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EXACT RAMSEY NUMBERS OF ODD CYCLES VIA NONLINEAR
OPTIMISATION

MATTHEW JENSSEN†, JOZEF SKOKAN‡

Abstract. For a graph G, the k-colour Ramsey number Rk(G) is the least integer N such
that every k-colouring of the edges of the complete graph KN contains a monochromatic
copy of G. Let Cn denote the cycle on n vertices. We show that for fixed k ≥ 2 and n odd
and sufficiently large,

Rk(Cn) = 2k−1(n− 1) + 1.

This resolves a conjecture of Bondy and Erdős for large n. The proof is analytic in nature,
the first step of which is to use the regularity method to relate this problem in Ramsey theory
to one in nonlinear optimisation. This allows us to prove a stability-type generalisation of
the above and establish a correspondence between extremal k-colourings for this problem
and perfect matchings in the k-dimensional hypercube Qk.

1. Introduction

One of the most well-known and extensively researched problems in combinatorics is that
of determining the Ramsey numbers of graphs, defined as follows. Given graphs G1, G2, . . . , Gk,
the Ramsey number R(G1, . . . , Gk) is the least integer N such that any colouring of the
edges of the complete graph KN on N vertices with k colours contains a monochromatic
copy of Gi in the i-th colour for some i, 1 ≤ i ≤ k. In the case where G1, . . . , Gk are all
isomorphic to the graph G, we call R(G1, . . . , Gk) the k-colour Ramsey number of G and
denote it by Rk(G). Broadly speaking the philosophy underpinning Ramsey theory is that
large, potentially highly disordered, structures must contain ordered substructures.

Ramsey theory owes its name to the seminal paper of Frank Ramsey [Ram30] where it
is shown that Ramsey numbers are finite. Some of the earliest and most famous examples
of Ramsey numbers are those involving cliques. The systematic study of such Ramsey
numbers began with a paper of Erdős and Szekeres [ES35] who considered the problem of
determining R2(Kk), where Kk denotes the clique on k vertices. Erdős and Szekeres [ES35]
and Erdős [Erd47] showed that 2k/2 ≤ R2(Kk) ≤ 4k. The problem of improving these bounds
has gained significant notoriety. Despite considerable effort over the past 80 years, the bases
in the exponent in both of these bounds has not been improved.

This inertia has motivated the study of Ramsey numbers of graphs with a ‘simpler’ structure,
where the problem may be more tractable. In this spirit, there has been a large body of
research dedicated to the study of Ramsey numbers of graphs that are sparse in some sense
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(e.g. they have bounded maximum degree). The cycle on n vertices Cn is a particularly
simple example and was one of the earliest subjects in the study of Ramsey numbers of sparse
graphs. The behaviour of the Ramsey number R(Cn1 , Cn2) has been studied by several
authors, including Bondy and Erdős [BE73], Faudree and Schelp [FS74], and Rosta [Ros73],
and is now fully determined. For example it is known that

R2(Cn) =

{
2n− 1, if n ≥ 5 is odd,
3n
2
− 1, if n ≥ 6 is even.

Results such as this one that exactly determine R(G1, G2) for a pair of graphs G1, G2 are by
now fairly plentiful. See Radziszowski [Rad94] for an excellent survey of such results.

However, in the case where more than two colours are involved such results are still
extremely rare. The only non-trivial class of graphs for which the k-colour Ramsey number
is exactly determined for arbitrary k is that of matchings (a result due to Cockayne and
Lorimer [CL75]). In this paper we address the following conjecture attributed to Bondy and
Erdős [BE73].

Conjecture 1.1. If k ≥ 2 and n > 3 is odd then

Rk(Cn) = 2k−1(n− 1) + 1.

Note that the conjecture deals specifically with the case where n is odd. Odd and even
cycles behave rather differently in this context due to the fact that an even cycle is bipartite
whereas an odd cycle is not. We mention that Erdős and Graham [EG75] proved the bounds

(1.1) 2k−1(n− 1) + 1 ≤ Rk(Cn) ≤ (k + 2)!n,

for all k ≥ 2 and all odd n > 3. In this paper we prove the following.

Theorem 1.2. For any fixed k ≥ 2 and odd n sufficiently large,

Rk(Cn) = 2k−1(n− 1) + 1.

We therefore resolve Conjecture 1.1 for large n. We will in fact prove a stability-type
strengthening of this result (see Theorem 3.2 below). Recently Day and Johnson [DJ17]
showed that in the opposite regime, where we fix an odd n and let k be sufficiently large,
one in fact has Rk(Cn) > (n − 1)(2 + ε)k−1 for some ε = ε(n) > 0, and so Conjecture 1.1
is false when n is small with respect to k. The qualification that n is sufficiently large in
Theorem 1.2 is therefore necessary, however due to the use of compactness arguments in the
proof, we obtain no effective bound on how large n must be with respect to k.

In view of Theorem 1.2, let us call a k-colouring of the complete graph on 2k−1(n − 1)
vertices which does not contain a monochromatic copy of Cn an extremal k-colouring. The
lower bound in (1.1) was established by observing that one can naturally construct extremal k-
colourings by induction. Indeed if there exists a k-colouring of the edges of the complete graph
Km with no monochromatic Cn, then by joining two such copies of Km by edges of colour
k+ 1, one obtains a (k+ 1)-colouring of K2m with no monochromatic Cn (here we use that Cn
is non-bipartite). The base construction, for k = 1, is simply a monochromatic clique of size
n− 1. It was believed that all extremal k-colourings come from such a doubling argument.
We show that this is not the case, providing a classification of extremal k-colourings which
exposes a surprising correspondence between extremal k-colourings and perfect matchings in
the k-dimensional hypercube Qk.
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The first breakthrough towards Conjecture 1.1 was made by  Luczak [ Luc99] who used the
regularity method to show that the k = 3 case holds asymptotically i.e. that for n odd,

R3(Cn) = 4n+ o(n) as n→∞.

 Luczak’s method of applying regularity in this setting has proven extremely fruitful (see e.g.
[F L07a, GRSS07, KSS05,  Luc99,  LSS12]) and has since become a standard tool. We will
come to describe the method in more detail as it provides the starting point for the present
paper.

Building on  Luczak’s ideas, Kohayakawa, Simonovits and Skokan [KSS05] paired the
regularity method with stability arguments to resolve Conjecture 1.1 for k = 3 and n large.
The case where k ≥ 4 remained open. Progress was made by  Luczak, Simonovits and
Skokan [ LSS12] who showed that for k ≥ 4 and odd n,

Rk(Cn) ≤ k2kn+ o(n) as n→∞.

We conclude this section with a broad overview of the proof method of Theorem 1.2. Let
Gn,k denote the (finite) class of all cliques that admit a k-colouring with no monochromatic
copy of Cn. Determining Rk(Cn) is then equivalent to determining the maximum N such
that KN ∈ Gn,k. Using the regularity method, we relate this problem to finding the maximum

`1-norm of an element in a certain compact subset S of R3k . This allows us to import analytic
and topological tools in support of our proof.

The relation is such that maximal elements of S correspond to extremal k-colourings
for Theorem 1.2. Therefore, by classifying the extremal points of S we can classify the
extremal k-colourings and prove a stability type strengthening of Theorem 1.2 (Theorem 3.2
below). Indeed we show that each perfect matching of the hypercube Qk gives rise to a class
of extremal k-colourings. Moreover, any extremal k-colouring must be ‘close’ to one such
construction. We defer precise statements to Section 3.

The number of essentially different classes of extremal k-colourings is equal to the number
of equivalence classes of perfect matchings in Qk with respect to its automorphism group and
this number is doubly exponential in k. Such a plethora of extremal constructions is usually
forbidding when trying to establish stability type results in combinatorics. We believe that
the fact we can overcome this obstacle is largely down to our analytic perspective.

2. Notation and Terminology

Let us collect some notation that we use throughout the paper. For k ∈ N, we let [k]
denote the set {1, . . . , k}. For a set S, we let

(
S
2

)
denote the set of all unordered pairs of

distinct elements of S.
All graphs considered here will be finite. For a graph G = (V,E), we let v(G) = |V | and

e(G) = |E|. For v ∈ V , we let NG(v) denote the neighbourhood of v in G and let δ(G) denote
the minimum degree of G. For X ⊆ V we denote by G[X] the subgraph of G induced by
the vertices of X. For disjoint subsets A,B ⊆ V , we denote by G[A,B] the bipartite graph
with vertex set A ∪B and edge set {{a, b} ∈ E : a ∈ A, b ∈ B}, and we let eG(A,B) denote
the size of this set. In the case where A = {v}, we write G[v,B] instead of G[{v}, B]. All
subscripts in the above notation may be suppressed if they are clear from the context. At
times we may slightly abuse notation by writing v ∈ G and {x, y} ∈ G in lieu of v ∈ V (G)
and {x, y} ∈ E(G) respectively.
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Let W = w0w1 . . . w` be a walk in G (that is a sequence of vertices w0, w1, . . . w` such that
{wi, wi+1} is an edge of G for all 0 ≤ i < `). If all of the wi are distinct then we call W a path
of length ` . We may also refer to W as a w0w`-path to distinguish its endpoints. If all the
wi are distinct except w0 = w` then we call W a cycle of length `. We will also concatenate
walks in the natural way. For example if U = u0 . . . um is a walk in G such that um = w0, we
let UW denote the walk u0 . . . umw1 . . . w`. If x is a vertex such that {w`, x} is an edge of G
then we let Wx denote the walk w0 . . . w`x.

A k-coloured graph is a graph G = (V,E) equipped with some function ϕ : E → [k].
Furthermore, for i ∈ [k], we let Gi denote the subgraph (V, ϕ−1{i}) of G. We call Gi the ith
colour class of G.

A digraph D = (V,A) consists of a set of vertices V and a set A ⊆ V 2 i.e. a set of ordered
pairs from V which we call directed edges. For v ∈ V we let d+(v) denote the size of the set
{u : (v, u) ∈ A} and call d+(v) the outdegree of v. Similarly we define the indegree of v as
d−(v) = |{u : (u, v) ∈ A}|.

For x ∈ Rd we let ‖x‖ denote the `1-norm of x i.e. ‖x‖ =
∑d

i=1|xi|. Furthermore, given
ε > 0, we let Bε(x) := {z ∈ Rd : ‖z − x0‖ < ε}, the open ball of radius ε centred at x. We
let supp(x) denote the support of x.

In the statements of theorems and lemmas it will be useful to use the notation α� β to
mean that there is an increasing function α(x) so that the statement is valid for 0 < α < α(β).
When we need to refer to this function at a later stage, we include the number of the lemma
(or theorem) the function appears in as a subscript. For example, δ8.3(x) denotes the implied
function δ(x) from Lemma 8.3. Throughout the paper we omit the use of floor and ceiling
symbols where they are not crucial.

3. A Graph Decomposition, Extremal Colourings and Stability

In this section we describe the extremal colourings and give precise statements of the
stability results referred to in the introduction. We also introduce some key concepts and
results that will be used throughout the paper and give a more detailed overview of our proof
methods. We begin by introducing a way of decomposing an arbitrary k-coloured graph. This
decomposition will play a central role for us and is similar to a decomposition introduced
in [ LSS12].

3.1. A Graph Decomposition. Let G be a k-coloured graph. For each i ∈ [k], we write
Gi = G′i ∪G′′i , where G′i is the union of the bipartite components of Gi and G′′i is the union
of the non-bipartite components of Gi. For each i ∈ [k], write V (G′i) = V i

0 ∪ V i
1 where V i

0

and V i
1 are the vertex classes of a bipartition of G′i and set V i

∗ = V (G′′i ). For τ ∈ {0, 1, ∗}k,
let Vτ =

⋂k
j=1 V

j
τj

and note that

V (G) =
⋃

τ∈{0,1,∗}k
Vτ ,

a disjoint union. We call (Vτ : τ ∈ {0, 1, ∗}k) a profile partition of G and we call the
corresponding vector (|Vτ | : τ ∈ {0, 1, ∗}k) a profile of G. We will often denote a profile of
G by x(G). Note that G may admit multiple profile partitions since we made an arbitrary
choice in choosing the bipartition V (G′i) = V i

0 ∪ V i
1 for each i ∈ [k].
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3.2. Extremal Colourings and the Hypercube. For k ∈ N, we let Qk denote the k-
dimensional hypercube i.e. the graph on vertex set {0, 1}k and edge set consisting of pairs
differing in exactly one coordinate. It will be useful to think of an element τ ∈ {0, 1, ∗}k as a
subcube of the k-dimensional hypercube Qk via the correspondence

τ ↔ Q(τ) := {c ∈ {0, 1}k : cj = τj if τj ∈ {0, 1}}.
In other words we think of a coordinate j where τj = ∗ as a ‘missing bit’ and let Q(τ) be the
set of all possible ways of filling in these bits. For example, if k = 3 and τ = (0, ∗, ∗), then

Q(τ) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.
We define the weight of τ to be the size of the set {i ∈ [k] : τi = ∗} (i.e. the number of missing
bits) and denote it by ω(τ). Note that |Q(τ)| = 2ω(τ). In the language of the hypercube, ω(τ)
is the dimension of the subcube Q(τ). In particular if ω(τ) = 1, then we think of Q(τ) as an
edge of Qk.

We can now describe a class of extremal k-colourings in terms of perfect matchings inQk. Let
M be a perfect matching of Qk. We identify each edge e ∈M with the element τ ∈ {0, 1, ∗}k
for which e = Q(τ). Let G = KN where N = 2k−1(n − 1) and let V (G) =

⋃
τ∈M Vτ be a

partition of V (G) where |Vτ | = n − 1 for all τ ∈ M. For each τ ∈ M, colour all edges in
G[Vτ ] with the colour i, where i is the coordinate for which τi = ∗. For τ, σ ∈M, arbitrarily
colour the edges between Vτ and Vσ with any colour j for which {σj, τj} = {0, 1} (i.e. edges
τ, σ lie in opposite subcubes of Qk of codimension 1 separated by the jth coordinate). It
follows that each colour class of such a colouring is the disjoint union of cliques of size n− 1
and a bipartite graph and therefore contains no monochromatic copy of Cn. We call such a
colouring a hypercube k-colouring with clique size n− 1. We emphasise that such a colouring
assigns a unique colour to each edge of a clique on 2k−1(n− 1) vertices and so is indeed an
extremal k-colouring (see Figure 1 for a depiction of two examples in the case k = 3).

Suppose now that we inductively construct a perfect matching on Qk by taking two perfect
matchings on a disjoint pair of subcubes of codimension 1. The class of hypercube k-colourings
associated to such a matching includes the inductive colourings of Erdős and Graham [EG75]
described in the introduction (and many more). However for k ≥ 4, not all perfect matchings
of Qk decompose as the union of two matchings on a pair of codimension 1 subcubes, and
so we obtain extremal k-colourings with a genuinely new structure. In particular, a novel
feature that appears for k ≥ 4 colours is that there exist extremal k-colourings that contain
monochromatic cliques of size n− 1 in all k possible colours.

3.3. Stability. In this subsection we state a theorem to the effect that the hypercube k-
colourings considered in the previous subsection are the only extremal k-colourings for our
problem. Moreover we assert that almost extremal colourings are in some sense ‘close’ to
a hypercube colouring. Let us make this more precise.

Definition 3.1. Let G and H be k-coloured graphs with V (H) ⊆ V (G). Let ε > 0, then we
say that G is ε-close to H if |Gi4Hi| ≤ εv(G)2 for all i ∈ [k].

Informally we may say that G and H as above are close in edit distance. We may now
state the main result of this paper.

Theorem 3.2. Let k ≥ 2, let 1
n
� η � ε � 1, where n is odd, and let N > (2k−1 − η)n.

Then if G = KN is k-coloured with no monochromatic copy of Cn, then N ≤ 2k−1(n− 1) and
there exists a hypercube k-colouring H such that G is ε-close to H.
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(∗, 1, 0)

R
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R
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B
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B
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B

G
,B G

G
,B G

Figure 1. Two examples of an extremal k-colouring with k = 3. The
two constructions correspond to two distinct perfect matchings in Q3, one
representative from each of the two isomorphism classes of perfect matching
in Q3. We use R,B,G to denote the colours (in place of 1, 2, 3 respectively).
Each circle represents a clique of size n− 1 and is labelled by an edge of Q3.
The letter at the centre of each clique represents the colour of the clique. A line
joining two cliques is labelled by the colours that can be (arbitrarily) assigned
to the edges joining those two cliques.

Note that Theorem 1.2 follows as an immediate corollary. The k = 3 case of Theorem 3.2
was proved in [KSS05] where the two classes of colourings the authors consider can be viewed
as the colourings that arise from the two isomorphism classes of perfect matchings in Q3

(see Figure 1). An interesting feature of Theorem 3.2 is that it deals with a wide variety of
extremal colourings. Indeed if M1 and M2 are perfect matchings of Qk that lie in distinct
equivalence classes under the action of the automorphism group of Qk, then it’s not difficult
to show that there are hypercube k-colourings associated to M1 that are not isomorphic to
any hypercube k-colouring associated to M2. It is also interesting to note that even though
we can prove a stability statement around hypercube k-colourings, the structure of these
colourings is not well understood. This is simply due to the fact that the structure of perfect
matchings in the hypercube is not well understood. Indeed, even enumerating the perfect
matchings (or their equivalence classes) in Qk is a well-studied and difficult problem. Let f(k)
be the number of equivalence classes of perfect matchings in Qk. It is clear that f(3) = 2
and so we obtain two essentially different extremal 3-colourings as in [KSS05]. Graham
and Harary [GH88] showed that f(4) = 8 and recently Österg̊ard and Pettersson [ÖP13]
determined (with a large amount of computer time) f(5), f(6) and f(7). The function f(k)
grows rather rapidly; it is amusing to note that already f(7) = 607158046495120886820621
and so we have this many essentially different classes of extremal 7-colourings. It was shown
in [CGP97] that the number of perfect matchings in Qk is [(1 + o(1))k/e]2

k−1
(although this

result in fact follows from a theorem in [PL86, p.312]). Since the automorphism group of Qk

has size k!2k it follows that f(k) = [(1 + o(1))k/e]2
k−1

also.
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3.4. Proof of Theorem 3.2: An Overview. The regularity method, discussed briefly in
the introduction, plays a central role in our proof. We include an informal discussion of the
method here, deferring details until later. We start with a definition.

Definition 3.3. Let F be a connected graph whose largest matching covers m vertices, then
we call F a connected matching of order m. We distinguish a particular matching of largest
size MF in F and refer to an edge of MF as a matching edge of F . If in addition F is
non-bipartite, we call F an odd connected matching of order m.

The idea behind the regularity method is as follows. Suppose that G is a k-coloured
complete graph on N vertices. Let G1, . . . , Gk be its colour classes. We apply the multicolour
version of the Regularity Lemma [Sze78] and obtain a regular partition of the vertex set
V (G) into t+ 1 classes V (G) = V0 ∪ . . . ∪ Vt. We construct an auxiliary graph R with vertex
set 1, ..., t and the edge set formed by pairs {i, j} for which (Vi, Vj) is regular with respect
to G1, . . . , Gk. We colour each edge {i, j} in R by the majority colour in the pair (Vi, Vj).
The crucial point is that if R contains a monochromatic odd connected matching of order
greater than m, then G contains a monochromatic cycle C` where ` can take essentially any
odd value smaller than mN/t. It follows that if G contains no monochromatic copy of Cn,
then R cannot contain a monochromatic odd connected matching of order larger than nt/N .
The advantage of this perspective is that forbidding a large connected matching is far more
restrictive than forbidding a cycle of a given length. Indeed a cycle is itself an example of
a connected matching, and so if a graph contains no connected matching of order greater
than m then it contains no cycle of length greater than m. The following theorem of Erdős
and Gallai [EG59] shows that this is a very strict condition.

Theorem 3.4. Let m ≥ 3. If G is a graph which contains no cycle of length greater than m,
then e(G) ≤ m(v(G)− 1)/2.

The price one pays is that R is not a complete graph, however it can be chosen to be as
dense as one likes. We are now able to state a theorem that is a major stepping stone toward
the proof of Theorem 3.2.

Theorem 3.5. Let k ≥ 2 and let 1
n
� δ � ε � 1. If G is a k-coloured graph with

v(G) = 2k−1n and e(G) ≥ (1− δ)
(
v(G)
2

)
containing no monochromatic odd connected matching

of order ≥ (1 + δ)n, then for any choice of profile x(G) of G, there exists a hypercube
k-colouring H with profile x(H) satisfying

‖x(G)− x(H)‖ ≤ εn.

The proof of Theorem 3.5 occupies the majority of this paper. In the final section we show
how Theorem 3.2 follows from Theorem 3.5 via combinatorial stability arguments and the
regularity method.

The outline of the proof of Theorem 3.5 is as follows. Let G be as in the statement of
Theorem 3.5 and let x(G) denote a profile of G. Our starting point is to translate the
combinatorial constraint of containing no large monochromatic odd connected matching into
an analytic constraint on x(G) of the form

(3.1) F (x(G)) ≤ 0,

where F is a quadratic form which we derive in the next section. We then view (3.1) as a con-
straint in an optimisation problem where we wish to maximise the objective function ‖x(G)‖.

7



Recalling that ‖x(G)‖ = v(G), we get a corresponding upper bound on the order of G. It
turns out that optimal solutions to this optimisation problem correspond to the profiles
of hypercube colourings. Solving the optimisation problem is the subject of Sections 5 and 6.
In Section 7 we use compactness arguments to show that almost optimal solutions must be
close in `1-norm to the profile of a hypercube colouring. We then translate this analytic
stability into the, more combinatorial, stability statement of Theorem 3.5.

Note that Theorem 3.5 will be applied to a reduced graph like the one described above.
The focus of the final section is to show that if the profile of this reduced graph is close
in `1-norm to the profile of a hypercube colouring, then the original graph is close in edit
distance to a hypercube colouring. In particular, we will show that the original graph can be
covered by 2k−1 monochromatic cliques of equal size and a small ‘leftover set’ (Lemma 9.9).
We then establish an ‘absorbing lemma’ (Lemma 9.12) that shows that for each vertex v of
the leftover set, there is a monochromatic clique C, in colour i say, such that all of the edges
between v and C have colour i. Informally, we think of the clique C ‘absorbing’ the vertex
v. It follows that if the original graph has > 2k−1(n− 1) vertices, one of the cliques and its
absorbed vertices has size ≥ n and is easily seen to contain a monochromatic copy of Cn.
Thus we obtain the exact value of the Ramsey number Rk(Cn).

4. Deriving the Analytic Constraints

Given a k-coloured graph G, we will show how to translate the combinatorial constraint of
containing no large monochromatic odd connected matching into an analytic constraint on
the profile of G.

From here on, throughout the paper, we let k ≥ 2 be a fixed integer. Let G be a k-coloured
graph. First we distinguish between two types of edges of G. If e ∈ E(G) is coloured with
the colour j and lies in a bipartite component of Gj then we call e a bipartite edge. We call e
non-bipartite otherwise. Let (Vτ : τ ∈ {0, 1, ∗}k) be a profile partition of G. We make two
simple observations regarding the profile partition of a k-coloured graph.

Observation 4.1. If e ∈ E(G) is a bipartite edge of colour j then it must have endpoints in
parts Vτ , Vσ for some τ, σ ∈ {0, 1, ∗}k such that τj = 0 and σj = 1.

Observation 4.2. If e ∈ E(G) is a non-bipartite edge of colour j then it must have endpoints
in parts Vτ , Vσ for some (not necessarily distinct) τ, σ ∈ {0, 1, ∗}k such that τj = σj = ∗.

This motivates the following definitions.

Definition 4.3. We say that σ, τ ∈ {0, 1, ∗}k are distinguishable if {σj, τj} = {0, 1} for some
j ∈ [k]. We say that σ and τ are indistinguishable otherwise.

Definition 4.4. If σ, τ ∈ {0, 1, ∗}k are such that either (i) σ, τ are distinguishable or (ii)
σj = τj = ∗ for some j ∈ [k], then we say that σ and τ are compatible. We say that σ, τ are
incompatible otherwise.

Viewing elements of {0, 1, ∗}k as subcubes of Qk, we may reinterpret these definitions as
follows.

Lemma 4.5. Let σ, τ ∈ {0, 1, ∗}k. Then σ, τ are distinguishable if and only if Q(τ)∩Q(σ) = ∅.
Furthermore, σ, τ are incompatible if and only if |Q(τ) ∩Q(σ)| = 1.
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Proof. By the definition of the sets Q(τ), Q(σ) we have

Q(τ) ∩Q(σ) = {c ∈ {0, 1}k : cj = τj if τj ∈ {0, 1} and cj = σj if σj ∈ {0, 1}}.
This is empty if and only if there exists a j ∈ [k] such that σj, τj ∈ {0, 1} and σj 6= τj
i.e. if and only if σ, τ are distinguishable. Let T = {i ∈ [k] : σi = τi = ∗}. If σ, τ are
indistinguishable then we see that |Q(τ) ∩Q(σ)| = 2|T |. Therefore |Q(τ) ∩Q(σ)| = 1 if and
only if σ, τ are indistinguishable and T = ∅ i.e. σ, τ are incompatible. �

From now on, we let

D =
{
{σ, τ} : σ, τ ∈ {0, 1, ∗}k are distinguishable

}
.

It will also be convenient to make the following definition.

Definition 4.6. Let α > 0 and let G be a graph such that e(G) ≥ α
(
v(G)
2

)
. Then we say

that G is α-dense.

This next proposition provides the link between our combinatorial problem and a problem
in nonlinear optimisation.

Proposition 4.7. Let C > 1, 0 < δ < 1 and let n > 1/δ. Suppose that G is a (1− δ)-dense,
k-coloured graph with v(G) = Cn, containing no monochromatic odd connected matching of
order ≥ (1 + δ)n. Let v be a profile of G and let x = v/n. Then the following hold:

(1)  ∑
τ∈{0,1,∗}k

xτ

2

− 2
∑
{σ,τ}∈D

xσxτ −
∑

τ∈{0,1,∗}k
ω(τ)xτ ≤ 2δkC2.

(2) xτ ≤ 1 + 4δC2 whenever ω(τ) = 1.

(3) xτxσ ≤ 2δC2 whenever σ and τ are incompatible.

Proof. Let us first remind ourselves of the graph decomposition discussed in Subsection 3.1.
For each i ∈ [k], we write Gi = G′i ∪G′′i , where G′i is the union of the bipartite components
of Gi and G′′i is the union of the non-bipartite components of Gi. For each i ∈ [k], write
V (G′i) = V i

0 ∪ V i
1 where V i

0 and V i
1 are the vertex classes of a bipartition of G′i and set

V i
∗ = V (G′′i ). For τ ∈ {0, 1, ∗}k, set Vτ =

⋂k
j=1 V

j
τj

. Let v = (|Vτ | : τ ∈ {0, 1, ∗}k) be the

profile corresponding to this partition. Let N = v(G) and note that

(4.1) N =
∑

τ∈{0,1,∗}k
vτ .

It follows from Observation 4.1 that the number of bipartite edges inG is at most
∑
{σ,τ}∈D vσvτ .

Letting e∗ denote the number of non-bipartite edges in G we therefore have that

(4.2) e∗ ≥ e(G)−
∑
{σ,τ}∈D

vσvτ .

Since N ≥ 1/δ, we have

(4.3) e(G) ≥ (1− δ)
(
N

2

)
≥ (1− 2δ)

N2

2
.
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Combining (4.1), (4.2) and (4.3) gives

(4.4) e∗ ≥
1

2

 ∑
τ∈{0,1,∗}k

vτ

2

−
∑
{σ,τ}∈D

vσvτ − δN2.

We now find a corresponding upper bound for e∗. Recall that for τ ∈ {0, 1, ∗}k, the weight
ω(τ) of τ is defined to be the size of the set {i ∈ [k] : τi = ∗}.

By assumption, for each i ∈ [k], every connected component of G′′i has no matching
on (1 + δ)n vertices and so in particular G′′i has no cycle of length greater than (1 + δ)n.
Theorem 3.4 therefore implies that

(4.5) e(G′′i ) ≤ (1 + δ)
n

2
|V i
∗ |.

Observe that

(4.6) |V i
∗ | =

∑
{τ∈{0,1,∗}k:τi=∗}

vτ .

Since each non-bipartite edge of G belongs to E(G′′i ) for some i, (4.5) and (4.6) provide the
upper bound

(4.7) e∗ =
k∑
i=1

e(G′′i ) ≤ (1 + δ)
n

2

k∑
i=1

|V i
∗ | = (1 + δ)

n

2

∑
τ∈{0,1,∗}k

ω(τ)vτ .

Since ω(τ) ≤ k for all τ ∈ {0, 1, ∗}k by definition, (4.1) and (4.7) imply the bound

(4.8) e∗ ≤
1

2
δnkN +

n

2

∑
τ∈{0,1,∗}k

ω(τ)vτ .

Recall that x = v/n. Comparing the bounds (4.4) and (4.8) and scaling the resulting
inequality by 2/n2 yields ∑

τ∈{0,1,∗}k
xτ

2

− 2
∑
{σ,τ}∈D

xσxτ − 2δC2 ≤
∑

τ∈{0,1,∗}k
ω(τ)xτ + δkC.

This establishes (1). Notice that if τ ∈ {0, 1, ∗}k is such that ω(τ) = 1, then G[Vτ ] is
monochromatic with all edges non-bipartite by Observations 4.1 and 4.2. G[Vτ ] therefore
contains no cycle of length greater than (1 + δ)n and so by Theorem 3.4 and the fact that G
has at most δ

(
N
2

)
edges missing(

vτ
2

)
− δ
(
N

2

)
≤ e(G[Vτ ]) ≤ (1 + δ)

n

2
vτ .

It follows that
x2τ ≤ (1 + 2δ)xτ + δC2,

from which (2) follows. Finally, let us note that by Observations 4.1 and 4.2, if σ, τ are
incompatible, then there can be no edges lying between Vσ and Vτ . Since G has at most δ

(
N
2

)
edges missing we must then have

vτvσ ≤ 2δN2
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(note that this inequality also accounts for the case where σ = τ) and so (3) follows.
�

Given a graph G its profile lies in the space R{0,1,∗}k which we will denote by R∗. In view
of Proposition 4.7 we define the function F : R∗ → R by

F (x) =

 ∑
τ∈{0,1,∗}k

xτ

2

− 2
∑
{σ,τ}∈D

xσxτ −
∑

τ∈{0,1,∗}k
ω(τ)xτ .

Let us also define the following subsets of R∗.

X(γ): For γ ≥ 0, let X(γ) denote the set of elements x ∈ R∗ satisfying:

(X1) F (x) ≤ γ

(X2) xτ ≤ 1 + γ whenever w(τ) = 1.

(X3) xτxσ ≤ γ whenever σ and τ are incompatible.

(X4) xτ ≥ 0 for all τ .

Now let G be as in the statement of Theorem 3.5 and let v be a profile of G. By the above
proposition we have v/n ∈ X(δk22k) whereas we also have ‖v‖ = 2k−1n. We will show that
for δ small, this means that v/n is an element of almost maximal norm in X(δk22k). We will
also show that elements of large norm in X(δk22k) have a very specific structure (in fact they
resemble the profile of a hypercube colouring) and so this imposes a lot of structure on v.
For now we focus our attention on the set X(0) which we denote simply by X. Later on, we
use compactness arguments to relate properties of X and X(γ) for γ small.

Our next goal is to classify elements of maximal `1-norm in X. To describe these elements
we need a definition.

Definition 4.8. Call a set A ⊆ {0, 1, ∗}k distinguishable if every pair of distinct elements of
A are distinguishable and also ω(τ) ≥ 1 for all τ ∈ A.

The requirement that elements have weight at least 1 is for notational convenience later in
the paper. Viewing elements of {0, 1, ∗}k as subcubes of Qk, a distinguishable set is simply a
collection of disjoint subcubes of Qk (of dimension at least 1). If this collection covers the
whole cube we give it a special name.

Definition 4.9. Call a distinguishable set A ⊆ {0, 1, ∗}k a decomposition if⋃
τ∈AQ(τ) = {0, 1}k.

Let us quickly record a simple result concerning distinguishable sets which will become
useful later.

Lemma 4.10. Let A ⊂ {0, 1, ∗}k be a distinguishable set. Then∑
τ∈A

2ω(τ) ≤ 2k,
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with equality if and only if A is a decomposition.

Proof. This is simply the observation that a distinguishable set A is a collection of disjoint
subcubes of Qk and so the sum of their sizes

∑
τ∈A 2ω(τ) is bounded by the size of Qk. Moreover

we have equality if and only if these subcubes cover all of Qk i.e. A is a decomposition. �

We define the following subset of R∗.

O: Let O denote the set of elements x ∈ R∗ satisfying:

(O1) supp(x) is a decomposition where ω(τ) = 1 or 2 for all τ ∈ supp(x).

(O2) For all τ ∈ supp(x), if ω(τ) = 1 then xτ = 1 and if ω(τ) = 2 then xτ = 2.

It is easy to check that O ⊆ X. The next proposition asserts that O is the set of elements of
maximal `1-norm in X.

Proposition 4.11. If x ∈ X, then ‖x‖ ≤ 2k−1 with equality if and only if x ∈ O.

We note that the ‘if’ statement in the above proposition is immediate. Indeed if x ∈ O
then supp(x) is a decomposition so that

∑
τ∈supp(x) 2ω(τ) = 2k by Lemma 4.10. Moreover

2ω(τ) = 2xτ for all τ ∈ supp(x) by (O1) and (O2).

Definition 4.12. If x ∈ X is such that ‖x‖ = supz∈X‖z‖ then we say that x is an optimal
point of X.

We note that since X is compact, optimal points of X exist. The proof of Proposition 4.11
is split over the next three sections.

5. Compressions and a Spherical Constraint

In this section we make the first steps towards a proof of Proposition 4.11. Broadly
speaking we apply the combinatorial technique of ‘shifting’ or ‘compression’ to transform the
complicated non-linear constraint in the definition of X = X(0) into a spherical constraint
which is much more amenable to analysis. In Section 6 we apply optimisation tools to this
transformed problem. We begin with a simple lemma concerning elements of {0, 1, ∗}k.

Lemma 5.1. If σ, τ ⊆ {0, 1, ∗}k are indistinguishable and compatible and ω(τ) = 1, then
Q(τ) ⊆ Q(σ). In particular if ω(σ) = 1 also, then σ = τ .

Proof. Since σ, τ are indistinguishable and compatible we have |Q(τ) ∩ Q(σ)| ≥ 2 by
Lemma 4.5. However, |Q(τ)| = 2 and so it follows that Q(τ) ⊆ Q(σ). If ω(σ) = 1
also, then clearly Q(σ) = Q(τ) i.e. σ = τ . �

Definition 5.2. Let x ∈ R∗. If all pairs of (not necessarily distinct) elements of supp(x) are
compatible, then we say that x has compatible support.

Let us note that condition (X3) (with γ = 0) in the definition of the set X is simply
the condition that elements of X have compatible support. In particular, if x ∈ X and
τ ∈ {0, 1, ∗}k has weight 0, then xτ = 0 since τ is not compatible with itself.
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The following lemma establishes an important property of optimal points. For τ ∈ {0, 1, ∗}k
we let eτ ∈ R∗ denote the standard unit vector whose entries are all 0 except the entry
labelled τ which is 1.

Lemma 5.3. If x ∈ X is an optimal point, then F (x) = 0.

Proof. Suppose for contradiction that F (x) < 0. Assume first that there exists τ ∈ supp(x)
with ω(τ) ≥ 2. By the continuity of F we may choose α > 0 small enough so that
F (x+ αeτ ) < 0. Let x′ = x+ αeτ . Since supp(x′) = supp(x) and xτ remains unchanged for
τ with ω(τ) = 1, it is clear that x′ ∈ X. However, ‖x′‖ = ‖x‖+ α > ‖x‖ contradicting the
fact that x is optimal.

We may assume then that supp(x) consists only of elements of weight 1 and therefore is
a distinguishable set by Lemma 5.1 and the fact that x has compatible support. It follows
from the definition of F that

F (x) =
∑

τ∈supp(x)

(x2τ − xτ ) < 0,

and so xτ < 1 for some τ ∈ supp(x). As before there exists some α > 0 sufficiently small so
that F (x+ αeτ ) < 0. Let x′ = x+ αeτ . If we pick α small enough so that x′τ = xτ + α ≤ 1
also, then again we have x′ ∈ X with ‖x′‖ > ‖x‖ contradicting the optimality of x. �

We now describe the transformations alluded to at the beginning of this section. They will
be of great use in simplifying our analysis of optimal points of X.

Definition 5.4. Let x ∈ R∗ and let π, ρ ∈ {0, 1, ∗}k be distinct. We define the (π, ρ)-
compression of x, denoted x(π, ρ), as follows:

• If ω(ρ) ≥ 2, or if ω(ρ) ≤ 1 and xπ + xρ < 1, then let x(π, ρ) be the vector x′ with
coordinates: x′π = 0, x′ρ = xπ + xρ and x′τ = xτ for all τ ∈ {0, 1, ∗}k\{π, ρ}.
• If ω(ρ) ≤ 1 and xπ + xρ ≥ 1 then let x(π, ρ) be the vector x′ with coordinates:
x′π = xπ + xρ − 1, x′ρ = 1 and x′τ = xτ for all τ ∈ {0, 1, ∗}k\{π, ρ}.

If x(π, ρ) = x then we say that x is (π, ρ)-compressed.

Let x ∈ X be an optimal point, we will be interested in instances where x(π, ρ) is also
an optimal point of X. We observe that if x ∈ R∗ and π, ρ ∈ {0, 1, ∗}k are distinct then
‖x(π, ρ)‖ = ‖x‖. However, if x ∈ X then it does not follow in general that x(π, ρ) ∈ X.

We only consider (π, ρ)-compressions in the case where π and ρ are indistinguishable since
it is easier to track the effect of the compression on the value of the function F in this case
(see the proof of the next lemma). It will therefore be useful to associate to each point x ∈ X,
the digraph D(x) = (V (x), E(x)) where V (x) = supp(x) and

E(x) = {(π, ρ) : π, ρ ∈ supp(x) are distinct, indistinguishable and x(π, ρ) ∈ X} .
In particular if x ∈ X is (π, ρ)-compressed, where π and ρ are distinct and indistinguishable,
then (π, ρ) ∈ E(x). We draw attention to the fact that edges of D(x) only occur between
indistinguishable pairs. Conversely, the following lemma shows that, when x ∈ X is optimal,
at least one edge occurs between any indistinguishable pair in D(x).

Lemma 5.5. Let x ∈ X be optimal and suppose that π, ρ ∈ V (x), are indistinguishable and
distinct. Then one of the following holds:

(i) x is (π, ρ)-compressed, xρ = 1, ω(ρ) = 1, ω(π) ≥ 2 and (ρ, π) /∈ E(x),
13



(ii) x is (ρ, π)-compressed, xπ = 1, ω(π) = 1, ω(ρ) ≥ 2 and (π, ρ) /∈ E(x),
(iii) (ρ, π) and (π, ρ) both lie in E(x).

Proof. Recall that

F (x) =

 ∑
τ∈{0,1,∗}k

xτ

2

− 2
∑
{σ,τ}∈D

xσxτ −
∑

τ∈{0,1,∗}k
ω(τ)xτ ,

where D is the set of unordered distinguishable pairs from {0, 1, ∗}k. Since π, ρ are indis-
tinguishable, the term xρxπ does not appear in the sum

∑
{σ,τ}∈D xσxτ . We may therefore

express F (x) in the form

(5.1) F (x) =

 ∑
τ∈{0,1,∗}k

xτ

2

− Axρ −Bxπ − C,

where A,B and C do not depend on xρ or xπ and A,B ≥ 0. Suppose that A ≥ B and let
x′ = x(π, ρ). Let us show that (π, ρ) ∈ E(x) i.e. x′ ∈ X. By (5.1) we have F (x′) ≤ F (x) and
so x′ satisfies (X1) in the definition of X. By the definition of (π, ρ)-compression it is clear
that x′ also satisfies (X2) and (X4). Since ρ ∈ supp(x), we also have supp(x′) ⊆ supp(x).
Since x has compatible support the same is true for x′ i.e. x′ satisfies (X3) and so x′ ∈ X.
Note that since compressions preserve the `1-norm, x′ is also an optimal point of X.

In the case A = B, an identical argument shows that (ρ, π) ∈ E(x) also, and so (iii) holds.
Suppose then that A > B. In this case, looking again at (5.1), we see that if x is not (π, ρ)-

compressed then we in fact have F (x′) < F (x) = 0, contradicting Lemma 5.3. We conclude
that x is (π, ρ)-compressed. Suppose ω(ρ) ≥ 2, then by the definition of (π, ρ)-compression
we have xπ = x′π = 0 contradicting the fact that π ∈ supp(x), and so ω(ρ) = 1. Since π and
ρ are compatible, indistinguishable and distinct, it follows from Lemma 5.1 that ω(π) ≥ 2.
Let x′′ = x(ρ, π). It follows that x′′ρ = 0 and x′′π = xρ + xπ and so by (5.1), F (x′′) > F (x) = 0.
We conclude that x′′ /∈ X i.e. (ρ, π) /∈ E(x). The fact that xρ = 1 follows from the fact that
ω(ρ) = 1, x is (π, ρ)-compressed and π ∈ supp(x). Thus (i) holds, and similarly if A < B
then (ii) holds. �

We obtain the following immediate corollary.

Corollary 5.6. Let x ∈ X be an optimal point and suppose that I is an independent set in
D(x). Then I is a distinguishable set.

Definition 5.7. We call an optimal point x ∈ X compressed if it is (π, ρ)-compressed for all
(π, ρ) ∈ E(x).

We now show that compressed optimal points of X exist. In fact we show that given any
optimal point of x ∈ X we may obtain a compressed optimal point by applying a finite
number of compressions to x. The simpler structure of compressed optimal points will make
it easier to bound their `1-norm which is the goal of Proposition 4.11.

Lemma 5.8. Compressed optimal points of X exist.

Proof. Let x be an arbitrary optimal point of X and define a sequence x0, x1, x2, . . . of
elements of X recursively as follows: Set x0 = x. Having chosen x0, . . . , xt, if xt is compressed
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then stop the sequence at xt. If not, then there exists (π, ρ) ∈ E(xt) such that xt is not
(π, ρ)-compressed. By Lemma 5.5, we must therefore have that x(π, ρ) and x(ρ, π) are both
optimal points of X. Note that by the definition of D(xt), ρ and π are indistinguishable and
{π, ρ} ⊆ supp(xt). Since xτ has compatible support, it follows from Lemma 5.1 that either
ω(π) ≥ 2 or ω(ρ) ≥ 2. If ω(ρ) ≥ 2 then set xt+1 = x(π, ρ), if not (so that ω(π) ≥ 2) set
xt+1 = x(π, ρ). In either case xt+1 is an optimal point of X satisfying |V (xt+1)| = |V (xt)| − 1.
Since 0 ≤ |V (x)| ≤ 3k for all x ∈ X it follows that the sequence must terminate in at most
3k steps. �

Having discovered compressed optimal points, we now explore some of their properties.
First we need a definition.

Definition 5.9. A star is a digraph with vertex set {ρ, π1, . . . , πm} (for some m ≥ 0) and
edge set {(ρ, π1), . . . , (ρ, πm)}. We refer to ρ as the root of the star and we call π1, . . . , πm
leaves. Note that we have included the possibility of a star with no leaves.

Lemma 5.10. Let x ∈ X be a compressed optimal point, then D(x) is a disjoint union of
stars. Moreover if ρ is a root of positive outdegree then ω(ρ) ≥ 2 and if π is a leaf then
ω(π) = 1 and xπ = 1.

Proof. It suffices to prove the following:

(1) If (ρ, π) ∈ E(x) then ω(ρ) ≥ 2, ω(π) = 1, xπ = 1 and (π, ρ) /∈ E(x).
(2) If (ρ1, π), (ρ2, π) ∈ E(x) then ρ1 = ρ2.

Suppose that (ρ, π) ∈ E(x), in particular ρ and π are indistinguishable. If (π, ρ) ∈ E(x)
also, then since x is compressed we have by definition that x(ρ, π) = x = x(π, ρ). However,
from the definition of compression we see that the only way we can have x(ρ, π) = x(π, ρ)
is if ω(π) = ω(ρ) = 1. But then by Lemma 5.1, π = ρ, a contradiction. We conclude that
(π, ρ) /∈ E(x) and so (1) follows from Lemma 5.5.

Suppose now that (ρ1, π), (ρ2, π) ∈ E(x). By (1) we know that ω(π) = 1 and ω(ρi) ≥ 2 for
i = 1, 2. By Lemma 5.1 it follows that Q(π) ⊆ Q(ρ1)∩Q(ρ2) and so ρ1, ρ2 are indistinguishable
by Lemma 4.5. If ρ1 6= ρ2 then by Lemma 5.5 we have that either (ρ1, ρ2) ∈ E(x) or
(ρ2, ρ1) ∈ E(x), but this contradicts (1). �

Recall that V (x) = supp(x). Given a compressed optimal point x ∈ X let

L(x) = {τ ∈ V (x) : d−(τ) > 0}
and

R(x) = V (x)\L(x).

By Lemma 5.10, L(x) and R(x) are the set of leaves and the set of roots of D(x) respectively.

Lemma 5.11. Let x ∈ X be a compressed optimal point. Then

F (x) =
∑
τ∈R(x)

(
x2τ + (2d+(τ)− ω(τ))xτ

)
.

Proof. Lemmas 5.5 and 5.10 together show that for any indistinguishable pair π, ρ ∈ V (x),
where π 6= ρ, exactly one of (π, ρ) and (ρ, π) is in E(x) and so

F (x) =
∑

τ∈V (x)

x2τ + 2
∑

(σ,τ)∈E(x)

xσxτ −
∑

τ∈V (x)

ω(τ)xτ .

15



By Lemma 5.10 we may write∑
(σ,τ)∈E(x)

xσxτ =
∑
ρ∈R(x)

xρ

 ∑
π:(ρ,π)∈E(x)

xπ

 =
∑
ρ∈R(x)

d+(ρ)xρ.

Moreover by Lemma 5.10 we have
∑

τ∈L(x)(x
2
τ − ω(τ)xτ ) = 0. The result follows. �

The key feature here is that for a compressed optimal point x, the constraint equation
F (x) = 0 is spherical. This allows us to more easily apply standard optimisation techniques
and this will be the concern of the next section. For now it will be useful for us to establish
some degree conditions on the vertices of D(x) for a compressed optimal point x ∈ X.

Lemma 5.12. Let x ∈ X be a compressed optimal point, then d+(σ) ≤ 2ω(σ)−1 for all
σ ∈ V (x).

Proof. Suppose that ρ ∈ V (x) is such that d+(ρ) > 0. By Lemma 5.10, ρ is the root of a star
in D(x). Let L be the set of leaves of this star (so in particular |L| = d+(ρ) and ω(π) = 1 for
all π ∈ L). Note that L is an independent set in D(x) and therefore it is a distinguishable set
by Corollary 5.6. In particular, the sets Q(π) where π ∈ L are pairwise disjoint by Lemma 4.5.
Note further that for each π ∈ L, ρ and π are indistinguishable and compatible and hence
Q(π) ⊆ Q(ρ) by Lemma 5.1. It follows that

2d+(ρ) =
∑
π∈L

|Q(π)| ≤ |Q(ρ)| = 2ω(ρ).

�

We can now bootstrap, using the previous two lemmas to establish a much stronger degree
condition. The idea behind the proof of the following lemma is readily explained however
it is notationally laborious. The idea is that if x ∈ X is a compressed optimal point and a
star in D(x) with root ρ has > ω(ρ) leaves, then one can contradict the optimality of x by
replacing this star with a collection of stars whose roots have smaller weight. First let us
generalise an earlier notation.

Definition 5.13. Let σ ∈ {0, 1, ∗}k and let W = {i ∈ [k] : σi = ∗}. Then for S ⊆ W define

Q(σ;S) = {τ ∈ {0, 1, ∗}k : τi ∈ {0, 1} for i ∈ W\S and τi = σi otherwise}.

Note that elements of Q(σ;S) are pairwise distinguishable and that Q(σ; ∅) is simply the
set Q(σ). We may think of Q(σ;S) as a decomposition of Q(σ) into ‘parallel’ subcubes of
dimension |S|.

Lemma 5.14. Let x ∈ X be a compressed optimal point, then d+(σ) ≤ ω(σ) for all σ ∈ V (x).

Proof. By Lemma 5.10 we may write V (x) = S1 ∪ . . . ∪ Sq, a disjoint union where each Si is
the vertex set of a star in D(x). Suppose that there exists σ ∈ V (x) such that d+(σ) > ω(σ).
Without loss of generality assume σ is the root of S1. By Lemma 5.11 we then have that
ω(σ) < d+(σ) ≤ 2ω(σ)−1 and so ω(σ) ≥ 3. Without loss of generality assume that σ1 = σ2 = ∗.
By Lemma 5.10 we have xτ = 1 for all τ ∈ L(x) and so

(5.2) ‖x‖ = |L(x)|+
∑
τ∈R(x)

xτ .
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We proceed by modifying x, being careful to stay within the set X. Take π ∈ Q(σ; {1, 2})
and note that ω(π) = 2. Consider now the element x′ ∈ R∗ defined as follows. Let x′π = xσ,
x′τ = 1 for all τ ∈ Q(σ; {1}), x′τ = xτ for all τ ∈ S2 ∪ . . . ∪ Sq and x′τ = 0 otherwise. We now
check that x′ ∈ X. Clearly x′τ ≤ 1 whenever ω(τ) = 1. Let S ′1 = {π} ∪Q(σ; {1}) and note
that supp(x′) = S ′1 ∪S2 ∪ . . .∪Sq. Now, if τ ∈ S ′1 we have Q(τ) ⊆ Q(σ) and since σ ∈ S1, we
know that σ, and hence also τ , is distinguishable from each element of S2 ∪ . . . ∪ Sk. Since
τ1 = ∗ for each τ ∈ S ′1 we see that S ′1 contains no incompatible pairs. It follows that x′ has
compatible support (i.e. condition (X3) holds for x′). Finally, by a calculation similar to that
in the proof of Lemma 5.11 and the fact that ρ and σ are distinguishable for all but exactly
two elements ρ ∈ Q(σ; {1}), we have

F (x′) = x2σ + 2xσ +
∑

τ∈R(x)\{σ}

(
x2τ +

(
2d+(τ)− ω(τ)

)
xτ
)

(5.3)

= F (x)− (2d+(σ)− ω(σ)− 2)xσ.

Recalling that d+(σ) > ω(σ) we have 2d+(σ)− ω(σ) > ω(σ) ≥ 3. Since σ ∈ supp(x), we also
have xσ > 0 and so (5.3) implies that F (x′) < F (x) = 0. Thus we do indeed have x′ ∈ X.
Note that

(5.4) ‖x′‖ = |L(x)| − d+(σ) + |Q(σ; {1})|+
∑
τ∈R(x)

xτ ,

and observe that d+(σ) ≤ 2ω(σ)−1 = |Q(σ; {1})| by Lemma 5.11. It now follows from (5.2)
and (5.4) that ‖x′‖ ≥ ‖x‖, and so x′ is an optimal point of X. However we have shown that
F (x′) < 0 contradicting Lemma 5.3. �

Gathering all the information we have obtained on compressed optimal points, we show
that a proof of the following proposition is almost enough to deduce Proposition 4.11. Let us
remind ourselves that in the definition of a distinguishable set (Definition 4.8), we require all
elements of the set to have weight at least 1.

Proposition 5.15. Let A ⊆ {0, 1, ∗}k be a distinguishable set and let ∆ : A → Z≥0 be such
that ∆(τ) ≤ ω(τ) for all τ ∈ A, and ∆(τ) = 0 whenever ω(τ) = 1. Suppose that x ∈ R∗ is a
vector with supp(x) = A satisfying

(1) ∑
τ∈A

(
x2τ + (2∆(τ)− ω(τ))xτ

)
= 0,

(2) xτ ≤ 1 whenever ω(τ) = 1.

Then ∑
τ∈A

xτ ≤ 2k−1 −
∑
τ∈A

∆(τ).

Furthermore we have equality only if x ∈ O and ∆ ≡ 0.

A proof of Proposition 5.15 will be the focus of the next section, for now we note that it
has the following corollary

Corollary 5.16. O is the set of compressed optimal points of X. In particular, if x ∈ X
then ‖x‖ ≤ 2k−1.
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Proof. Let x ∈ X be a compressed optimal point. Note that R(x) is an independent set in the
digraph D(x) and hence by Corollary 5.6, R(x) is a distinguishable set. Let ∆ : R(x)→ Z≥0
be the map given by τ 7→ d+(τ). Let x′ be the element of R∗ supported on R(x) such that
x′τ = xτ for all τ ∈ R(x). Note that by Lemmas 5.3, 5.11, 5.14 and by the definition of the
set X, we have that ∆ and x′ satisfy the conditions in the statement of Proposition 5.15.
Assuming Proposition 5.15, it therefore follows that

(5.5)
∑
τ∈R(x)

xτ ≤ 2k−1 −
∑
τ∈R(x)

d+(τ),

with equality only if x′ ∈ O and d+(τ) = 0 for all τ ∈ R(x). The latter condition implies that
x′ = x and so we have equality in (5.5) only if x ∈ O. By Lemma 5.10,

‖x‖ =
∑
τ∈R(x)

xτ +
∑
τ∈R(x)

d+(τ),

and so it follows that ‖x‖ ≤ 2k−1 with equality only if x ∈ O. The result follows by noting
that for all z ∈ O, ‖z‖ = 2k−1 and z is compressed (since for every distinct pair π, ρ ∈ supp(x),
π and ρ are distinguishable).

�

It is now clear that Proposition 4.11 would follow if we could also prove the following.

Proposition 5.17. If x ∈ X is an optimal point, then x is compressed.

We prove Proposition 5.17 in Section 7.

6. Constrained Optimisation and a proof of Proposition 5.15

In this section we prove Proposition 5.15 thus finalising the main stepping stone toward a
proof of Proposition 4.11. We use standard tools from the theory of convex optimisation to
exploit the spherical constraint found in the previous section. This will lead us to consider the
possible distributions of weights in distinguishable sets which we optimise over in a separate
argument. The main tools that we borrow are the Karush-Kuhn-Tucker (KKT) conditions
along with Slater’s constraint qualification. Below is a statement of the result we use, phrased
to match our needs (see [BV04, p. 244] for a detailed account).

Theorem 6.1 (KKT + Slater’s Condition). Let f, g1, . . . , gr : Rm → R be convex, differen-
tiable functions and let

S = {x ∈ Rm : gi(x) ≤ 0 for i = 1, . . . , r}.
Suppose that there exists an x0 ∈ Rm such that gi(x0) < 0 for i = 1, . . . , r. Then if x∗ ∈ S is
such that

f(x∗) = sup
x∈S

f(x),

then there exist λ1, . . . , λr ∈ R such that

(i) ∇f(x∗) =
∑r

i=1 λi∇gi(x∗),
(ii) λi ≥ 0, i = 1, . . . , r,

(iii) λigi(x
∗) = 0, i = 1, . . . , r.

In view of the statement of Proposition 5.15 it is natural to apply Theorem 6.1 to establish
the following.
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Lemma 6.2. Let α1, . . . , αm be integers where αi = 1 for i = 1, . . . , `, (0 ≤ ` ≤ m) and let
x1, . . . , xm be real numbers satisfying

(i)
∑m

i=1(x
2
i − αixi) ≤ 0,

(ii) xi ≤ 1 for i = 1, . . . , `.

If
∑m

i=1 α
2
i > m, then

m∑
i=1

xi ≤ `+
1

2

 m∑
i=`+1

αi +

√√√√(m− `)
m∑

i=`+1

α2
i

 ,

with equality only if xi = 1 for i ≤ ` and xi = 1
2

(
αi +

√
1

(m−`)
∑m

i=`+1 α
2
i

)
for i > `.

If instead
∑m

i=1 α
2
i ≤ m, then

m∑
i=1

xi ≤
1

2

 m∑
i=1

αi +

√√√√m
m∑
i=1

α2
i

 ,

with equality only if xi = 1
2

(
αi +

√
1
m

∑m
i=1 α

2
i

)
for all i.

Proof. Note first that if αi = 0 for all i (so in particular ` = 0) then inequality (i) implies
that xi = 0 for all i in which case there’s nothing to prove. Suppose then that this is
not the case and define functions f, g1, . . . , g`+1 : Rm → R as follows. Let f(x) =

∑m
i=1 xi,

gi(x) = xi − 1 for i = 1, . . . , ` and g`+1(x) =
∑m

i=1(x
2
i − αixi). Note that the functions

just defined are all convex and differentiable. Let x0 = (α1/2, . . . , αm/2), the centre of
the spherical region described by (i) and observe that gi(x0) < 0 for i = 1, . . . , ` + 1. Let
S = {x ∈ Rm : gi(x) ≤ 0 for i = 1, . . . , ` + 1}. S is compact and f is continuous hence we
may pick x∗ ∈ S such that

f(x∗) = sup
x∈S

f(x).

Let x∗ = (x1, . . . , xm). By Theorem 6.1, there exist real numbers λ1, . . . , λ` and Λ such that
the following hold (for notational convenience we define λj = 0 for j > `):

(1) Λ(2xi − αi) + λi = 1 for all i ∈ [m],
(2) Λ ≥ 0 and λi ≥ 0 for all i ∈ [m],
(3) Λ (

∑m
i=1(x

2
i − αixi)) = 0 and λi(xi − 1) = 0 for all i ∈ [m].

We consider three cases depending on the value of Λ. First let us suppose that Λ = 0. In this
case, by (1) we must have λi = 1 for all i ∈ [m]. Recalling that λj = 0 for j > ` by definition,
we must also have ` = m and so αi = 1 for all i ∈ [m]. Moreover, it follows from (3) that
xi = 1 for all i ∈ [m] and so we’re done.

By (2), we may now assume that Λ > 0 and so we may rewrite (1) as

(6.1) xi =
1

2

(
1− λi

Λ
+ αi

)
for all i ∈ [m].

Moreover,
∑m

i=1(x
2
i − αixi) = 0 by (3) which by (6.1) gives

(6.2)
1

Λ2

m∑
i=1

(1− λi)2 =
m∑
i=1

α2
i .
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Now, note that for i ≤ ` we have αi = 1 and xi ≤ 1 and so by (6.1) we have

(6.3) 1− Λ ≤ λi for i ≤ `.

If Λ < 1 then by (6.3) we have λi > 0 for i ≤ ` and so by (3), xi = 1 for i ≤ ` and so in fact
by (6.1)

1− λi = Λ for i ≤ `.

Recalling that αi = 1 for i ≤ ` and λi = 0 for i > ` by definition, (6.2) then gives

(6.4)
1

Λ
=

√√√√ 1

m− `

m∑
i=`+1

α2
i .

From (6.1) it now follows that

xi =
1

2

αi +

√√√√ 1

m− `

m∑
i=`+1

α2
i

 for i > `,

and so
m∑
i=1

xi = `+
1

2

 m∑
i=`+1

αi +

√√√√(m− `)
m∑

i=`+1

α2
i

 .

Recalling that Λ < 1, it follows from (6.4) that
∑m

i=1 α
2
i > m.

It remains to consider the case where Λ ≥ 1. Recall that if λi > 0 for some i then xi = 1
by (3). Moreover we must have i ∈ [j] by definition and so Λ = 1 − λi by (6.1). However
this contradicts the assumption that Λ ≥ 1 and so we conclude that λi = 0 for all i ∈ [m]. It
follows from (6.2) that

(6.5)
1

Λ
=

√√√√ 1

m

m∑
i=1

α2
i ,

so that by (6.1),

xi =
1

2

αi +

√√√√ 1

m

m∑
i=1

α2
i

 for all i ∈ [m].

The result follows, noting that by (6.5) we have
∑m

i=1 α
2
i ≤ m in this case. �

We are almost ready to prove Proposition 5.15, but first we need the following inequality.

Lemma 6.3. If α1, . . . , αm ≥ 2 are integers, then

m∑
i=1

αi +

√√√√m
m∑
i=1

α2
i ≤

m∑
i=1

2αi ,

and equality holds if only if αi = 2 for all i.
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Proof. Let α = (α1, . . . , αm). We induct on the value of Sα :=
∑m

i=1(2
αi−2 − 1). If Sα = 0,

then αi = 2 for all i, so that

m∑
i=1

αi +

√√√√m

m∑
i=1

α2
i = 4m =

m∑
i=1

2αi .

Suppose then that Sα > 0 so that αj ≥ 3 for some j ∈ [m]. Without loss of generality
assume that j = 1. Define a new sequence of integers α′ = (α′1, . . . , α

′
m+1), as follows: Let

α′1 = α′2 = α1 − 1 and α′i = αi−1 for i = 3, 4, . . . ,m + 1. Note that α′i ≥ 2 for all i and
Sα′ = Sα − 1 and so by the inductive hypothesis

(6.6)
m+1∑
i=1

α′i +

√√√√(m+ 1)
m+1∑
i=1

α′2i ≤
m+1∑
i=1

2α
′
i ,

Note that

(6.7)
m+1∑
i=1

2α
′
i =

m∑
i=1

2αi and
m+1∑
i=1

α′i −
m∑
i=1

αi = α1 − 2 > 0,

and also

(6.8) (m+ 1)
m+1∑
i=1

α′2i −m
m∑
i=1

α2
i =

m∑
i=1

α2
i + (m+ 1)(α2

1 − 4α1 + 2) ≥
m∑
i=1

α2
i − (m+ 1),

where in the last inequality we used the fact that α2 − 4α + 2 ≥ −1 for α ≥ 3. Note that
since αi ≥ 2 for all i, we certainly have that

∑m
i=1 α

2
i > m+ 1. It follows then from (6.8) that

(6.9) (m+ 1)
m+1∑
i=1

α′2i > m
m∑
i=1

α2
i .

Combining (6.6), (6.7), and (6.9) we have

m∑
i=1

αi +

√√√√m

m∑
i=1

α2
i <

m+1∑
i=1

α′i +

√√√√(m+ 1)
m+1∑
i=1

α′2i ≤
m+1∑
i=1

2α
′
i =

m∑
i=1

2αi

as required. Note the strict inequality, and so we only have equality in the case where αi = 2
for all i. �

Proof of Proposition 5.15. Consider first the case where
∑

τ∈A(ω(τ)−2∆(τ))2 > |A|. Suppose
that ` elements of A have weight 1 and let A′ = {τ ∈ A : ω(τ) ≥ 2}. Note that by Lemma 4.10
we have

∑
τ∈A 2ω(τ) ≤ 2k and hence

(6.10)
∑
τ∈A′

2ω(τ) ≤ 2k − 2`.
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Applying Lemma 6.2, recalling that 0 ≤ ∆(τ) ≤ w(τ) for all τ ∈ A, that ∆(τ) = 0 whenever
ω(τ) = 1 and using (6.10) and Lemma 6.3 we have

∑
τ∈A

xτ ≤ `+
1

2

∑
τ∈A′

(ω(τ)− 2∆(τ)) +

√
|A′|

∑
τ∈A′

(ω(τ)− 2∆(τ))2

(6.11)

≤ `+
1

2

∑
τ∈A′

ω(τ) +

√
|A′|

∑
τ∈A′

ω(τ)2

−∑
τ∈A

∆(τ)(6.12)

≤ `+
∑
τ∈A′

2ω(τ)−1 −
∑
τ∈A

∆(τ)(6.13)

≤ 2k−1 −
∑
τ∈A

∆(τ).(6.14)

We analyse the conditions for equality to hold. For equality to hold in (6.12) it must be
the case that for all τ ∈ A, either ∆(τ) = 0 or ∆(τ) = ω(τ). By Lemma 6.3, for equality
to hold in (6.13) it must be the case that ω(τ) = 2 for all τ ∈ A′. It now follows from
Lemma 6.2 that for equality to also hold in (6.11), we must have xτ = 1 whenever ω(τ) = 1,
xτ = 2 for all τ ∈ A′ such that ∆(τ) = 0 and xτ = 0 for all τ ∈ A′ such that ∆(τ) = ω(τ).
However, since each xτ is non-zero by assumption we conclude that ∆(τ) = 0 for all τ ∈ A
i.e. ∆ ≡ 0. Finally, for equality to hold in (6.14) we must have equality in (6.10) and so A is
a decomposition by Lemma 4.10. It follows that x ∈ O.

It remains to consider the case where
∑

τ∈A(ω(τ) − 2∆(τ))2 ≤ |A|. By Lemma 6.2 and
Lemma 4.10 we then have∑

τ∈A

xτ ≤
1

2

(
|A|+

∑
τ∈A

ω(τ)

)
−
∑
τ∈A

∆(τ)

≤ 1

2

(
|A|+

∑
τ∈A

2ω(τ)−1

)
−
∑
τ∈A

∆(τ)

≤ 2k−1 −
∑
τ∈A

∆(τ).(6.15)

For equality to hold in (6.15), we must have that |A| = 2k−1 and so A is a decomposition
consisting only of elements of weight 1. It follows that ∆(τ) = 0 and xτ ≤ 1 for all τ ∈ A. If
equality holds throughout the above, we then have that xτ = 1 for all τ ∈ A and so x ∈ O.

�

7. Analytic and Combinatorial Stability

In this section we prove Proposition 5.17 thus concluding our proof of Proposition 4.11.
Note that Proposition 4.11 classifies the optimal points of X. We use compactness arguments
to prove a result to the effect that ‘almost optimal’ points of X must be close (in `1-norm)
to a genuine optimal point of X. Furthermore, compactness allows us to derive similar
properties for X(γ) when γ is small. We then investigate what implications this has in our
original combinatorial setting and complete the proof of Theorem 3.5.
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Proof of Proposition 5.17. Let H be the matrix with rows and columns indexed by {0, 1, ∗}k
where

Hστ =

{
1 if σ, τ are indistinguishable,

0 if σ, τ are distinguishable.

Note that in particular, all diagonal entries of H are equal to 1. Let w = (ω(τ) : τ ∈
{0, 1, ∗}k) ∈ R∗, then for x ∈ R∗ we may write

F (x) = xTHx− wTx.

Suppose now that x ∈ X is an optimal point. By the proof of Lemma 5.8, there is a finite
sequence x = x0, x1, . . . , xm of distinct optimal points of X where xm is compressed, and for
i = 0, . . . ,m− 1, xi+1 = xi(πi, ρi) for some indistinguishable pair πi, ρi ∈ supp(xi). Moreover
we know that ω(ρi) ≥ 2 and that πi /∈ supp(xi+1) for all i.

Suppose that x is not compressed so that m ≥ 1. Let y = xm−1, z = xm and let
π = πm−1, ρ = ρm−1. Since z = y(π, ρ), it follows from the definition of compression that
z = y + α(eρ − eπ) for some α > 0. Let p = eπ − eρ. It follows, by the Taylor expansion of F ,
that

(7.1) F (y) = F (z + αp) = F (z) + αpT∇F (z) + α2pTHp.

Recall that F (y) = F (z) = 0 by Lemma 5.3. Furthermore by direct calculation we also have
pTHp = 0. It follows from (7.1) that pT∇F (z) = 0 i.e.

(7.2)
∂F

∂xπ
(z) =

∂F

∂xρ
(z).

Let Iρ be the set of elements of {0, 1, ∗}k that are indistinguishable from ρ excluding ρ itself.
Define Iπ similarly. From the definition of F we have

(7.3)
∂F

∂xρ
(z) = 2zρ + 2

∑
τ∈Iρ

zτ − ω(ρ).

Since z is a compressed optimal point we have z ∈ O by Corollary 5.16. Since ω(ρ) ≥ 2
and ρ ∈ supp(z) we conclude that in fact ω(ρ) = 2 and so zρ = 2. Moreover since supp(z)
is a distinguishable set we conclude that zτ = 0 for all τ ∈ Iρ. It follows from (7.3) that
∂F
∂xρ

(z) = 2 and hence from (7.2) that

(7.4)
∂F

∂xπ
(z) = 2zπ + 2

∑
τ∈Iπ

zτ − ω(π) = 2.

Since z ∈ O we know that for all τ ∈ supp(z), ω(τ) = 1 or 2 and zτ = ω(τ). Let w1, w2 be
the number of elements of Iπ ∩ supp(z) with weights 1, 2 respectively. Since π /∈ supp(z), we
can then infer from (7.4) that

(7.5) 2w1 + 4w2 − ω(π) = 2.

We also know that supp(z) is a decomposition and so

(7.6) Q(π) =
⋃

τ∈supp(z)

(Q(τ) ∩Q(π)) =
⋃

τ∈Iπ∩supp(z)

(Q(τ) ∩Q(π)) ⊆
⋃

τ∈Iπ∩supp(z)

Q(τ).
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The second equality comes from the fact that Q(τ) ∩ Q(π) = ∅ whenever τ and π are
distinguishable. Comparing the cardinality of the sets in (7.6) yields

(7.7) 2ω(π) ≤
∑

τ∈Iπ∩supp(z)

2ω(τ) = 2w1 + 4w2.

Note also that ρ ∈ Iπ∩supp(z) and ω(ρ) = 2 so that w2 ≥ 1. Using (7.5), this last observation
implies that ω(π) ≥ 2 whereas combining (7.5) and (7.7) we have

(7.8) 2ω(π) − ω(π) ≤ 2w1 + 4w2 − ω(π) = 2

We deduce that ω(π) = 2 and so we have equality throughout (7.8), in particular we have
equality in (7.7) and so also in (7.6). Note that |Q(π)| = |Q(ρ)| since ω(π) = ω(ρ) = 2.
Recalling that ρ ∈ Iπ ∩ supp(z) equality in (7.6) would therefore imply that Q(π) = Q(ρ) i.e.
π = ρ. This is a contradiction and so x must be compressed. �

Proposition 4.11 has the following corollary that says an almost optimal point of X must
be close in norm to an actual optimal point of X.

Proposition 7.1. Let η � ε. If x ∈ X satisfies ‖x‖ > 2k−1− η, then there exists an x∗ ∈ O
such that ‖x− x∗‖ < ε.

Proof. Consider the set

X̃ := X
∖ ⋃
x∗∈O

Bε(x
∗).

X̃ is compact and so supz∈X̃‖z‖ = ‖x̃‖ for some x̃ ∈ X̃. By the definition of X̃, x̃ /∈ O and
so by Proposition 4.11, ‖x̃‖ = 2k−1 − η for some η > 0. It follows that if x ∈ X satisfies
‖x‖ > 2k−1 − η then x /∈ X̃ and so x ∈ Bε(x

∗) for some x∗ ∈ O. �

The following lemma allows us to relate properties of X and X(γ) for γ small.

Lemma 7.2. Let γ � η. If x ∈ X(γ), then there exists x0 ∈ X for which ‖x− x0‖ < η.

Proof. Let (γi)i∈N be a strictly decreasing sequence tending to 0, and let Xi = X(γi) for
i ∈ N. Then X1, X2, . . . is a decreasing sequence of compact sets i.e. Xi+1 ⊆ Xi for i ∈ N.
Consider the set

U =
⋃
z∈X

Bη(z),

an open set containing X. Note that (Xi\U)i∈N is also a decreasing sequence of compact sets
and also

∞⋂
i=1

(Xi\U) =

(
∞⋂
i=1

Xi

)∖
U = X\U = ∅.

By Cantor’s Intersection Theorem (see [Rud76, Theorem 2.36, p.38]) it follows that Xm\U = ∅
for some m ∈ N. In other words, if x ∈ X(γm) then x ∈ U so that x ∈ Bη(x0) for some
x0 ∈ X. The result follows by taking γ ≤ γm. �

Corollary 7.3. Let γ � ε. If x ∈ X(γ) satisfies ‖x‖ = 2k−1, then there exists an x∗ ∈ O
such that ‖x− x∗‖ < ε.
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Proof. Given ε > 0, let η = min{η7.1(ε/2), ε/2} and suppose that γ ≤ γ7.2(η). Suppose that
x ∈ X(γ) satisfies ‖x‖ = 2k−1. By Lemma 7.2 there exists an x0 ∈ X such that ‖x0− x‖ < η
and so ‖x0‖ > ‖x‖− η = 2k−1− η. It follows from Proposition 7.1 that there exists an x∗ ∈ O
such that ‖x0 − x∗‖ < ε/2 and so

‖x− x∗‖ ≤ ‖x− x0‖+ ‖x0 − x∗‖ < η + ε/2 ≤ ε. �

Let

O∗ = {x ∈ O : ω(τ) = 1 for all τ ∈ supp(x)}.
In words, O∗ is the set of all elements x ∈ R∗ such that x is supported on a perfect matching
of Qk and all non-zero entries of x are equal to 1. We can also view O∗ as the set of profiles of
hypercube colourings normalised by clique size. Our aim is to use the stability-type statement
of Corollary 7.3 to prove Theorem 3.5 in the following form.

Theorem 7.4. Let 1
t
� δ � ε � 1. If G is a (1 − δ)-dense, k-coloured graph with

v(G) = 2k−1t, containing no monochromatic odd connected matching of order ≥ (1 + δ)t,
then for any choice of profile x(G) of G, there exists some x∗ ∈ O∗ such that

‖x(G)/t− x∗‖ < ε.

First we need the following two colour Ramsey result which is a direct consequence of the
more general Theorem 1.8 in [B LS+12].

Lemma 7.5. Let 1
t
� δ � ε � 1. If H is a (1 − δ)-dense, 2-coloured graph with v(H) ≥

(3
2

+ ε)t, then H contains a monochromatic cycle of length ≥ (1 + δ)t. �

Recall that by the definition of a connected matching, Defintion 3.3, a cycle of length m is
a connected matching of order ≥ m− 1.

We remark that in the statements of Theorem 7.4 and Lemma 7.5, we do not assume that
t is an integer.

Proof of Theorem 7.4. Given 0 < ε < 1/4, let γ = γ7.3(ε) and δ′ = δ7.5(ε). Suppose that
δ < min{γk−12−2k, δ′2−2k} and that t ≥ max{t7.5(δ′), δ−1}. Let G be a k-coloured graph
as in the statement of Theorem 7.4. Let x(G) be any choice of profile for G and let the
corresponding profile partition be (Vτ : τ ∈ {0, 1, ∗}k). Note that ‖x(G)/t‖ = 2k−1 and by
Proposition 4.7, we have that x(G)/t ∈ X(δk22k) ⊆ X(γ). By Corollary 7.3 there exists an
element x∗ ∈ O such that

(7.9) ‖x(G)/t− x∗‖ < ε.

Suppose that x∗ ∈ O\O∗, then xτ = 2 for some τ ∈ {0, 1, ∗}k such that ω(τ) = 2. It follows
from (7.9) that x(G)τ = |Vτ | > (2− ε)n ≥ (3/2 + ε)n. Let H = G[Vτ ]. By the definition of

Vτ , H is a 2-coloured graph. Moreover since G has at most δ
(
v(G)
2

)
≤ δ′

(
v(H)
2

)
edges missing,

the same is true for H. It follows by Lemma 7.5 that H contains a monochromatic cycle of
length ≥ (1 + δ′)t and so in particular H contains a monochromatic connected matching of
order > (1 + δ)t. However, by the definition of Vτ = V (H), any monochromatic component
of H is contained in a non-bipartite monochromatic component of G. Thus G contains a
monochromatic odd connected matching of order > (1 + δ)t contrary to assumption. We
conclude that x∗ ∈ O∗. �
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8. The Regularity Method

In this section we discuss the tools and results we need from the regularity method. Our
starting point is Szemerédi’s Regularity Lemma [Sze78] which we discuss briefly now.

Let G be a graph and let A,B be disjoint subsets of V (G). We call

dG(A,B) :=
eG(A,B)

|A||B|

the density of the pair (A,B). For δ > 0, we say that the pair (A,B) is δ-regular with respect
to G if, for every A′ ⊆ A and B′ ⊆ B satisfying |A′| ≥ δ|A| and |B′| ≥ δ|B|, we have

|dG(A′, B′)− dG(A,B)| < δ.

If, for d > 0, we also have that |NG(a) ∩B| ≥ d|B| for all a ∈ A and |NG(b) ∩ A| ≥ d|A| for
all b ∈ B, then we say that (A,B) is (δ, d)-super-regular with respect to G. If the graph G is
clear from the context we may omit it from the above notation. The following is a version of
Szemerédi’s Regularity Lemma that appears as Theorem 1.18 in [KS96]. Recall that given a
k-coloured graph G and i ∈ [k], we let Gi denote the ith colour class of G.

Theorem 8.1 (Multicolour Regularity Lemma). For all δ > 0 and k, ` ∈ N there exists
L = L(δ, k, `) and M = M(δ, k, `) such that the following holds. For all k-coloured graphs G
on at least M vertices, V (G) may be partitioned into sets V0, V1 . . . , Vt such that

• ` ≤ t ≤ L;
• |V0| < δv(G) and |V1| = |V2| = . . . = |Vt|;
• apart from at most δ

(
t
2

)
exceptional pairs, the pairs (Vi, Vj), 1 ≤ i < j ≤ t, are

δ-regular with respect to Gs for s = 1, . . . , k.

We now state some technical lemmas related to  Luczak’s method of connected matchings.
First we need a definition. (It might be useful at this point to recall the definition of a
connected matching of order m, Definition 3.3.)

Definition 8.2. Let δ, d ∈ [0, 1] and q,m ≥ 1 be integers.

• Let F be a graph on vertex set [q] and let U1, . . . , Uq be disjoint sets of size m.
We call a graph H on vertex set

⋃
i∈[q] Ui a (δ,m)-regular blow-up of F if whenever

{i, j} ∈ E(F ), we have that (Ui, Uj) is a δ-regular pair.
• If in addition to the above, d(Ui, Uj) ≥ d for each edge {i, j} of F then we say that
H has minimum density d.
• Suppose that F is a connected matching and H is a (δ,m)-regular blow-up of F with

minimum density d. If for each matching edge {i, j} of F , the pair (Ui, Uj) is in fact
(δ, d)-super-regular in H, then we say that H is a (δ, d,m)-super-regular blow-up of F .

Versions of the following two lemmas abound in the literature (e.g. [KSS05], [ Luc99]), but
here we give statements tailored to our needs. However since they are not new, we defer their
proofs to the Appendix.

Lemma 8.3. Let q ≥ 4 and suppose that 1
m
� δ � d. Let F be a connected matching of

order q such that every vertex of F is incident to a matching edge and let H be a (δ, d,m)-
super-regular blow-up of F . Then the following holds:
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If i, j ∈ V (F ) and there is an ij-path of length r in F , then for every pair of vertices
u ∈ Ui, w ∈ Uj, there exists a uw-path of length ` in H for each 3q ≤ ` ≤ (1− 6δ)qm such
that ` ≡ r (mod 2).

Lemma 8.4. Let q ≥ 4 and let 1
m
� δ � d. Let F be an odd connected matching of

order q and suppose that H is a (δ,m)-regular blow-up of F with minimum density d. Then
H contains a cycle of length ` for each odd 3q ≤ ` ≤ (1− 6δ)qm.

We borrow the following fact.

Fact 8.5. ([GRSS07, Lemma 9]). Let H be a (1− δ)-dense graph on t vertices. Then H has

a subgraph H ′ such that v(H ′) ≥ (1−
√
δ)t and δ(H ′) ≥ (1− 2

√
δ)t.

We will also need the following two standard facts whose proofs we omit.

Fact 8.6. Let 0 < δ ≤ 1/2 and let (A,B) be a δ-regular pair with density d. Suppose that
A′ ⊆ A, B′ ⊆ B such that |A′| ≥ (1 − δ)|A|, |B′| ≥ (1 − δ)|B|. Then (A′, B′) is 2δ-regular
with density d′ > d − δ. Moreover, if (A,B) is in fact (δ, β)-super-regular for some β > 0,
then (A′, B′) is (2δ, β − δ)-super-regular. �

Fact 8.7. Let 0 < δ ≤ 1/2 and let (A,B) be a δ-regular pair with density d. Then
there exist A′ ⊆ A, B′ ⊆ B such that |A′| = (1 − δ)|A|, |B′| = (1 − δ)|B| and (A′, B′) is
(2δ, d− 2δ)-super-regular. �

9. Proof of Main Theorem

In this final section we prove our main result Theorem 3.2, and therefore also Theorem 1.2.
The idea is to invoke Theorem 7.4 to show that the profile of a certain reduced graph is close
in `1-norm to the profile of a hypercube colouring (we refer the reader back to Section 3.2 for
the definition of a hypercube colouring). We then translate this information to show that the
original graph is close in edit distance to a hypercube colouring.

The stability-type methods of this section require some care due to the plethora of extremal
constructions. Luckily hypercube colourings share enough common features for these methods
to be viable and surprisingly we require no case analysis.

First let us state a result which is a corollary of a classical theorem of Bondy [Bon71].

Theorem 9.1. Let G be a graph on at least three vertices with minimum degree > v(G)/2,
then G is pancyclic i.e. G contains cycles of all lengths 3 ≤ ` ≤ v(G).

Proof of Theorem 3.2. Let 0 < ε < 2−4k, let

(9.1) η < δ ≤ min

{
1

9
δ27.4(ε), δ8.3

(
1

k

)
, δ8.4

(
1

k

)}
,

let t0 ≥ max{t7.4(δ), δ−1/2} and let L = L8.1(δ, k, 2
kt0). Let n be odd with

(9.2) n ≥ max{Lm8.3(δ), Lm8.4(δ),M8.1(δ, k, 2
kt0)}.

Finally let G be a k-coloured copy of KN where N > (2k−1 − η)n and assume that

(†) G contains no monochromatic copy of Cn.

Applying Theorem 8.1 to G we obtain a partition of V (G) into sets V0, V1 . . . , Vt1 such that

(i) 2kt0 ≤ t1 ≤ L;
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(ii) |V0| < δN and |V1| = |V2| = . . . = |Vt1 |;
(iii) apart from at most δ

(
t1
2

)
exceptional pairs, the pairs (Vi, Vj), 1 ≤ i < j ≤ t1, are

δ-regular with respect to Gs for s = 1, . . . , k.

It follows that for i ∈ [t1],

(9.3) m := |Vi| ≥
(1− δ)N

t1
.

We construct a reduced graph R1 with vertex set [t1] and edge set formed by pairs {u,w}
for which (Vu, Vw) is δ-regular with respect to Gi for i = 1, . . . , k. It follows from (iii) of
the above that R1 is (1− δ)-dense. Fact 8.5 allows us to find a subgraph R ⊆ R1 satisfying

v(R) ≥ (1 −
√
δ)t1 and δ(R) ≥ (1 − 2

√
δ)t1. Let t = v(R) and assume without loss of

generality that V (R) = [t]. We k-colour R by colouring an edge {u,w} with the least colour
i for which

(9.4) dGi(Vu, Vw) ≥ 1

k
.

Let t′ = t/2k−1 and note that by (9.3) and the definition of t,

(9.5) mt′ ≥ (1− 2
√
δ)n.

Suppose that R contains a monochromatic odd connected matching F of order q ≥ (1+3
√
δ)t′.

Then G contains a monochromatic (δ,m)-regular blow-up of F with minimum density d for
some d ≥ 1/k by (9.4). Note that since t1 ≤ L we have m ≥ m8.4(δ) by (9.3) and (9.2). It
follows from Lemma 8.4 that G contains a monochromatic copy of Cn since n is odd and

3q ≤ 3L ≤ n ≤ (1− 6δ)(1 + 3
√
δ)mt′ ≤ (1− 6δ)qm,

contradicting (†). We conclude that R contains no such odd connected matching. Let
(Wτ : τ ∈ {0, 1, ∗}k) be a profile partition of R (as defined in Section 3.1) and let x(R) =
(|Wτ | : τ ∈ {0, 1, ∗}k) be the corresponding profile. It follows by Theorem 7.4 that there
exists x∗ ∈ O∗ such that

(9.6) ‖x(R)/t′ − x∗‖ < ε.

This tells us a lot about the structure of R, indeed it is ‘close to’ a hypercube colouring. In
particular, we know that R can be covered by 2k−1 monochromatic cliques of approximately
equal size and a small leftover set. Our next goal is to establish some more detailed properties
of R and to show that these properties transfer to G. In particular we will show that, like R,
G can be covered by 2k−1 monochromatic cliques of approximately equal size and a small
leftover set (Lemma 9.9). We then prove an ‘absorbing lemma’ (Lemma 9.12) allowing us to
deal with the leftover set in G.

By the definition of O∗ we have that

supp(x∗) =M⊆ {0, 1, ∗}k,

for some perfect matching M of the hypercube Qk and x∗τ = 1 for all τ ∈M. Let

W = R
∖ ⋃
τ∈M

Wτ .
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We will treat W as a ‘leftover set’ of vertices of R and study only the structure of R\W .
Note that by (9.6) we have

(9.7) (1− ε)t′ < |Wτ | < (1 + ε)t′ for all τ ∈M,

and so by removing at most 2εt′ vertices from each part Wτ , where τ ∈M, and absorbing
these removed vertices into W , we may assume that these parts Wτ all have the same size
> (1− ε)t′. Note that even after this absorption we have

|W | = t−
∑
τ∈M

|Wτ | < t− 2k−1(1− ε)t′ = εt.

We make a couple of observations regarding the colouring of R with respect to these vertex
classes. For j ∈ [k] we let

Ij = {τ ∈M : τj = ∗}.(9.8)

Lemma 9.2. Let τ ∈ Ij. Then R[Wτ ] is monochromatic in the colour j and has minimum

degree at least (1− 2k+1
√
δ)|Wτ |.

Proof. By the definition of the profile partition, for each colour i 6= j, each pair v, w ∈ Wτ

must lie in the same vertex class in an induced bipartite subgraph of Ri. It follows that if
{v, w} ∈ E(R) then it cannot receive the colour i and hence must receive colour j. Since

δ(R) ≥ (1− 2
√
δ)t we have

δ(R[Wτ ]) ≥ |Wτ | − 1− 2
√
δt ≥ (1− 2k+1

√
δ)|Wτ |

where for the last inequality we used (9.7). �

Definition 9.3. For σ, τ ∈ {0, 1, ∗}k, we let ∆(σ, τ) = {i ∈ [k] : {σi, τi} = {0, 1}}.

Lemma 9.4. Let σ, τ ∈M be distinct, then

(i) Each edge of R[Wσ,Wτ ] receives a colour from the set ∆(σ, τ);

(ii) R[Wσ,Wτ ] has minimum degree ≥ (1 − 2k+1
√
δ)|Wσ|, in particular R[Wσ,Wτ ] is

connected and contains a perfect matching.

Proof. Let σ ∈ Ij, τ ∈ I`. Suppose that j 6= ` so that {σi, τi} 6= {∗} for each i ∈ [k]. By the
definition of the profile partition, for each colour i /∈ ∆(σ, τ), each pair v ∈ Wσ, w ∈ Wτ

must lie in either the same vertex class in an induced bipartite subgraph of Ri or they lie in
different connected components of Ri. It follows that if {v, w} ∈ E(R) then it must receive a
colour from ∆(σ, τ). Similarly, if j = ` then each edge of R[Wσ,Wτ ] must receive a colour
from ∆(σ, τ) ∪ {j}. However, by Lemma 9.2, R[Wτ ] and R[Wσ] are both monochromatic

in the colour j and both have minimum degree at least (1− 2k+1
√
δ)|Wσ| > |Wσ|/2 (recall

that |Wσ| = |Wτ |). It follows, by Theorem 9.1 for example, that R[Wτ ] and R[Wσ] are both
Hamiltonian and non-bipartite. Using (9.7), we deduce that if an edge of R[Wσ,Wτ ] receives
the colour j, then R contains a monochromatic odd connected matching in the colour j of
order at least

|Wσ|+ |Wτ | − 2 ≥ 2(1− ε)t′ − 2 ≥ (1 + 3
√
δ)t′,

which we showed previously was not the case. Part (i) of the lemma follows. If v ∈ Wτ then,

since δ(R) ≥ (1− 2
√
δ)t, we have

|N(v) ∩Wσ| ≥ |Wσ| − 2
√
δt ≥ (1− 2k+1

√
δ)|Wσ|.
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Similarly if w ∈ Wσ, then |N(w) ∩Wτ | ≥ (1 − 2k+1
√
δ)|Wσ|. Since 1 − 2k+1

√
δ > 1/2, it

follows that R[Wσ,Wτ ] is connected and (e.g. by Hall’s theorem) contains a perfect matching.
�

Let Γ denote the k-coloured multigraph on vertex set M where we have an edge between
σ and τ in each colour j for which R[Wσ,Wτ ] contains an edge of colour j. Note that since

δ(R) > (1− 2
√
δ)t and |Wτ | > (1− ε)t′ > 2

√
δt for all τ ∈M, R[Wσ,Wτ ] contains an edge

for every σ, τ ∈M. Let Γ∗ denote the subgraph of Γ where we keep only those edges that
occur as the unique edge between a given pair of vertices in Γ.

Lemma 9.5. For each j ∈ [k], the vertices of Γ∗j can be covered by a matching Tj ⊆ Γ∗j and
the set Ij. Moreover Ij is a set of isolated vertices in Γj.

Proof. Fix j ∈ [k]. If σ ∈ Ij then σ is an isolated vertex in Γj by Lemma 9.4(i). If σ /∈ Ij
then we may assume without loss of generality that σj = 0. Let σ′ be the element of {0, 1, ∗}k
such that σ′j = 1 and σ′i = σi for all i 6= j. Let H be the graph on M with edge set
{{ρ, π} : ∆(ρ, π) = {j}}. By Lemma 9.4(i) we have H ⊆ Γ∗j . The neighbours of σ in H
are precisely those elements of M that are indistinguishable from σ′ i.e. those elements of
M (viewed as edges of Qk) that intersect Q(σ′). If σ′ ∈ M, then since M is a perfect
matching, we must have that σ′ is the unique neighbour of σ in H and similarly σ is the
unique neighbour of σ′ (i.e. they form an isolated edge in H). If σ′ /∈M, then precisely two
elements of M intersect Q(σ′) (i.e. the degree of σ in H is two). It follows that H is the
disjoint union of cycles (where we consider an edge a cycle) and the independent set Ij . Since
H is bipartite with bipartition {τ ∈ M : τj = 0 or ∗} ∪ {τ ∈ M : τj = 1}, the cycles in H
are all even. The result follows. �

Let j ∈ [k], then for each {σ, τ} ∈ Tj (Tj as in the statement of Lemma 9.5), we may fix a
monochromatic perfect matching M j

στ in the colour j in R[Wσ,Wτ ] by Lemmas 9.4(ii) and
9.5. Let

Tj =
⋃

{σ,τ}∈Tj

M j
στ .

and note that Tj is a matching in R, monochromatic in the colour j, which covers the vertex
set
⋃
τ /∈Ij Wτ . The following corollary hints at an important common feature of all hypercube

colourings.

Corollary 9.6. Given j ∈ [k] and ρ ∈ M\Ij, there exists π ∈ M such that R[Wρ,Wπ]
contains a monochromatic connected perfect matching in the colour j whose matching edges
are edges of Tj.

Proof. Since ρ /∈ Ij, by Lemma 9.5 there must exist π ∈ M such that {ρ, π} is an edge of
Tj ⊆ Γ∗j . By the definition of Γ∗, we have that R[Wρ,Wπ] is monochromatic in the colour j.
The result follows from the definition of Tj and Lemma 9.4(ii). �

It will be useful to prune the sets Vi for i ∈ R in such a way that if {x, y} is an edge of the
matching Tj then Gj[Vx, Vy] is super-regular.

Lemma 9.7. For each i ∈ R there exists V ′i ⊆ Vi such that

(i) |V ′i | = (1− 2kδ)m for all i ∈ R,
(ii) Gj[V

′
x, V

′
y ] is 2k+1δ-regular with density ≥ 1

k+1
for all j ∈ [k], {x, y} ∈ Rj,
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(iii) Gj[V
′
x, V

′
y ] is (2k+1δ, 1

k+1
)-super-regular for all j ∈ [k], {x, y} ∈ Tj.

Proof. For i ∈ R we define a sequence of subsets V 0
i , . . . , V

k
i of Vi recursively. Let V 0

i := Vi
for all i ∈ R. Suppose that for all i ∈ R we have found V `

i ⊆ Vi with the following properties.

(a) |V `
i | ≥ (1− 2`δ)m for all i ∈ R,

(b) Gj[V
`
x , V

`
y ] is 2`δ-regular with density ≥ 1/k − 2`δ for all j ∈ [k], {x, y} ∈ Rj,

(c) Gj[V
`
x , V

`
y ] is (2`δ, 1/k − 2`+1δ)-super-regular for all j ∈ [`], {x, y} ∈ Tj.

By Fact 8.7, for each edge {u,w} in the matching T`+1 (so in particular {u,w} ∈ R`+1) there
exists V `+1

u ⊆ V `
u and V `+1

w ⊆ V `
w such that |V `+1

u | = (1− 2`δ)|V `
u |, |V `+1

w | = (1− 2`δ)|V `
w| and

G`+1[V
`+1
u , V `+1

w ] is (2`+1δ, 1/k − 2`+2δ)-super-regular. If i is not incident to any edge of T`+1

then simply set V `+1
i = V `

i . Note that by (a), for all i ∈ R,

|V `+1
i | ≥ (1− 2`δ)|V `

i | ≥ (1− 2`δ)2m ≥ (1− 2`+1δ)m.

For j ∈ [k] and {x, y} ∈ Rj , by (b) and Fact 8.6 we have that Gj [V
`+1
x , V `+1

y ] is 2`+1δ-regular

with density ≥ 1/k − 2`+1δ. Using (c) and Fact 8.6, it also follows that Gj[V
`+1
x , V `+1

y ] is

(2`+1δ, 1/k − 2`+2δ)-super-regular for all j ∈ [`], {x, y} ∈ Tj. We have shown that the sets
V `+1
i , i ∈ R, satisfy (a)-(c) (with ` replaced by ` + 1). The result follows by letting V ′i be

any subset of V k
i of size (1 − 2kδ)m for all i ∈ R and appealing to Fact 8.6, noting that

1/(k + 1) ≤ 1/k − 2k+2δ.
�

Given σ ∈M, let

W̃σ =
⋃
i∈Wσ

V ′i ⊆ V (G),

and let

W̃ = V (G)
∖ ⋃
τ∈M

W̃τ .

As with W , we think of W̃ as a small leftover set of vertices. Let m′ := (1− 2kδ)m and note

that by (9.5), m′t′ ≥ (1− 3
√
δ)n and so by (9.7)

(9.9) |W̃τ | ≥ (1− ε)m′t′ ≥ (1− 2ε)n for all τ ∈M.

We also have

(9.10) |W̃ | ≤ N − 2k−1(1− ε)m′t′ = N − (1− ε)(1− 2kδ)mt ≤ 2εN.

Where for the last inequality we recalled (9.3).
We can now establish our first piece of structure on the graph G. We show that almost all

of V (G) can be covered by 2k−1 monochromatic cliques of equal size. First we make a quick
definition.

Definition 9.8. If τ ∈ {0, 1, ∗}k has weight 1, we let c(τ) denote the unique element of
i ∈ [k] for which τi = ∗.

We note that for τ ∈ M and j ∈ [k], we have c(τ) = j if and only if τ ∈ Ij (as defined
in (9.8)).

Lemma 9.9. For all σ ∈M, G[W̃σ] is monochromatic in the colour c(σ).
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Proof. Suppose that G[W̃σ] contains an edge {x, y} of colour j 6= c(σ) (so that σ /∈ Ij).
By Corollary 9.6 there exists τ ∈ M such that Rj[Wσ,Wτ ] contains a connected perfect
matching, F , whose matching edges are edges of Tj. Let q := v(F ), then by (9.7) we have

2(1 − ε)t′ ≤ q ≤ 2(1 + ε)t′. By Lemma 9.7 we see that Gj[W̃σ, W̃τ ] contains a spanning
(2k+1δ, 1/(k + 1),m′)-super-regular blow-up of F (with the V ′i playing the role of the Ui in
Definition 8.2). Suppose that x ∈ V ′a and y ∈ V ′b , then a and b lie on the same side of the
bipartition of the connected graph F and so F contains an ab-path of even length. Note
that m′ ≥ n8.3(δ), by (9.3) and (9.2). We may therefore apply Lemma 8.3 to deduce that

Gj[W̃σ, W̃τ ] contains a path of length n− 1 joining x and y since n− 1 is even and

(9.11) (1− 6 · 2kδ)qm′ ≥ 2(1− 6 · 2kδ)(1− ε)m′t′ ≥ n− 1 ≥ 3L ≥ 3q,

where we used (9.1), (9.2) and (9.9). Together with the edge {x, y} this creates a monochro-
matic copy of Cn in G, contrary to assumption (†). �

Our aim now is to say something about the edges of G lying between W̃ and the rest of
the graph (see Lemma 9.12 below). Recall that Γ is the k-coloured multigraph on vertex set
M where we have an edge between σ and τ in each colour j for which R[Wσ,Wτ ] contains
an edge of colour j. With this graph in mind, we make the following definition.

Definition 9.10. Let M′ be a perfect matching of Qk and let ϕ :M→M′ be a bijection
such that c(ϕ(τ)) = c(τ) for all τ ∈M. Suppose that Ψ is a k-coloured multigraph on vertex
set M. We call ϕ an admissible labelling of Ψ if for all σ, τ ∈M, the edges between σ, τ in
Ψ only take colours from the set ∆(ϕ(σ), ϕ(τ)).

Note that by Lemma 9.4(i) the identity map ι : M → M is an admissible labelling of
Γ. The following lemma gives a useful way of generating new admissible labellings of Γ.
For τ ∈ {0, 1, ∗}k, such that τj ∈ {0, 1}, we let τ j := (τ1, . . . , τj−1, 1− τj, τj+1, . . . , τk) i.e. τ j

denotes τ with the jth coordinate flipped.

Lemma 9.11. Let ϕ be an admissible labelling of Γ. Let j ∈ [k] and let C be the vertex set
of a component of Γj such that τj 6= ∗ for all τ ∈ C. Let ϕ′ be the function on M given by
ϕ′(τ) = ϕ(τ)j for all τ ∈ C, ϕ′(τ) = ϕ(τ) otherwise. Then ϕ′ is an admissible labelling of Γ.

Proof. Let us first check that the image of ϕ′ is a perfect matching of Qk. First note that
by the definition of ϕ′ and the fact that ϕ is admissible, each element of ϕ′(M) has weight
1 and c(ϕ′(τ)) = c(ϕ(τ)) = c(τ) for all τ ∈M. To show that ϕ′(M) is a perfect matching,
it thus suffices to show that if σ, τ ∈ M are distinct, then ϕ′(σ), ϕ′(τ) are disjoint (i.e.
∆(ϕ′(σ), ϕ′(τ)) 6= ∅). We do this by considering an edge between σ and τ in Γ and showing
that if it has the colour i then i ∈ ∆(ϕ′(σ), ϕ′(τ)). Note that this in fact suffices to show
that ϕ′ is admissible.

Suppose then that there is an edge between σ, τ in Γ in the colour i. Since ϕ is admissible
we have i ∈ ∆(ϕ(σ), ϕ(τ)). Suppose that i 6= j then by the definition of ϕ′, ϕ′(τ)i = ϕ(τ)i
and ϕ′(σ)i = ϕ(σ)i and so i ∈ ∆(ϕ′(σ), ϕ′(τ)) also. Suppose then that i = j, so that either
σ, τ ∈ C or σ, τ ∈ M\C. If σ, τ ∈ C, then ϕ′(τ)i = 1 − ϕ(τ)i, ϕ

′(σ)i = 1 − ϕ(σ)i and if
σ, τ ∈M\C, then ϕ′(τ)i = ϕ(τ)i, ϕ

′(σ)i = ϕ(σ)i. In either case i ∈ ∆(ϕ′(σ), ϕ′(τ)).
�

We are now in a position to prove our ‘absorbing lemma’ which associates each vertex in

W̃ to some class W̃σ in G.
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Lemma 9.12. Let v ∈ W̃ . Then there exists σ ∈M such that G[v, W̃σ] is monochromatic
in the colour c(σ).

Proof. Suppose otherwise, then for each σ ∈ M there exists a u ∈ W̃σ such that the edge
{v, u} receives a colour jσ 6= c(σ). We augment the multigraph Γ in the following way. We
add the vertex v to Γ and for each σ ∈M we add an edge between v and σ in the colour jσ.
Let us call this augmented multigraph Γ+.

Claim 9.13. Γ+ contains a monochromatic odd cycle.

Proof of Claim. Suppose otherwise and choose an admissible labelling ϕ of Γ that minimises
the function

S(ϕ) =
∑
j∈[k]

|{τ ∈M : jσ = j and ϕ(σ)i = 1}|.

Suppose that S(ϕ) > 0, then there exists a colour j ∈ [k] and an element σ ∈M for which
jσ = j and ϕ(σ)j = 1. Let C denote the component of Γj containing the vertex σ and note
that by the definition of admissibility C is bipartite with parts {τ ∈ C : ϕ(τ)j = 0} and
{τ ∈ C : ϕ(τ)j = 1}. Note that since C is connected in Γj this is the unique bipartition
of C. Since Γ+

j is bipartite by assumption we must therefore have that ϕ(τ)j = 1 for all

τ ∈ C such that jτ = j. Let ϕ′ denote the function on M given by ϕ′(τ) = ϕ(τ)j for all
τ ∈ C, ϕ′(τ) = ϕ(τ) otherwise. By Lemma 9.11, ϕ′ is an admissible labelling of Γ, however
S(ϕ′) < S(ϕ) contradicting the minimality of ϕ. We conclude that S(ϕ) = 0 i.e.

(9.12) For all i ∈ [k], τ ∈M, if jτ = i then ϕ(τ)i = 0.

Since ϕ(M) is a perfect matching of Qk, there must exist ρ ∈ M such that the edge ϕ(ρ)
is incident to the vertex (1, 1, . . . , 1) (formally Q(ϕ(ρ)) contains (1, 1, . . . , 1)). Without loss
of generality suppose ϕ(ρ) = (∗, 1, . . . , 1). However, whatever value jρ takes, we contradict
(9.12). This concludes the proof of the claim. �

Suppose that Γ+ contains a monochromatic odd cycle in the colour j. Since Γj is bipartite
and Γ+

j is not, there must exist σ, τ ∈M such that σ, τ lie in opposite parts of the bipartition
of a connected component in Γj and the edges {v, σ}, {v, τ} both have colour j in Γ+. By

the definition of Γ+, there exist vertices u ∈ W̃σ, w ∈ W̃τ such that {v, u} and {v, w} both
have colour j in G and j /∈ {c(σ), c(τ)} i.e. σ, τ /∈ Ij. Suppose that u ∈ V ′a and w ∈ V ′b then
by Lemmas 9.4(ii) and 9.5 and the definition of Tj , a and b lie in opposite parts of a bipartite
connected matching, F , in Rj whose matching edges span F and are edges of Tj (in particular
there is an ab-path of odd length in F ). Moreover we may assume that F spans the vertex
sets Wσ,Wτ in Rj and so by (9.7), 2(1− ε)t′ ≤ v(F ) ≤ v(R) ≤ L. By Lemma 9.7, we have a
(2k+1δ, 1/(k + 1),m′)-super-regular blow-up of F in Gj. By Lemma 8.3 (using inequalities as
in (9.11) and noting that n− 2 is odd) there exists a path of length n− 2 joining u and w
in Gj. This together with the edges {v, u}, {v, w} forms a monochromatic copy of Cn in G
contrary to assumption (†). This concludes the proof of Lemma 9.12. �

Using Lemma 9.12 we may define a function f : W̃ → M where f(v) is an element

of M such that G[v, W̃f(v)] is monochromatic in the colour c(f(v)). For each τ ∈ M, let
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Uτ = W̃τ ∪ f−1({τ}). By (9.9), (9.10), (9.3) and Lemma 9.9 we have that

(9.13) δ(Gc(τ)[Uτ ]) ≥ (1− 2k+1ε)|Uτ | for all τ ∈M.

Note that the sets Uτ , τ ∈ M, partition the vertex set of G and so if N ≥ 2k−1(n− 1) + 1
then by the pigeonhole principle there exists σ ∈M such that |Uσ| ≥ n. However, by (9.13)
and Theorem 9.1, it follows that Uσ contains a monochromatic copy of Cn in the colour c(σ),
contrary to assumption (†). We therefore have that N ≤ 2k−1(n− 1). Note that at this point
we have done enough to prove Theorem 1.2.

It remains to show that G is close in edit distance to a hypercube colouring. Recall that

|W̃ | ≤ 2εN and so there are at most 2εN2 edges of G incident to W̃ . We now aim to show

that G\W̃ is close to a hypercube colouring. Recall that we have partitioned the vertex

set of G\W̃ into the monochromatic, equally sized cliques {W̃τ : τ ∈ M}. For σ ∈ M, we

showed that |W̃σ| ≥ (1− 2ε)n and W̃σ is monochromatic in the colour c(σ). First note that

at most 2εn vertices of G\W̃σ have more than 2εn neighbours in W̃σ in the colour c(σ) else
we immediately find a monochromatic Cn in the colour c(σ) in G. It follows that there are

at most 2εnN edges leaving the clique W̃σ in the colour c(σ). Over all τ ∈ M, there are

therefore at most 2kεnN < 3εN2 edges in total leaving a clique W̃τ in the colour c(τ).
Let Φ now be the multigraph on vertex set M where we have an edge between σ and τ

in the colour j for each j /∈ {c(σ), c(τ)} for which G[W̃σ, W̃τ ] contains a matching of two
edges in the colour j. First we observe that to complete the proof it suffices to show that
there exists an admissible labelling ϕ of Φ (recall Definition 9.10). Indeed suppose that
this is the case, then since ϕ is admissible, for each pair of distinct σ, τ ∈ M and each

j /∈ ∆(ϕ(σ), ϕ(τ))∪{c(σ), c(τ)}, we have that Gj [W̃σ, W̃τ ] contains no matching of two edges

and hence contains at most |W̃σ| < n edges in total. It follows that there is a hypercube

colouring H associated to the perfect matching ϕ(M) of Qk, where H has vertex set V (G)\W̃ ,
such that for each i ∈ [k],

|Gi4Hi| ≤ 2εN2 + |(G\W̃ )i4Hi| ≤ 2εN2 + 3εN2 + n

(
2k−1

2

)
≤ 6εN2.

The 2εN2 term accounts for edges of Gi incident to W̃ , the 3εN2 term accounts for edges of

Gi leaving a clique W̃τ where c(τ) = i, and the n
(
2k−1

2

)
term accounts for edges of Gi lying

between pairs W̃τ , W̃σ for which i /∈ ∆(ϕ(σ), ϕ(τ)) ∪ {c(σ), c(τ)}. We have thus shown that
G is 6ε-close to H. It remains to show that we have the desired labelling of Φ.

Claim 9.14. Φ contains no monochromatic odd cycle.

Proof of Claim. Suppose otherwise and let σ1 . . . σ` be an odd cycle in Φ in the colour j.

This allows us to fix a matching of size two in graphs Gj[W̃σi , W̃σi+1
] for i = 1, . . . , ` (where

σ`+1 := σ1). Let S be the subset of vertices of G covered by these matchings and note that

|S| < 2k+1. We first aim to build a short even path in Gj with endpoints in W̃σ1 and W̃σ` .

Let x ∈ S ∩ W̃σ1 and suppose that for some 2 ≤ r < ` there exists y ∈ W̃σr such that Gj

contains an xy-path Pr of length r−1+2L(r−2) where |Pr∩S∩W̃σr | = 1 and Pr∩S∩W̃σs = ∅
for r < s ≤ ` (note that this does indeed hold for r = 2). We may then pick w ∈ W̃σr ∩S and

z ∈ W̃σr+1 ∩ S such that {w, z} is an edge of Gj[W̃σr , W̃σr+1 ] and w 6= y (here we are using
34



that we have a matching of size two available to us by the definition of Φ). By the definition
of Φ, σr is not in Ij and so by Corollary 9.6 there exists π ∈ M such that Rj[Wσr ,Wπ]
contains a connected perfect matching, F , whose matching edges are edges of Tj . By Lemma

9.7 we see that Gj [W̃σr , W̃π] contains a spanning (2k+1δ, 1/(k + 1),m′)-super-regular blow-up
of F where 2(1− ε)t′ ≤ v(F ) ≤ 2(1 + ε)t′ by (9.7). Moreover w and y lie in the same part in
the bipartition of this blow-up. By calculations similar to those made previously, we may

apply Lemma 8.3 to deduce that Gj [W̃σr , W̃π] contains an yw-path Q of length 2L. Moreover,
since |Pr ∪ S| ≤ 2kL and using Fact 8.6 it is easy to ensure that Q only intersects Pr ∪ S
at its endpoints. It follows that Pr+1 := PrQz is an xz-path of length r + 2L(r − 1) where

|Pr+1 ∩ S ∩ W̃σr+1 | = 1 and Pr+1 ∩ S ∩ W̃σs = ∅ for r+ 1 < s ≤ `. It follows by recursion that

there exists u ∈ W̃σ` and an xu-path P` of length p := `−1+2L(`−2) and |P`∩S∩W̃σ`| = 1.
Note that the length of P` is even.

Finally, let {v, t} ⊆ S be an edge in Gj[W̃σ` , W̃σ1 ] where v ∈ W̃σ` and v 6= u. If x = t
then applying Lemma 8.3 as above we find a uv-path Q0 in the colour j of length n− p− 1
intersecting P` ∪ S only at its endpoints. It follows that P`Q0x is a monochromatic copy of
Cn contradicting (†). Similarly, if x 6= t, we find a uv-path Q1 of length 2L and a tx-path Q2

of length n− p− 2L− 1 both in the colour j so that P`Q1tQ2 is a monochromatic copy of
Cn contradicting (†). �

We now construct an admissible labelling of Φ recursively. Suppose that M′ is a perfect
matching of Qk and that ψ :M→M′ is some bijection. Let σ, τ ∈M and suppose there is
an edge f in Φ between σ and τ with colour j not in ∆(ψ(σ), ψ(τ)). We will call such an
edge ‘bad’ (with respect to ψ).

Let {f1, . . . , ft} be the set of edges of Φ that are bad with respect to the identity map
ι : M → M and note that ι is an admissible labelling of Φ\{f1, . . . , ft}. Suppose now
that ϕi is an admissible labelling of Φi := Φ\{f1, . . . , fi} for some 1 ≤ i ≤ t. Suppose
that fi is bad with respect to ϕi and that fi has colour j and lies between σ, τ ∈ M.
Note that j /∈ {c(σ), c(τ)} by the definition of Φ. Moreover by the admissibility of ϕi we
have c(σ) = c(ϕi(σ)) and c(τ) = c(ϕi(τ)). Since fi is bad it follows that we must have
ϕi(σ)j = ϕi(τ)j ∈ {0, 1}. Let us show that σ, τ lie in separate components of Φi

j (the jth

colour class of Φi). Suppose otherwise and take a path in Φi
j joining σ and τ . Since ϕi is

admissible for Φi and ϕi(σ)j = ϕi(τ)j this path must have even length. It follows that fi
completes this path to a monochromatic odd cycle in Φ contradicting Claim 9.14. Let C then
denote the component of Φi

j containing τ (so that σ /∈ C). Let ϕi−1 be the function on M
given by ϕi−1(ρ) = ϕi(ρ)j for all ρ ∈ C, ϕi−1(ρ) = ϕi(ρ) otherwise. By Lemma 9.11, ϕi−1 is
an admissible labelling of Φi. Since

j ∈ ∆(ϕi(σ), ϕi(τ)j) = ∆(ϕi−1(σ), ϕi−1(τ)),

we also have that ϕi−1 is an admissible labelling of Φi−1. If fi is not bad with respect to ϕi
we simply let ϕi−1 = ϕi. Running this recursion to the end we obtain an admissible labelling
ϕ0 of Φ as required.

�
35



10. Concluding Remarks

A simple adaptation of the proof method in this paper proves the following generalisation
of Theorem 1.2.

Theorem 10.1. For all k ≥ 3 there exists Nk such that the following holds. If Nk ≤ n1 ≤
n2 . . . ≤ nk are all odd then

R(Cn1 , . . . , Cnk) = 2k−1(nk − 1) + 1.

The off-diagonal case has been well-studied. Erdős et al. [EFRS76] determined the value of
R(Cn, C`1 , C`2) and R(Cn, C`1 , C`2 , C`3) for `i fixed and n sufficiently large. In a similar vein,
as a corollory to a more general result in the study of Ramsey goodness, Allen, Brightwell and
Skokan [ABS13] determined the value of R(Cn, C`1 , . . . , C`k) for `i fixed and odd satisfying
`i > 2i for 1 ≤ i ≤ k and n sufficiently large. In [F L07b], Figaj and  Luczak asymptotically
determine the Ramsey number of a triple of large cycles with any fixed combination of
parities for the cycle lengths. In the case where not all of the cycles have the same parity,
Ferguson [Fer15a, Fer15b, Fer15c] strengthened the asymptotic results of [F L07b] to exact
results. It would be interesting to extend the methods of the present paper to such a mixed
parity setting. More generally, we would like to investigate whether the analytic approach
presented here has wider applications in Ramsey theory.
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this paper.
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Appendix A. Proof of Lemmas 8.3 and 8.4

We use the following simple property of regular pairs which appears as Lemma 5 in [F L07b].

Lemma A.1. Let 1/m � δ � d and let G = (V1, V2) be a (δ, d)-super-regular pair with
|V1| = |V2| = m. Then for each pair u ∈ V1, w ∈ V2, G contains a uw-path of length ` for
each odd 3 ≤ ` ≤ 2(1− 5δ)m.

Lemma 8.3. Let q ≥ 4 and suppose that 1
m
� δ � d. Let F be a connected matching of

order q such that every vertex of F is incident to a matching edge and let H be a (δ, d,m)-
super-regular blow-up of F . Then the following holds:

If i, j ∈ V (F ) and there is an ij-path of length r in F , then for every pair of vertices
u ∈ Ui, w ∈ Uj, there exists a uw-path of length ` in H for each 3q ≤ ` ≤ (1− 6δ)qm such
that ` ≡ r (mod 2).
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Proof. Take i, j ∈ V (F ) and let u ∈ Ui, w ∈ Uj. Let T be a spanning tree of F which
includes every matching edge of F . Note that T contains a closed walk W = y0 . . . yp, where
y1 = yp = i and W covers each edge of T exactly twice, in particular p = 2(q − 1) (note that

q = v(F )). Using basic properties of regular pairs we can find a path W̃ = w0 . . . wp in H
where u = w0 and wt ∈ Uyt for all t. Let P = x0 . . . xr be a path of length r in F where

x0 = i, xr = j. Again, using basic properties of regular pairs we can find a path P̃ = v0 . . . vr in

H where v0 = wp, vr = w, vt ∈ Uxt for all t and P̃ intersects W̃ only in the vertex wp. Letting

Q = W̃ P̃ , it follows that Q is a uw-path in H of length r + p = r + 2(q − 1) ≡ r (mod 2).
Suppose that {a, b} is a matching edge of F so that (Ua, Ub) is (δ, d)-super-regular in H. Note
that Q visits each set Ui in H at most 3 times and so there exist U ′a ⊆ Ua\Q, U ′b ⊆ Ub\Q
such that |U ′a| = |U ′b| = m− 3. Note that (U ′a, U

′
b) is certainly (2δ, d/2)-super-regular by Fact

8.6. By construction, we may pick consecutive vertices wt, wt+1 of W̃ (and hence Q) such
that wt ∈ Ua, wt+1 ∈ Ub. By super-regularity we may then pick vertices ua ∈ N(wt+1) ∩ U ′a,
ub ∈ N(wt) ∩ U ′b such that {ua, ub} is an edge of H. Applying Lemma A.1 to (U ′a, U

′
b) and

vertices ua, ub, it follows that we can find a qtqt+1-path in H which intersects Q only at its
endpoints and we can choose this path to have any odd length 1 ≤ ` ≤ 2(1− 5δ)(m− 3) + 2.
Note that letting such a path replace the edge {qt, qt+1} in Q does not change the parity of
the length of Q. Applying the same argument to each matching edge of F we see that H
contains uw-paths of each length r + 2(q − 1) ≤ ` ≤ r + 2(q − 1) + q

2
· 2(1− 6δ)m for which

` ≡ r (mod 2). The result follows. �

Lemma 8.4. Let q ≥ 4 and let 1
m
� δ � d. Let F be an odd connected matching of order

q and suppose that H is a (δ,m)-regular blow-up of F with minimum density d. Then H
contains a cycle of length ` for each odd 3q ≤ ` ≤ (1− 6δ)qm

Proof. Since F is non-bipartite it contains an odd cycle C. Since the largest matching in
F has q/2 edges it follows that |C| ≤ q + 1. Let T ⊆ F be a minimal tree that contains
every matching edge of F . It is easy to show that T must have < 2q vertices. Let W be a
closed walk in T which traverses each edge of T precisely twice (so in particular W has even
length). Since W and C must intersect, we can augment the walk W by C to obtain a closed
walk W ′ = x1 . . . xpx1 in F where p is odd and p ≤ 3q by the above. Note that by Facts 8.6
and 8.7, we can find H ′ ⊆ H such that H ′ is a (2δ, d/2, (1− δ)m)-super-regular blowup of F .
Let Uj denote the vertex class of H ′ corresponding to the vertex j in F for each j ∈ V (F ).
Using basic properties of regular pairs, we can find an odd cycle D = v1 . . . vpv1 in H ′ where
vj ∈ Uxj for all j.

Suppose that {a, b} is a matching edge of F so that (Ua, Ub) is (2δ, d/2)-super-regular. By
construction, we may pick consecutive vertices vt, vt+1 of D such that vt ∈ Ua, vt+1 ∈ Ub. Note
that D visits each set Ui in H at most 3 times. We may therefore apply Lemma A.1 as we
did in the proof of Lemma 8.3 to find a vtvt+1-path Q in H ′ such that Q intersects D only at
its endpoints and we can choose Q to have any odd length 1 ≤ ` ≤ 2(1− 5δ)[(1− δ)m− 3] + 2.
Applying the same argument to each matching edge of F we see that H contains an odd
cycle of each odd length p ≤ ` ≤ p+ q

2
· 2(1− 6δ)m. The result follows.

�
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