+ and five Otulin+/LacZ embryos were analyzed.

Mixed Bone Marrow Chimeras
Oneweekbefore transplantation, thedrinkingwaterof recipientmicewassupplementedwith0.1mg/mLenrofloxacin (Baytril�, Bayer).

Bone marrow cells (23 106) from wild-type CD45.1+ B6/SJL mice and CD45.2+ CreERT2-Otulin+/flox or CreERT2-OtulinLacZ/flox mice

were resuspended in 100 mL PBS at a 1:1 ratio and then injected intravenously (i.v.) into 2-3 months old sex- and age-matched g-irra-

diated C57BL/6 recipients (given two doses of 4.5 Gy). At 6-8 weeks after reconstitution, mice were given three doses of tamoxifen

(Sigma-Aldrich, St Louis, MO; 1 mg in sunflower oil with 10% ethanol per dose) intraperitoneally (i.p.). Mice were closely monitored

and weighed daily. At the onset of weight loss (3-6 days after initial tamoxifen dose) mice were culled and samples taken for analyses.

Mixedbonemarrowchimericmicewere allocated to experimental groups basedongenotypeof the transplantedbonemarrow.Where

multiple groups of the same genotype were required, these were allocated randomly to the particular treatment conditions.

In Vivo Cytokine Neutralization
For in vivo neutralization of cytokines, mixed bone marrow chimeric mice (described above) were injected i.v. with antibodies two to

four hours before tamoxifen injection. Chimeric mice were injected with 1 mg/mouse InVivoMab anti-mouse TNF (clone XT3.11,

BE0058, BioXcell, West Lebanon, NH), 1 mg/mouse InVivoMab anti-mouse IL-6 (cloneMP5-20F3, BE0046, BioXCell), 250 mg/mouse

anti-mouse G-CSF (clone 67604, MAB414, R&D Systems), or the equivalent amount of InVivoMab Rat IgG1 isotype control (clone

HRPN, BE0088, BioXCell). Mixed bone marrow chimeric mice were allocated to the experimental groups based on genotype of

the transplanted bone marrow. Where multiple groups of the same genotype were required, these were allocated randomly to the

particular treatment conditions.

Cytokine/Chemokine, Autoantibody, and Immunoglobulin Analysis
Cytokine/chemokine multiplex analysis was carried out using Luminex xMAP technology. Serum and medium samples were

analyzed using magnetic MILLIPLEX MAP antibody-conjugated beads (Merck-Millipore, Bedford, MA) according to the manufac-

turer’s instructions on a Luminex MAGPIX instrument with the xPONENT 4.2 software. For some G-CSF measurements, samples

were diluted 1/10. For cytokine measurements from BMDMs, cells were split and equal numbers were reseeded in fresh medium
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24 hr prior to sample collection. BAFF levels, and G-CSF levels in some experiments, were determined using theMouse BAFF/BLyS/

TNFSF13BQuantikine ELISA or theMouse G-CSFQuantikine ELISA kits (R&D Systems), respectively, with a 1/20 dilution of samples

for BAFF and 1/10 for G-CSF according to the manufacturer’s instructions. Autoantibodies were detected using mouse anti-nuclear

antigen/ENA IgA+G+M, mouse anti-Smith antigen IgA+G+M, and mouse anti-dsDNA IgA+G+M ELISA kits (Alpha Diagnostics, San

Antonio, TX) with 1/100 dilution of samples according to the manufacturers instructions. All samples were run in duplicate. Serum

total IgG levels were determined using the Mouse Total IgG Ready-Set-Go ELISA kit (eBioscience, San Diego, CA) or the IgGMouse

ELISA kit (Abcam, Cambridge, UK) according to the manufacturer’s instructions. Serum immunoglobulin isotyping was performed

using the Mouse Isotyping Panel 1 multiplex sandwich electrochemiluminescence immunoassay kit (Meso Scale Discovery, Gai-

thersburgh, MD) with 1/100,000 dilution of samples according to the manufacturer’s instructions. All samples were run in duplicate.

Patient C-reactive protein (CRP) were analyzed on an Abbott Archetect C1600.

Histology
Tissue samples were harvested in 3% (v/v) FCS in PBS on ice, transferred to 10% neutral buffered formalin, and fixed for 48 hr at

room temperature. Fixed tissues were sent to AML Laboratories, Inc., Baltimore, MD, for paraffin embedding, sectioning, and He-

matoxylin & Eosin or Masson’s Trichrome staining. Micrographs were taken on a Carl Zeiss Axioplan microscope with an Axiocam

camera and processed using the Fiji software (Schindelin et al., 2012). Scale bars represent 200 mm.

Flow Cytometry and Cell Sorting
Single cells in a solution of 2% (v/v) FCS in PBS at 4�C were then blocked with anti-CD32 antibodies (clone 2.4G2; BioXCell, West

Lebanon, NH), washed, and then incubated with fluorophore-conjugated antibodies. Fixable Viability Dye eFluor780 (eBioscience,

San Diego, CA) was included in all analyses to exclude dead cells. Cells were analyzed on a BD Fortessa (BD Bioscience, Oxford,

United Kingdom) or were sorted with a MoFlo Synergy cell sorter (Beckman Coulter, Inc., Fullerton, CA) according to the manufac-

turers’ standard operating procedures. Data were analyzed with FlowJo software version X.07. For quantification of cells numbers of

infiltrating cells, the absolute number of cells in a gate was multiplied by the dilution factor of the sample and corrected for the per-

centage of dead cells. Fluorophore-coupled antibodies were anti-CD4 conjugated to Alexafluor700 or Alexafluor647 (clone GK1.5,

eBioscience), anti-CD4 conjugated to FITC (clone H129.19, BD Pharmigen), anti-CD4 conjugated to BrilliantViolet785 (clone RM4-5,

BioLegend), anti-CD8a conjugated to FITC, APC, PE-Cy7 or PE (clone 53-6.7, eBioscience), anti-CD11b conjugated to PE-Cy7 or

eFluor-450 (clone M1/70, eBioscience), anti-CD11b conjugated to BrilliantViolet-421 or FITC (clone M1/70, BioLegend), anti-

CD11c conjugated to PE (clone N418, BioLegend), anti-CD11c conjugated to FITC (clone N418, eBioscience), anti-CD19 conjugated

to FITC or PerCP-Cy5.5 (clone 1D3, eBioscience), anti-CD19 conjugated to Alexa Fluor-700 (clone 6D5, BioLegend), anti-CD45.1

conjugated to eFluor-450 (clone A20, eBioscience), anti-CD45.1 conjugated to BrilliantViolet-510 (clone A20, BioLegend), anti-

CD45.2 conjugated to Alexa Fluor-700 (clone 104, eBioscience), anti-Ly6G/Gr-1 conjugated to FITC, PE, or APC (clone RB6-8C5,

eBioscience), anti-NK1.1 conjugated to BrilliantViolet-421 or FITC (clone PK136, BioLegend), anti-Ter-119 conjugated to FITC (clone

TER-119, eBioscience), anti-FcεRI conjugated to FITC (clone MAR-1, BioLegend), anti-CD43 conjugated to PE (clone S7, BD

Pharmigen), anti-CD25 conjugated to BrilliantViolet-421 (clone PC61, BioLegend), anti-CD23 conjugated to PE-Cy7 (clone B3B4,

eBioscience), anti-CD21 conjugated to APC (clone 7E9, BioLegend), anti-IgM conjugated to PerCP-Cy5.5 (clone RMM-1,

BioLegend), anti-IgD conjugated to BrilliantViolet-650 (clone 11-26c.2a, BioLegend), anti-CD5 conjugated to BrilliantViolet-510

(clone 53-7.3, BioLegend), anti-Sca1 conjugated to PE-Cy7 (clone D7, eBioscience), anti-cKit/CD117 conjugated to PerCP-Cy5.5

(clone 2B8, BioLegend), anti-B220 conjugated to FITC (clone RA3-6B2, eBioscience), anti-CD3 conjugated to FITC or PE-Cy7 (clone

145-2C11, BioLegend), anti-CD3 conjugated to APC (clone 145-2C11, eBioscience), anti-CD5 conjugated to FITC (clone 53-7.3, BD

Pharmigen), anti-CD44 conjugated to PE (clone IM7, eBioscience), and anti-CD62L conjugated to BrilliantViolet-421 (clone MEL-14,

BioLegend).

Lineage (Lin) stain panel consisted of anti-B220, anti-CD19, anti-CD3, anti-CD4, anti-CD5, anti-CD8, anti-CD11b, anti-CD11c,

anti-NK1.1, anti-FcεRI, and anti-Ter119 antibodies conjugated to FITC.

Bone Marrow-Derived Macrophages
Bone marrow-derived macrophages (BMDMs) were considered ‘‘untreated’’ when no exogenous stimulation was given after

completed differentiation (day 7). For assessment of IkBa stability, BMDMs were washed thoroughly in PBS and then incubated

with 10 mg/mL anti-TNF neutralizing antibodies (clone XT3.11, BE0058, BioXCell) or isotype control (clone HPRN, BE0088, BioXcell)

in complete RPMI for 30min before theywere treatedwith 50 mg/mL cycloheximide in DMSO (CHX; Santa Cruz Biotechnology) for the

indicated times. To verify TNF neutralization, immortalized mouse embryonic fibroblasts (MEFs) were cultured in medium containing

the TNF neutralizing antibody or the isotype control and stimulated with 0.25 ng/mL recombinant mouse TNF (GIBCO) for the indi-

cated times. For signaling experiments, BMDMs were stimulated with 1 ng/mL recombinant mouse TNF (GIBCO) for the indicated

times before they were lysed for quantitative RT-PCR analysis.

Tissue Preparation and MACS Cell Separation
Single cell suspensions were obtained by gentle mechanical disruption of tissues using a syringe plunger and a 70 mm cell strainer.

Lungs were digested for 30 min with collagenase D (Roche; 0.7 mg/mL in 2% (v/v) FCS in PBS) before disruption. For CD11b+ cell
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isolation from livers for immunoblotting (Figure 7C), mashed livers were resuspended in 44% Percoll PLUS (GE Healthcare) in PBS

and centrifuged at 2000 rpm for 20 min with low deceleration. The top layer of hepatocytes and Percoll were then aspirated, and the

pelleted leukocytes were resuspended in 4.5 mL ice-cold PBS, vortexed for 15 s, and then added 500 mL 10x PBS and vortexed

again. The remaining leukocytes were pelleted for centrifugation and subjected to isolation using MACS MicroBeads (see below).

For lamina propria leukocyte preparations from small intestine and colon (for Figure 7C), the mesentery was removed, the intestinal

content gently squeezed out, and the intestines were washed in PBS/HEPES (PBS + 10mMHEPES) and then cut into 2-3 cm pieces.

Digestion and cell isolation was then performed using 0.06 mg/mL Liberase (Roche) and 60 mg/mL DNase I (Sigma Aldrich) as pre-

viously described (Morrison et al., 2013). Blood leukocytes were prepared fromwhole EDTA-blood by diluting 500 mL blood in 8.5 mL

ice-cold distilled water and vortexing for 15 s. Immediately thereafter 1 mL 10x PBSwas added the preparation was vortexed for 10 s

and the blood leukocytes were pelleted by centrifugation. The remaining leukocytes were pelleted for centrifugation and subjected to

isolation using MACSMicroBeads (see below). All cell preparations and suspensions were passed through 70 mmnylon cell strainers

again before cell isolation. CD19+ B cells were isolated from spleen preparations using anti-mouse CD19-coated magnetic MACS

MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany), CD4+ and CD8+ T cells were isolated from spleen preparations using

anti-biotin-coated magnetic MACS MicroBeads (Miltenyi Biotec) incubated with anti-CD4 conjugated to biotin (clone GK1.5,

BioLegend) and anti-CD8a conjugated to biotin (clone 53-6.7, eBioscience), and CD11b+ myeloid cells were isolated from various

tissue preparations using anti-mouse CD11b-coated magnetic MACS� MicroBeads (Miltenyi Biotec). All MACS beads-based iso-

lations were performed according to the manufacturer’s instructions using MACSMSCell Separation Columns (Miltenyi Biotec). Iso-

lated cells were either lysed in sample buffer (50 mM Tris pH 6.8, 10% glycerol (v/v), 100 mMDTT, 2% SDS (w/v), bromophenol blue)

immediately after isolation or cultured in RPMI-1640 + GlutaMAX supplemented with 10% (v/v) FCS and Penicillin/Streptomycin and

treated with 10 mM MG132 in DMSO (Sigma Aldrich) as indicated, washed in PBS, and then lysed in sample buffer.

Quantitative Real-Time PCR
Equal numbers of BMDMs were seeded in 12-well plates 24 hr prior to experiments. Total RNA was extracted from BMDMs using

RNeasy Mini Kit (QIAGEN, Hilden, Germany), and DNase digestion was performed on column with the RNase-Free DNase Set

(QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. Total RNA was reverse transcribed using Quantitect Reverse

Transcription Kit (QIAGEN). RT-PCR was performed using QuantiFast SYBR Green RT-PCR Kit (QIAGEN) on a Viia7 Real-Time PCR

Instrument (Applied Biosystems, Foster City, CA) with the primers indicated below. Each sample was run in duplicate. Results were

normalized to those of 18S rRNA as internal housekeeping control using the 2^(-DCt)-method. Primers were: 18S rRNA 50-GTAA

CCCGTTGA-ACCCCATT-30 and 50-CCATCCAATCGGTAGTAGCG-30; Tnf 50-GGTCTGGGCCATAGAACTGA-30 and 50-CAGCCTCT

TCTCATTCCTGC-30; Il6 50-TCTGAAGGACTCTGGCTTTG-30 and 50-GATGGATGCTACCAAACTGGA-30; Nfkbia 50-CCAAGTGCAG

GAACGAGTCT-30 and 50-AAGGACGAGGAGTACGAGCA-30; Tnfaip3 50-TTCCTCAGGACCAGGTCAGT-30 and 50-AAGCTC

GTGGCTCTGAAAAC-30;Hoip/Rnf31 50-TACGGTTGTATGGCTATA-30 and 50-GTATTCATCTGGTTCCTC-30;Hoil-1/Rbck1 50-GCACT

TTCATCAACAAAC-30 and 50-AGGTATCTGGTAGGTCTC-30; Sharpin 50- GAACTGGTATTGTCTTGTGTA-30 and 50-AGAAGGCAAG

GATGAACT-30.

Immunoblotting
For BMDMs, equal numbers of cells were lysed directly in sample buffer (50 mM Tris pH 6.8, 10% glycerol (v/v), 100 mM DTT, 2%

SDS (w/v), bromophenol blue), sonicated for 5 s (microtip) and boiled for 2 min. Mouse tissues were lysed in RIPA buffer (50 mM Tris

pH 7.4, 1%NP-40 (v/v), 0.5% deoxycholate (w/v), 0.1% SDS (w/v), 150 mMNaCl, 2 mM EDTA, 5 mMMgCl2) for 15 min at 20 Hz on a

TisssueLyser II (QIAGEN). Samples were then treated with Benzonase (Novagen, Madison, WI) for 30 min at 4�C for and then son-

icated for 5 min in 10 s pulses. Samples were cleared by centrifugation and protein concentration was measured using BCA assay

(Thermo Scientific). Proteins were resolved on 4%–12% Bis-Tris gels (Invitrogen, Carlsbad, CA) and transferred to nitrocellulose

membranes using the iBlot system (Invitrogen), a HEP-1 Owl Panther semidry electroblotter (Thermo Scientific), or the Trans-Blot

Turbo transfer system (Bio-Rad, Hercules, CA). Membranes were blocked in 5% milk in PBS-T (PBS + 0.1% (v/v) Tween-20) for

30 min and incubated with primary antibodies in PBS-T + 3% BSA at 4�C overnight, washed in PBS-T, incubated at room temper-

ature for 1 hr with anti-rabbit IgG-HRP or anti-mouse IgG-HRP, washed, and visualized using AmershamWestern Blotting Detection

Reagent (GE Healthcare) or SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientiric). Primary antibodies recog-

nized OTULIN (14127, Cell Signaling Technology), IkBa (9242, Cell Signaling Technology), phospho-p65/RelA (pS563) (3033, Cell

Signaling Technology), p65/RelA (8242, Cell Signaling Technology), A20 (4625, Cell Signaling Technology), NEMO/IKKg (8330, Santa

Cruz Biotechnology), GAPDH (AM4300, Ambion), Met1-linked/linear ubiquitin (LUB9, AB130, LifeSensors), Met1-linked/linear ubiq-

uitin (1E3, MABS199, Millipore), Lys63-linked ubiquitin (Apu3, 05-1308, Millipore), Lys48-linked ubiquitin (Apu2, 05-1307, Millipore),

Ubiquitin (NB300-130, Novus Biologicals), HOIP/RNF31 (46322, Abcam), mouse HOIP (kind gift from Professor Kazuhiro Iwai, Kyoto

University (Tokunaga et al., 2011)), HOIL-1/RBCK1 (NBP2-27105, Novus Biologicals), HOIL-1/RBCK1 (sc-49718, Santa Cruz

Biotechnology), SHARPIN (14626-1-AP, Proteintech), NIK (sc-8417, Santa Cryz Biotechnology), phospho-IRF-3 (pS396) (4947,

Cell Signaling Technology), IRF-3 (sc-9082, Santa Cruz Biotechnology), CYLD (sc-74435, Santa Cruz Biotechnology), p38 (M138,

ab31828, Abcam), phospho-p38 (pT180/pY182) (ERP18120, ab195049, Abcam), and Actin (C4, MAB1501R, Millipore). Secondary

HRP-coupled antibodies were from GE Healthcare (NA931 and NA934). Densitometry analyses of immunoblots were performed us-

ing the Fiji software (Schindelin et al., 2012). To analyze IkBa stability, the ratio between the absolute IkBa signal intensity for each
e8 Cell 166, 1215–1230.e1–e10, August 25, 2016



sample and the absolute Actin signal intensity for each samples was calculated. This ratio was then normalized to the ‘‘0’’ sample

within each group. Immunoblot data are representative of at least two independent experiments.

MTT Reduction Assay for Cell Viability
MTT reduction assay was performed as previously described (Damgaard et al., 2013). Briefly, equal numbers of LysMCre-Otulin+/flox

and LysMCre-OtulinLacZ/flox BMDMs were seeded (as two biological replicas) in 96-well plates 24 hr before treatment. Cells were

treated as indicated with recombinant human TNF (100 ng/mL; R&D Systems), ultrapure LPS from E. coli K12 (100 ng/mL; Invivogen,

San Diego, CA), or Staurosporine (1 mM; Sigma-Aldrich) for 10 hr. Medium was aspirated and 100 mL fresh medium was added

together with 25 mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliym bromide (MTT; 5 mg/mL dissolved in PBS (Sigma)) and cells

were left to incubate for 2 hr at 37�C. Afterward, 100 mL solubilization buffer (20% SDS (w/v) dissolved in 50% N,N-dimethylforma-

mide) was added and samples were left to incubate overnight. Absorbance at 590 nm was read with a reference filter of 620 nm.

Individual experiments were performed in duplicate. Data were normalized to untreated LysMCre-Otulin+/flox samples.

Kaplan-Meier Curve
The Kaplan-Meier curve for the LysMCre-Otulin mice were produced using Graphpad Prism 6.

Cell Culture and Pull-Downs
HEK293 cells were transfectedwith pEGFP-N1-OTULIN-WT or pEGFP-N1-OTULIN-L272P, encoding humanOTULIN and its variant,

using FuGENE HD (Promega, Madison, WI). Medium was changed 16 hr after transfection, and cells were then kept at 32�C for

another 24 hr. Cell were lysed in 25mMTris-HCl pH 7.4, 150mMNaCl, 1mMDTT, 0.5%NP40 and protease inhibitor cocktail (Roche)

on ice for 20min. Lysate was cleared by centrifugation at 16,000 x g for 20min, and lysate was incubated with agarose-coupled GFP-

Trap A beads (ChromoTek GmbH, Martinsried, Germany) for 90 min at 4�C on rotation to precipitate GFP-tagged OTULIN. Bound

GFP-OTULIN was eluted by boiling beads in 2x sample buffer, and the precipitated proteins were resolved and analyzed by SDS-

PAGE and immunoblotting.

Patient Cell Samples
Buffy coat cells from blood samples from patient V:2 and anonymized healthy, age-matched controls were depleted of dead cells

using the Dead Cell Removal kit (Miltenyi Biotec) according to the manufacturer’s instructions. Live cells were washed in PBS, pel-

leted by centrifugation, and lysed in sample buffer (50 mM Tris pH 6.8, 10% glycerol (v/v), 100 mMDTT, 2% SDS (w/v), bromophenol

blue) before they were subjected to analysis by immunoblot. This experiment was repeated with two independent samples from pa-

tient V:2.

Expression and Purification of OTULIN
Human OTULIN constructs were expressed in E. coli strain Rosetta2 (DE3) pLacI. Cells were grown at 37�C in 2 xTY medium con-

taining 30 mg/mL kanamycin and 34 mg/mL chloramphenicol to an OD600 of 0.8. The cultures were cooled down to 18�C before in-

duction with 400 mM IPTG and harvested 20 hr post induction. Cells were resuspended and lysed by sonication in lysis buffer (20mM

Tris pH 7.4, 300 nM NaCl, 2 mM b-mercaptoethanol, 40 mM imidazole, DNase I, lysozyme, protease inhibitor cocktail (Roche)).

OTULIN was purified by immobilized metal affinity chromatography using a HisTrap HP column (GE Healthcare Life Sciences).

The 6-His tag was cleaved by overnight incubation with 3C protease, in a dialysis buffer (20 mM Tris pH 8.0, 4 mM DTT). The protein

was further purified by anion exchange chromatography (ResourceQ, GE Healthcare Life Sciences) and the eluted OTULIN was sub-

jected to size exclusion chromatography (HiLoad 16/60 Superdex 75, GE Healthcare Life Sciences) in buffer containing 20 mM Tris

pH 8.0, 175 mM NaCl, 4 mM DTT.

Qualitative DUB Linkage Specificity Assay
Qualitative deubiquitination assays were performed as previously described (Keusekotten et al., 2013). Briefly, OTULINWT and OTU-

LINL272P at several concentrations were diluted in 25 mM Tris pH 7.4, 150 mM NaCl, and 10 mM DTT and incubated with 1 mM di- or

tetraUb inDUBbuffer (50mMTris pH7.4, 50mMNaCl, 5mMDTT) at 37�C.Sampleswere taken at different timepoints andmixedwith

4 x SDS sample buffer to stop the reaction. They were resolved by SDS-PAGE and visualized by silver staining (BioRad SilverStain

Plus kit). Qualitative DUB assay on diUb were repeated three times, and the assay were performed once on tetraUb.

Binding Studies
To measure binding affinities of OTULINC129A and OTULINC129A/L272P to Met1-diUb, fluorescence anisotropy experiments were per-

formed as previously described (Keusekotten et al., 2013). In brief, 10 mL of 100 nM FlAsH-tagged Met1-diUb were dispensed in a

384-well Corning plate. Serial dilutions of OTULINC129A and OTULINC129/L272P were prepared in FlAsH buffer (20 mM Tris pH 7.4,

150 mM NaCl, 2 mM b-mercaptoethanol, 0.1 mg/mL bovine serum albumin) and 10 mL were added to FlAsH-tagged Met1-diUb

containing wells. Fluorescence polarization was recorded on a PheraStar plate reader (BMG Labtech) using an optics module

with lex = 485 nmand lem = 520 nm, and valueswere fitted to a one-site total bindingmodel usingGraphpad Prism 6 to derive binding

constants (KD).
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Circular Dichroism Experiments
Circular dichroism (CD) measurements were performed on a Jasco-J815 spectropolarimeter (Jasco International Co. Ltd., Tokyo,

Japan), using a spectral band width of 1 nm and a cell path-length of 0.1 cm. OTULINWT and OTULINL272P were re-buffered in

PBS at 0.38 mg/mL prior to the experiment. The far UV CD spectra were measured from 260-195 nm and were corrected for buffer

contribution by baseline subtraction.

Nano-DSF Thermal Unfolding Experiments
Nano-DSF (differential scanning fluorimetry) measurements were performed using a Prometheus NT.48 instrument (NanoTemper

Technologies GmbH, Germany). Experiments on OTULINWT and OTULINL272P were carried out at 0.11 mg/mL and 0.38 mg/mL

(not shown). Samples were dialysed into PBS before measurement and 10 mL of each sample were loaded in UV capillaries

(NanoTemper Technologies). Temperature gradient was set at 2.5�C/min in a range from 20 to 90�C. Protein unfolding wasmeasured

by detection of change in tryptophan fluorescence at emission wavelengths of 330 and 350 nm, dependent on temperature gradient.

Tm’s were calculated according to the manufacturer’s instructions. Results were confirmed by differential scanning calorimetry and

CD thermal melt experiments (data not shown).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean ± SEM unless otherwise indicated in figure legends. Sample number (n) indicates the number of inde-

pendent biological samples in each experiment. Sample numbers and experimental repeats are indicated in figures and figure leg-

ends or methods section above. Data were analyzed using the two-sided nonparametric Mann-Whitney U test of the null hypothesis

of continuous data unless otherwise indicated in figure legends or method details. Data analysis was not blinded. Differences in

means were considered statistically significant at p < 0.05. Significance levels are: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p <

0.0001; n.s., non-significant. Analyses were performed using the Graphpad Prism 6.0 software.

DATA AND SOFTWARE AVAILABILITY

Data Resources
Due to restrictions from the patient consent approved by the research ethics committee it is not be possible to deposit complete

exome sequencing data in a public repository, but the data could be made available to interested researchers by contacting the

authors.
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Supplemental Figures

Figure S1. Genetic Linkage Analysis of Affected Patients and Biochemical and Biophysical Analysis of OTULINL272P, Related to Figure 1

(A) Candidate regions of linkage following genome-wide linkage scan using Affymetrix 250K SNP arrays in three affected patients. HomozygosityMapper output

shows common regions of genome-wide homozygosity in the three patients. The graph shows the genome-wide homozygosity scores produced by

HomozygosityMapper plotted as bar chart with red bars indicating the most promising genomic linkage regions (red). (B) Circular dichroism spectroscopy in the

ultraviolet wavelength region of OTULINWT and OTULINL272P. This spectrum is representative of two independent experiments carried out at a protein con-

centration of 0.38mg/mL. (C) Tryptophan fluorescence upon thermal unfoldingmeasured by nanoDSF. Destabilization of OTULINWT andOTULINL272P dependent

on temperature shows that both proteins are stable at 37�C. Apparent melting temperatures (Tm) were determined as 56.7�C and 53�C, respectively (dashed

lines). Data are representative of two independent experiments. (D) Immunoblot of endogenous HOIP co-precipitating with C-terminally GFP-tagged OTULINWT

or OTULINL272P ectopically expressed in HEK293 cells. Data are representative of two independent experiments. (E) Met1-linked tetraUb hydrolysis byOTULINWT

and OTULINL272P were assayed with 1 mM tetraUb over time with the indicated OTULIN concentrations and visualized on silver-stained 4%–12% gradient SDS-

PAGE gels. (F) Affinity measurements by fluorescence anisotropy with FlAsH (Fluorescein Arsenical Helix-binder)-labeled Met1 diUb and catalytically inactive

OTULINC129A or OTULINC129A/L272P. Data aremeans ±SD of one experiment performed in triplicate. Results are representative of three independent experiments.

FP, fluorescence polarization. Values were fitted to a one-site total binding model to derive binding constants (KD), which could not be calculated for

OTULINC129A/L272P. (G) Hydrolysis of diUb of all possible linkages byOTULINL272P in a time coursewith the indicatedOTULINL272P concentration and visualized on

silver-stained 4%–12% gradient SDS-PAGE gels. o/n, overnight treatment.
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Figure S2. Generation of OTULIN-Targeted Mice, OTULIN Expression, Genotyping, and Reconstitution of Bone Marrow Chimeric Mice,

Related to Figure 2

(A) Schematic showing the strategy to generate conditional and cell-type-specific knockouts of Otulin. SA, splice acceptor; neo, neomycin-resistance cassette;

pA, polyA signal; PGK, murine PGK-1 promoter; DTA, diphtheria toxin A selection cassette; KanR, Kanamycin-resistance cassette. (B) Genotyping of mouse

strains. PCR reactions showing the expected products from each genotype. (C) E13.5 embryos stained with X-gal for b-galactosidase activity and cleared by

methyl salicylate shows Otulin promoter activity in multiple tissues. Pictures are representative of five embryos of each genotype from two independent ex-

periments. (D) Immunoblot analysis showing OTULIN expression in multiple tissues from adult wild-type C57BL/6 mice. Blots are representative of three in-

dependent experiments. (E) Ratio of CD45.1+ (wild-type B6.SJL) and CD45.2+ (CreERT2-Otulin+/flox or CreERT2-OtulinLacZ/flox C57BL/6) expressing splenocytes

determined by flow cytometry at the termination of chimera experiments. Data were pooled from two independent experiments. (F) Genotyping of bone marrow

cells or blood leukocytes from CreERT2-Otulinflox chimeras treated with tamoxifen or vehicle shows complete or near-complete conversion of flox alleles to del

alleles upon tamoxifen treatment. Note thatWT(+) products are present in all reactions as BJ6.SJLWT cells are present in all samples from the chimeras. (G) Body

weight following i.p. administration of tamoxifen (tx) or vehicle (vehi) to CreERT2-Otulinflox chimeric mice. Data were pooled from two independent experiments.

(H) Blood cell counts from CreERT2-Otulinflox chimeras and vehicle-treated controls at day 5. (I-J) Flow cytometry analysis of CD11b+Gr-1+ neutrophils in total

cellular infiltrate (CD45.1+ and CD45.2+) in lung and kidney presented as (I) representative dot plots with percentage of cells in gate indicated and (J) total cell

number or percentage of cells in gate quantified. (K) Percentage of neutrophils in infiltrate from CreERT2-Otulinflox chimeras (related to Figure 2H). Data shown in

(J) and (K) are repeated in (L). (L) Flow cytometry analysis of CD11b+Gr-1+ neutrophils in liver, lung, peritoneal lavage (PL), spleen, and kidney in tamoxifen- or

vehicle-treated CreERT2-Otulinflox chimeras. (M) Ratio of CD45.1+ (wild-type B6.SJL) and CD45.2+ (CreERT2-Otulin+/flox or CreERT2-OtulinLacZ/flox C57BL/6)

expressing CD11b+Gr-1+ neutrophils in each tissue determined by flow cytometry at the termination of chimera experiments. Data are presented asmean ±SEM,

and n represents number of mice.



(legend on next page)



Figure S3. Emergency Granulopoiesis and Neutrophilia Is Controlled by G-CSF in OTULIN-Deficient Mice, Related to Figure 3

(A) Flow cytometry analysis of lineage negative (Lin-) c-Kit+Sca1+ LSK cells in bone marrow of tamoxifen-treated CreERT2-Otulinflox chimeric mice shows

increased numbers of LSK cells in bone marrow consistent with emergency granulopoiesis. (B-C) Flow cytometry analysis of mature and immature neutrophils in

(B) bone marrow and (C) blood of tamoxifen-treated CreERT2-Otulinflox chimeric mice shows increased numbers of these cells in both tissues, consistent with

emergency granulopoiesis. (D-F) Quantification of flow cytometry analysis as in (A-C) of LSK cells (D) and mature and immature neutrophils in (E) bone marrow

and (F) blood of tamoxifen-treated CreERT2-Otulinflox chimeric mice injected with anti-G-CSF neutralizing antibodies, anti-IL-6 neutralizing antibodies, or isotype

control as indicated. (G-I) Serum concentrations of TNF, G-CSF, IL-6, KC, and MCP-1 from tamoxifen-treated CreERT2-Otulinflox chimeric mice injected with (G)

anti-TNF neutralizing antibodies, (H) anti-G-CSF neutralizing antibodies, (I) anti-IL-6 neutralizing antibodies, or isotype control as indicated measured by Luminex

multiplex analysis. These data are represented as a heat map in Figure 3J. Data are presented as mean ± SEM, and n represents number of mice.



(legend on next page)



Figure S4. Characterization of CD4Cre-Otulinflox, MB1Cre-Otulinflox, and LysMCre-Otulinflox mice, Related to Figure 4

(A) Tabulated results from flow cytometry analysis of cellular subsets from thymus, inguinal lymph node, and spleen from CD4Cre-Otulinflox mice. (B) Tabulated

results from flow cytometry analysis of cellular subsets from bone marrow, peritoneal lavage (PL), spleen, liver, inguinal lymph node, and lung from MB1Cre-

Otulinfloxmice. (C) Results of flow cytometry analysis of peritoneal B cell subsets fromMB1Cre-Otulinflox mice (n = 3). (D) Kaplan-Meier plot of survival in LysMCre-

Otulin mice. Censored deaths are indicated as black ticks. (E) Body weight plotted against age in LysMCre-Otulinflox mice. Data are presented for either both

genders (top panel) or stratified for gender (female (\), middle panel; male (_), bottom panel). Dashed lines show the linear regression of the data. (F) Liver weight to

bodyweight ratio (left panel) and thymusweight (right panel) in LysMCre-Otulinfloxmice. (C and F) Data are presented asmean ±SEM, and n represents number of

mice.



Figure S5. Flow Cytometry Plots and Quantification of Cell Populations in Mice Lacking Otulin in Myeloid Cells, Related to Figure 5

(A-D) Flow cytometry analysis of (A-B) CD11b+Gr-1+ neutrophils and CD11b+Gr-1- macrophages, and (C-D) CD8+ T cells in liver, peritoneal lavage (PL), spleen,

lung, and kidney from from 4-9 month old LysMCre-Otulinflox mice presented as (A and C) representative dot plots or (B and D) total cell number or frequency of

infiltrating cells. Missing graphs of total number of infiltrating cells in (B) and (D) are shown in main Figure 5D. (A-D) Data were pooled from two independent

experiments. Data are presented as mean ± SEM, and n represents number of mice.



(legend on next page)



Figure S6. Autoactivation of BMDMs and the Effect of Antibiotics on Systemic Inflammation in OTULIN-Deficient Bone Marrow Chimeric

Mice, Related to Figure 6

(A) Immunoblot showing NF-kB activation in MEFs treated with 0.25 ng/mL TNF and anti-TNF neutralizing antibodies or isotype control as indicated.

(B) Schematic of the experiment indicating timing of enrofloxacin and tamoxifen treatment. (C) Enrofloxacin treatment does not rescue weight loss, indicating

sterile inflammation. Tamoxifen (tx) was administered i.p. (arrows) to CreERT2-Otulinflox chimeras treated with enrofloxacin or not. (D) Blood cell counts taken at

day 4 from CreERT2-Otulinflox chimeras treated with enrofloxacin or not showing that enrofloxacin does not reduce neutrophilia in CreERT2-OtulinLacZ/flox

chimeras, indicating sterile inflammation. (E) Luminex multiplex analysis of cytokine and chemokine concentrations in serum from terminal bleeds on day 4 of

CreERT2-Otulinflox chimeras treated with enrofloxacin or not showing that enrofloxacin does not reduce secretion of inflammatory cytokines in CreERT2-

OtulinLacZ/flox chimeras, indicating sterile inflammation. (B-E) Data were pooled from two independent experiments (except for G-CSF concentrations in E).

(F) Micrographs of H&E stained sections of livers reveal inflammatory foci (arrowheads) in liver parenchyma showing that enrofloxacin does not reduce infiltration

and inflammatory foci in CreERT2-OtulinLacZ/flox chimeras, indicating sterile inflammation. Micrographs are representative of 10 CreERT2-Otulin+/flox and 12

CreERT2-OtulinLacZ/flox chimeras from two independent experiments. Scale bars: 200 mm. (G) Frequency of infiltrating CD11b+Gr-1+ neutrophils. (C-E andG) Data

are presented as mean ± SEM, and n represents number of mice.
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