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a b s t r a c t 

Optically Pumped Magnetometers (OPMs) have been hailed as the future of human magnetoencephalography, as 

they enable a level of flexibility and adaptability that cannot be obtained with systems based on superconduc- 

tors. While OPM sensors are already commercially available, there is plenty of room for further improvements 

and customization. In this work, we detected auditory evoked brain fields using an OPM based on the nonlin- 

ear magneto-optical rotation (NMOR) technique. Our sensor head, containing only optical and non-magnetizable 

elements, is connected to an external module including all the electronic components, placed outside the mag- 

netically shielded room. The use of the NMOR allowed us to detect the brain signals in non-zero magnetic field 

environments. In particular, we were able to detect auditory evoked fields in a background field of 70 nT. We 

benchmarked our sensor with conventional SQUID sensors, showing comparable performance. We further demon- 

strated that our sensor can be employed to detect modulations of brain oscillations in the alpha band. Our results 

are a promising stepping-stone towards the realization of resilient OPM-based magnetoencephalography systems 

that do not require active compensation. 
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. Introduction 

Techniques for electrophysiological brain recordings utilizing

QUID-based magnetoencephalography (MEG) have greatly evolved

ver the last few decades, providing important clinical and cognitive

euroscience insight. In particular, when employing more than than 100

ensors, MEG enables a general approach to localize the measured sig-

als in the brain using source modelling ( Hämäläinen et al., 1993 ). The

ain disadvantage of SQUID-based MEG systems is that they require the

ensors to be immersed in liquid helium; as a result, these systems are

ostly, and the required thermal insulation reduces the signal-to-noise

atio, as it limits how close the sensors can go to the scalp. 

The application of Optically Pumped Magnetometers (OPMs) in hu-

an magnetoencephalographic recordings has been hailed as an excit-

ng approach, as it holds the promise of reducing costs while improving

he signal-to-noise ratio. Recent work has provided important proofs-

f-principle that OPMs can be applied to record human brain activity,

anging from stimulus evoked responses (event-related fields; ERFs) to

odulations in neuronal oscillations ( Borna et al., 2017; Boto et al.,

018; Iivanainen et al., 2019b; Johnson et al., 2010; Sander et al., 2012;

heng et al., 2017; Xia et al., 2007 ). One of the most exciting features of

PM sensors is that they can be arranged in arbitrary arrays. This means

hat they can be adapted to individual head shapes, making them more
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esilient against head movements, and they can be applied to children

 Hill et al., 2019 ). Recent studies have confirmed that the potential gain

n the signal-to-noise ratio featured by the OPMs can improve the ac-

uracy of source modelling ( Boto et al., 2016; Zetter et al., 2018 ). This

ill allow one to infer with greater precision where in the brain the

easured signals are generated. 

So far, the recordings in humans have mainly been implemented with

o-called ”zero-field ” magnetometers, which comprise the vast majority

f commercially available sensors. Since zero-field sensors often exploit

he spin-exchange relaxation-free (SERF) effect, they are usually also

alled ”SERF sensors ”. These have typical sensitivities of 10–15 fT ∕ 
√

Hz

 Osborne et al., 2018 ). One of the main drawbacks of zero-field sensors

s that they can be affected by cross-talk when multiple sensors are em-

loyed. The coils embedded in the sensor, used for the modulation of

he magnetic field and/or for DC field zeroing, can indeed affect the sen-

itivity and the accuracy of multi-sensor arrays ( Osborne et al., 2018;

ierney et al., 2019 ). The impact of these issues can be compensated

r reduced by using high-performance shielded rooms or advanced and

daptive external field nulling coils ( Holmes et al., 2019; Iivanainen

t al., 2019a ). The practical use of these solutions is therefore hardware

emanding and expensive, partially reducing the benefits brought by

he use of ”zero-field ” sensors. 
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Fig. 1. Schematic representation (not to scale) of the NPOM modular system. 

The external module (the dashed box) includes a laser and the optics for fiber 

coupling, the electronics (not shown) and the lock-in amplifier. The output of 

the lock-in amplifier is used to modulate the frequency of the laser. M indicates 

the mirrors, PD the photodiodes and FC the fiber coupling. The external module 

is connected to the sensor head through an umbilical that contains an optical 

fiber that delivers the light (blue line), a shielded coaxial cable that carries the 

output of the sensor and a wire to set the bias field in the sensor (black line). 

BS indicates the 90/10 beam splitter and W the Wollaston prisms. When placed 

as shown, the sensor measures the component of the magnetic brain signal that 

is perpendicular to the participant’s head. The contour map illustrates the au- 

ditory evoked response measured at 100 ms by the whole-head SQUID system 

(magnetometers). The black arrow indicates the radiating dipole. The inset on 

the top right shows a 3D rendering of the sensor head. 
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1 Such sensitivities can be achieved using NMOR with atomic density 10 12 

atoms/cm 

3 and light intensity 2 mW/cm 

2 ( Budker et al., 2002; Fleischhauer 

et al., 2000 ). 
In this work we take a complementary approach: we realize and use

or MEG an OPM sensor that is resilient to non-compensated magnetic

elds and does not require additional peripheral hardware. Our OPM

ensor is based on the non-linear magneto-optical rotation (NMOR) tech-

ique ( Budker et al., 2002; Kimball et al., 2013; Pustelny et al., 2008 ).

e demonstrate the detection of auditory evoked fields in an environ-

ent with background magnetic field of 70 nT. We benchmark our sen-

or with a commercial SQUID sensor, also demonstrating the possibility

or measuring stimulus evoked modulations in oscillatory brain activ-

ty. In comparison to the zero-field magnetometers employed so far for

EG, the main advantages of our sensor are the higher dynamic range

nd the enhanced resilience to external magnetic field fluctuations. This

ffectively reduces the requirement for shielding and active field com-

ensation. Additionally, the NMOR does not require coils to modulate

r null the field, therefore removing cross-talk problems. 

When building the sensor, we chose a modular approach, such that

he sensor head includes only non-magnetizable parts, and the laser and

lectronics are connected via optical fibers and shielded cables ( Fig. 1 ).

uch an arrangement effectively reduces the magnetic artifacts from the

lectronics, but also enables more versatile designs compared with inte-

rated sensors that are currently commercially available. For instance,

 single laser can drive several sensor heads, and our technique can

e combined with transcranial magnetic stimulation (TMS), whose high

agnetic field pulses could damage the laser and electronic components

ntegrated in the sensor heads. Our approach holds the promise of com-

ining brain stimulation with OPM recordings in order to estimate task-

ependent functional connectivity between brain regions. 
. Methods 

Our nonlinear OPM (NOPM) is based on the NMOR effect, which has

een known since the 1960s and exploits polarized light nearly resonant

ith an atomic transition. When the light propagates through an atomic

as, it optically pumps the atoms in a state that is aligned with the po-

arization of the light. In the presence of an external magnetic field, the

tomic alignment rotates around the direction of the magnetic field at

he Larmor frequency Ω𝐿 = 𝑔 𝜇𝐵 𝐵 ∕ ℏ, where 𝐵 is the magnitude of the

xternal magnetic field, 𝜇𝐵 the Bohr magneton, 𝑔 the Landé g-factor and

 the reduced Planck constant. This, in turn, rotates the polarization of

he light. The frequency of such rotation is proportional to the magni-

ude of the magnetic field and can therefore be used to measure it ( Bell

nd Bloom, 1961; Bud, 2013; Kimball et al., 2013 ). 

To promote the nonlinear effect, a synchronous stroboscopic optical

umping is applied. For linearly polarized light, if the pumping modula-

ion rate is twice Ω𝐿 , the medium is resonantly pumped into the aligned

tate that rotates around the magnetic field. The resonance condition

an be tuned by modulating the laser amplitude or frequency. Deter-

ination of the resonance frequency can be used to perform precise

agnetometry as long as the bias field lies within the dynamic range,

hich for NMOR can be extended up to geomagnetic fields ( Acosta et al.,

006 ). The theoretical sensitivity limit of the NMOR technique is lower

han 1 fT ∕ 
√

Hz 1 . 

.1. The NOPM sensor 

In our sensor we induce the NMOR effect by modulating the fre-

uency of the light (FM NMOR) ( Budker et al., 2002 ). In Fig. 1 we show

 schematic representation of our system. We have adopted a modu-

ar approach in which all electronic and magnetic components are kept

utside the magnetically shielded room (MSR) in which we perform the

uman recordings. A 5 m umbilical cable connects the external module

ith the sensor. The umbilical combines an optical fiber, which delivers

he light to the sensor, a shielded coaxial cable, which brings the sensor

utput outside the MSR, and a copper wire that delivers DC currents to

he sensor head. 

In the external module outside the MSR, the laser light is provided

y a Toptica DL Pro diode laser at 795 nm. The frequency of the laser

s red-detuned by ≃480 MHz with respect to the |𝐹 = 2 ⟩ → |𝐹 ′ = 1 ⟩ hy-

erfine transition of the 87 Rb D1 line. To excite the NMOR resonance,

e implement the frequency modulation by directly modulating the in-

ection current of the laser diode. The sinusoidal modulation signal, at

requency Ω𝑚 , is generated by a lock-in amplifier (Zurich Instruments

FLI) and the typical amplitude of the modulation is ≃1 GHz. 

The output of the laser passes through an optical isolator and part

f it is sent to a saturated absorption spectroscopy setup, for frequency

eferencing. The rest of the light, suitably attenuated, is delivered to the

ensor head using a 5 m long polarization maintaining fiber. 

.1.1. The sensor head 

A schematic representation of the sensor head is given in Fig. 1 . In-

ide the sensor head, we use a single beam both to pump and probe the

toms. The beam delivered by the fiber is collimated to have 0.5 mm

eam waist using a pigtailed GRIN lens glass collimator. The light po-

arization is further cleaned using a Wollaston prism and sent through

 90/10 non-polarizing beam splitting cube. 90% of the incident power

s reflected and sent to a photodiode, whose output can be used in a

eedback loop to compensate for polarization fluctuations in the fiber.

he remaining 10 % is sent to the atomic vapour cell, which has antire-

axation paraffin coated walls. The use of a paraffin coated cell allows
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s to work at room temperature 2 . The cell is a 2 cm long cylinder with

.8 cm diameter base and is placed inside 3 cm diameter solenoid that

rovides a constant bias magnetic field along the radial 𝑦 direction (see

ig. 1 ). 

The bias field is used to control the ‘carrier’ Larmor frequency Ω0 
𝐿 

t which the atomic alignment rotates in the absence of any brain sig-

al. To improve the resilience of the sensor, the bias field should be

ignificantly larger than any background field. This ensures that Ω0 
𝐿 

is

s stable as possible and minimally perturbed by the background field.

ndeed, every component of the background field that is not parallel to

he bias field is strongly suppressed. Our sensor is therefore designed

o measure magnetic fields along the 𝑦 direction, that cause tiny varia-

ions 𝛿Ω around Ω0 
𝐿 

. In our working conditions, the bias field is typically

n the range of 100-150 nT, and is generated using an ultra-low noise

urrent supply (HighFinesse BCS 20 mA). This bias field overcomes the

esidual field inside the MSR, which is typically between 40 and 100 nT

see below). 

After passing the cell, the beam is retro-reflected on a 1 mm thin mir-

or with 0 ◦ incidence angle. This not only ensures that the gap between

he subjects scalp and the vapour cell is minimized, but also effectively

oubles the atom-light interaction length. For the measurements pre-

ented, the end of the sensor that contains the reflecting mirror was

laced 2 mm from the scalp. As depicted in Fig. 1 , our sensor measures

he component of the magnetic brain signals that is radial to the brain. 

On the way back, the beam passes again the 90/10 cube and the ro-

ation angle is analysed using a balanced polarimeter. This comprises a

ollaston prism mounted at 45 ◦ with respect to the incident light po-

arization and two low noise photodiodes in a ceramic assembly (Hama-

atsu S1337-33BQ) connected in series. In this configuration the pho-

ocurrents cancel each other when they are equal. Including all these

lements, the current sensor head is a cylinder with base area of 3 cm

iameter and length of 11cm. By using smaller cells and miniaturized

ptics, it is possible to further reduce the dimensions of the sensing head

ithout compromising the performance. 

The output of the polarimeter is sent with a 5 m long SMA cable to a

ransimpedance amplifier (Koheron PD01). This amplifies the signal by a

actor of 10 5 and minimizes dark currents by operating the photodiodes

ith no bias voltage. The signal is then digitized using the analog-to-

igital converter built in the lock-in amplifier, featuring 16 bit resolution

nd 60 MSa/s conversion rate. The digitized signal is then demodulated

t Ω𝑚 . 

.2. Operating the sensor 

We operate the sensor in two modes, unlocked and tracking . In the un-

ocked mode, we obtain a dispersive and an absorptive curve at the in-

hase and quadrature outputs of the lock-in amplifier, respectively. We

se the unlocked mode to optimize the NOPM performance and choose

he optimal working conditions. As mentioned above, the measurement

f the magnetic field is performed by measuring the frequency of the

MOR resonance. In order to fast-track the changes, we operate the

agnetometer in the tracking mode. In this mode, the signal provided

y the balanced photo-diode is fed directly to the laser current modu-

ator to realize a phase locked loop (PLL). The PLL has programmable

enter frequency and phase set point. We determine the input parame-

ers by sweeping Ω𝑚 around the resonance in the unlocked mode. If the

nvironmental conditions change we readjust these 2 parameters and

e-lock the magnetometer. The output parameter of the PLL is the os-

illator frequency, which we record together with the frequency shift

sing the digital acquisition (DAQ) module incorporated in the lock-
2 The paraffin coating allows the atoms to collide with the walls around 

0000 times without losing polarization. Increasing the temperature can in- 

rease the signal amplitude up to a factor of 2 at the maximum temperature 

f 50° ( Pustelny et al., 2008 ). 

w

f

a

n amplifier 3 . Any change in the magnetic field due to brain activity is

mmediately sensed by the atoms and reflected in a change of the modu-

ation frequency. In other words, the atoms themselves set the frequency

etermined by the magnetic field in real time ( Bloom, 1962 ). Therefore

racking the magnetic field is realized by precise frequency counting. In

he tracking mode, our sensor can have up to 1 kHz bandwidth. 

We have tested our sensor to work at least up to 1 μT external mag-

etic fields. In principle the NMOR sensor can operate with bias fields

omparable with geomagnetic fields ( Acosta et al., 2006 ), but at the cost

f a lower sensitivity. Indeed, high magnetic fields usually imply high

agnetic field noise and magnetic field gradients. For the measurement

resented in this work, we have chosen Ω𝑚 = 2Ω0 
𝐿 
= 1.5 kHz, which cor-

esponds to a 110 nT bias field, as this is few times higher than the

esidual magnetic field in the MSR at the position of the participant’s

ead, and allows a competitive sensitivity. We found that we achieve

ur best performance when the power of the beam is set to 7 𝜇W in

ront of the cell. 

The overall performance of a system is determined by the combi-

ation of the intrinsic sensitivity of the sensor and the characteristics

f the external magnetic field. Our MSR is made of 2 layers of 𝜇-metal

nd 1 layer of aluminium (Vacuum Schmelze) with the residual mag-

etic field measured upon installation to be ∼4 nT. The room is built

or conventional MEG experiments and has an MEGIN TRIUX system

nstalled inside, together with a cryocooler. The cryocooler cold-head

akes for a challenging environment as it produces spurious magnetic

elds and magnetic field gradients inside the MSR Meg . At 2 m distance,

here we operate our NOPM, the background magnetic field is ≥ 70 nT

nd the magnetic field gradient can be up to 240 nT/m. Zero-field OPM

ensors are not able to work in such environment without extra compen-

ation system ( Holmes et al., 2019; Iivanainen et al., 2019b ). Crucially,

ur NOPM sensor is far less affected, as it employs a bias magnetic field.

s explained above, for sufficiently large bias fields, NMOR sensors are

nsensitive to transverse gradients ( Pustelny et al., 2006 ). Therefore, we

riented our sensor to have the smallest gradients in the direction of

he measurement. Any variation of the cryocooler field, mostly due to

ibrations, can additionally affect OPM sensors placed inside the room.

n our MSR, we have measured slow variations from 50 pT to 1 nT per

our, and sudden jumps of up to 3 nT. In case of sudden jumps larger

han the resonance width of 20 Hz (1.5 nT) the sensor unlocks. These

re rare events, and the sensor can be readily re-locked without any fur-

her calibration. The dynamic range of the sensor is quite large and we

easured slow drifts with amplitude up to 100 nT. The ability to oper-

te in high, inhomogeneous and varying fields is a crucial asset of our

ensor. 

.3. Participant and experimental paradigm 

A healthy male subject aged 35, with normal hearing and no history

f neurological or psychiatric disorders was recruited. The experiments

ook place at the Centre for Human Brain Health at University of Birm-

ngham, United Kingdom. The research protocol was approved by the

he Science, Technology, Engineering and Mathematics Ethical Review

ommittee at the University of Birmingham. The participant was in-

ormed about the experimental procedure during the SQUID and NOPM

xperiments and written consent forms for both sessions, which took

lace on different days, were obtained. 

We recorded auditory ERFs in two sessions: one using a conventional

QUID-based MEG system and one using our NOPM. During the SQUID

ession, signals were continuously recorded using a 306 sensor MEGIN

RIUX system. During the NOPM session a single sensor OPM recording

as obtained 
3 Note that for data analysis presented here we are using the frequency shift 

rom the magnetometer lock-point rather than the absolute Ω𝑚 as the lock-in 

mplifier is able to measure it with better precision. 
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Fig. 2. a)The auditory event-related field (ERF) measured by the NOPM sensor 

averaged over 200 trials. Note the strong brain response at ≃100 ms (the re- 

sponse is significantly larger at 100 ms than the baseline interval; paired t-test; 

𝑝 = 0.002) and at ≃200 ms (also paired t-test, 𝑝 = 0.002). The shaded area indi- 

cates the standard error of the mean. For comparison we report the trace mea- 

sured during ‘dummy’ trials (dashed black line), where no tone was presented 

to the participant. b) Representative ERF trace of the Triux MEG system. This 

sensor ( 𝑀1 ) was chosen for comparison as it provided the strongest response to 

the ERF. c) A trace from another sensor ( 𝑀2 ) of the Triux MEG system chosen 

for the similitude with the NOPM response. In this case MaxFilter and signal- 

space projections were additionally applied to better highlight the shape of the 

auditory evoked response. Note the vertical scale smaller by a factor of 3, as the 

amplitude of the signal is lower than in the other panels. 
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During both sessions, the subject was presented with two 100 ms

ones of respectively 1 kHz and 1.04 kHz and the inter-stimulus interval

as randomly varied from 811 to 840 ms. The sound was generated us-

ng a SOUNDPixx MRI compatible audio system and was delivered to the

ight ear of the participant using air tubes and disposable earpieces. The

ubject was not required to respond but was asked to concentrate on the

ones throughout the experiment and was instructed to remain still for

he duration of the experiment. In the SQUID session we recorded a to-

al of 300 trials. During the SQUID session the subject was seated while

n the NOPM session he was lying in the supine position, with the head

omfortably supported. For the NOPM measurements the recording area

as identified using the data obtained in the SQUID session. We identi-

ed the MEGIN-MEG sensors with the strongest magnetic field response

nd placed the NOPM sensor approximately in the same location. The

ensor was fixed to the bed using non-magnetic materials. We recorded

 total of 450 traces in the NOPM session. 

.4. Data acquisition 

For both the SQUID and the NOPM the duration of each trial was

bout 1 s. Each trace included a 100 ms pre-stimulus recording, which

e use for baseline estimation. 

The data of the SQUID session were acquired with a 306 channel

hole-head MEGIN TRIUX system. The data were filtered by a 330 Hz

ow-pass and 0.1 Hz high-pass filters and then sampled at 1 kHz. 

The data of the NOPM session were recorded using the DAQ mod-

le integrated in the lock-in amplifier and down-sampled to 1.35 kSa/s

from 60 MSa/s). The length of each trace was set to 970 ms. 

.5. Data analysis 

One of the main challenges of operating a single OPM sensor in the

SR is to deal with the drifts of the background magnetic field. To min-

mize the effect of such drifts, we removed traces where the external

agnetic field drifted more than 1.5 pT per second, resulting in 200

sable trials. This was done because such drifts exceed the expected

agnitude of the brain signal. The auditory event-related fields were

alculated by applying a 35 Hz low-pass filter, averaging the trials, and

ubtracting the 100 ms baseline interval. 

For the SQUID session, we selected for comparison the magnetome-

er that measured the strongest ERF (labelled in the following as 𝑀1 )
nd the magnetometer that provided the most similar response to the

RF (labelled as 𝑀2 ). Using the same criterion as the NOPM session

o minimize the effect of drifts in the magnetic field i.e., removing the

races with drifts higher than 1.5 pT/s, we obtained 200 trials from the

QUIDs sensors. The traces were low-pass filtered at 35 Hz and then av-

raged. A 100 ms baseline was subtracted. We did not apply MaxFilter

r signal-space projections to the 𝑀1 sensor for a fair comparison of the

erformance with the NOPM data. Conversely, such techniques were

pplied to the 𝑀2 sensor to better highlight the shape of the auditory

voked response. 

For both sessions, the time-frequency representation of power was

alculated per trial using a 300 ms time-window sliding with 50 ms time

teps. A Hanning taper was applied to each 300 ms time-window prior

o Fast-Fourier Transformation, after which the power was derived. 

. Results 

Our core aim was to record auditory evoked fields from a human

articipant, demonstrating that our NOPM sensor can be used for MEG

n a shielded room without active field compensation. 

Fig. 2 shows the event-related field in response to ∼200 tones for

he NOPM and the SQUID sensors respectively. In all the three panels,

e observe a strong deflection at ≃100 ms which correspond to the

100m ( Hämäläinen et al., 1993 ). We performed a paired t -test for the
OPM by comparing the response at 100 ms versus the baseline, con-

rming a highly significant response ( 𝑝 = 0.002). The NOPM response is

lightly stronger than the 𝑀1 response and significantly stronger than

hat of the 𝑀2 : 427 fT against 337 fT and 70 fT respectively. This is

ue to the closer proximity to the scalp. The noise level of the NOPM

races is higher: the average standard error of the mean for the NOPM

s ≃130 fT, while for the 𝑀1 and 𝑀2 SQUIDs it is ≃60 fT and ≃11 fT

espectively. Note however that for 𝑀2 this performance is obtained

sing advanced filtering, as explained above, so it cannot be directly

ompared. The higher noise level in the NOPM recordings is mainly due

o magnetic field noise coming from the vibrations in relation to the

EGIN-MEG cryocooler. The SQUID sensors are not affected by such

oise as they are rigidly connected to the cryocooler. By comparing the

ignal-to-noise ratio for these traces, i.e., the ratio between the ampli-

ude of the N100m peak and the average standard error of the mean

eported above, we obtain ≃3.3 for the NOPM sensor and ≃5.6 for 𝑀1
QUID sensor. Therefore our prototype NOPM sensor delivers perfor-

ance slightly lower but in the same range of those of state-of-the-art

QUIDs. The NOPM trace presents a peak at 200 ms, which is also highly
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Fig. 3. Time-frequency representation of power measured by the NOPM sensor 

in response to the tone. The color scale indicates the relative power modulation. 

The power estimates were calculated per trial and then averaged. The response 

is relative to the baseline. Note the typical depression in alpha-band power at 

around 10 Hz in response to the tone. The inset shows for comparison the same 

time-frequency representation for the 𝑀2 SQUID sensor. 
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Fig. 4. Uncorrected noise spectrum of ‘empty-room’ recordings for the NOPM 

and SQUID sensors in the frequency range relevant for this work. The horizontal 

lines are the calculated actual and intrinsic sensitivities of the NOPM sensor 𝜎𝑎 
and 𝜎𝑖 . For the NOPM, the major noise source at low frequencies is due to the 

environmental noise that were better controlled for the SQUIDs than the NOPM. 
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4 The only effect coming from placing two NOPM sensors close is a static shift 

of the bias field 𝐵 ′0 = 𝐵 0 − 𝐵 
′. Considering two NOPM sensors identical to the 

one presented in this work placed at a distance of 2 cm, we have that 𝐵 ′ ≃
2 𝐴𝐵 0 ∕( 𝜋𝐿 ) , with 𝐴 and 𝐿 the base area and length of the solenoid producing 

the bias field. For our specific case where 𝐵 0 = 110 nT, we have that 𝐵 ′ ≃ 20 nT 

and therefore 𝐵 ′0 ≃ 90 nT. As the value of the ’carrier frequency’ does not bear 

any information, such shift has no effect on the performance of the sensor. The 

shift is further reduced if the sensors are not parallel or further apart. 
ignificant compared to the baseline according to a paired t-test. Similar

eak is observed in the 𝑀2 trace. 

To further investigate the response, we calculated the time-frequency

epresentation of power for each trial of the NOPM session (see Meth-

ds). These power estimates were then averaged. The results are re-

orted in Fig. 3 , and reveal the expected robust depression with respect

o the baseline in the alpha band around 10 Hz, a few hundred ms after

he tone (t-test for the power for the 10 Hz band in the full 0.15–0.7 s

nterval, p < 0.05). 

. Discussion 

With only one sensor it is obviously not possible to decouple the

nvironmental contribution from the intrinsic sensitivity of the sensor

tself. To estimate the actual sensitivity in our working conditions, i.e.,

he combined contribution of the intrinsic sensitivity of the sensor and

he environmental noise, we recorded the width 𝑤 of our resonances

n the unlocked mode, and we measured the signal-to-noise ratio 𝑆∕ 𝑁
rom the square root of the power density spectrum. From this, the actual

ensitivity can be evaluated as Pustelny et al. (2008) : 

𝑎 = 

𝜋ℏ 

𝑔𝜇𝐵 

𝑤 

𝑆∕ 𝑁 

. (1)

or our setup, the typical value of 𝑤 is 20–25 Hz, while the 𝑆∕ 𝑁 is

20,000, yielding a sensitivity 𝜎𝑎 ≃70 fT ∕ 
√

Hz . This value is in excellent

greement with the limit set by the measured noise spectrum, as shown

n Fig. 4 . In the same figure we report for comparison the noise spectrum

easured with the SQUID magnetometer of Fig. 2c. 

The physics of NMOR magnetometers is very well known and, from

he same measurement, it is possible to estimate the intrinsic sensitivity

𝑖 of our NOPM sensor, which is essentially given by the photon shot

oise. This can be evaluated as 

𝑖 = 

𝜋ℏ 

2 𝑔𝜇𝐵 
𝑤 

𝐴 

√ 

1 
𝑛 
, (2)

ith 𝐴 the amplitude of the NMOR signal and 𝑛 the number of photons

n the beam per unit of time. For our working conditions this yields

𝑖 ≃24 fT ∕ 
√

Hz . This can be further improved using a lower bias field

at 15 nT the width of our resonance is 25% smaller) and higher power,

eaching intrinsic sensitivities comparable with commercially available

ero-field sensors. Knowing the value of 𝜎𝑖 from Fig. 4 , it is possible to

ppreciate that the environmental noise is the dominating contribution

o 𝜎𝑎 . In our case the cryocooler was the major noise source. We would

herefore expect a much better actual sensitivity in a dedicated MSR. 
In conclusion, we have implemented a modular OPM sensor based

n the NMOR technique, in which the sensor head contains no elements

hat can be magnetized. The electronics, as well as the laser source are

ept in an external module, placed outside the MSR. We have employed

he sensor to detect the auditory evoked fields from a human partici-

ant, and compared it with state-of-the-art commercial SQUID magne-

ometers from the MEGIN system. We report comparable performance

or our NOPM sensor, especially considering that the SQUID sensors are

ot affected by the noise of the cryocooler. We speculate that, in a dedi-

ated (empty) MSR, our sensor would outperform the SQUIDs given the

loser proximity to the scalp. Furthermore, spectral analyses confirmed

hat our NOPM sensor is able to detect other typical features associated

ith brain response, such as the reduction of the ≃10 Hz alpha band

ctivity. 

Our NOPM sensor provides a complementary approach to OPM-

ased MEG with respect to zero field sensors. Our sensor can be used in

nvironments with non-compensated magnetic fields, greatly simplify-

ng the peripheral hardware requirements such as compensation coils.

he actual sensitivity, resulting from the combination of the intrinsic

ensitivity of the sensor and the uncompensated environment, is suffi-

ient to reliably detect the auditory evoked response. The intrinsic sen-

itivity is instead slightly higher but of the same order of magnitude of

ommercial zero-field sensors. 

In the future, we will assess the performance of our sensor on mov-

ng participants. Indeed, the ability to perform MEG recordings during

ovement is one of the most exciting features of OPM systems ( Boto

t al., 2018 ). Our sensor could potentially present advantages in this re-

pect, perhaps easing the requirement for the stabilization of the back-

round field. Due to the use of the FM NMOR technique, our sensors will

ave no cross-talk interference, making them particularly appealing for

ulti-sensors detection arrays 4 . Arranging multiple NOPM sensors in

onfigurations similar to the ones used in SQUID-based MEG systems, in

articular exploiting the gradiometer setup ( Zhang et al., 2020 ), could

urther improve the resilience of these sensors to external magnetic field

uctuations. Exploiting its modular feature, our NOPM sensor could rep-

esent a cost-effective versatile solution for cognitive and clinical neu-

oscience applications. For example, many sensors could be driven by
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 single laser source, and the absence of electronic components in the

ensor head makes it compatible with TMS, opening up new possibilities

n the detection and treatment of the human brain. 
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