UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Observation of photon polarization in the $\mathrm{b} \rightarrow$ sy transition

LHCb Collaboration

DOI:
10.1103/PhysRevLett.112.161801

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
LHCb Collaboration 2014, 'Observation of photon polarization in the $b \rightarrow$ sy transition', Physical Review Letters, vol. 112, no. 16, 161801. https://doi.org/10.1103/PhysRevLett.112.161801

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
\cdot User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Observation of Photon Polarization in the $b \rightarrow s \gamma$ Transition

R. Aaij et al. ${ }^{*}$
(LHCb Collaboration)

(Received 27 February 2014; published 22 April 2014)

Abstract

This Letter presents a study of the flavor-changing neutral current radiative $B^{ \pm} \rightarrow K^{ \pm} \pi^{\mp} \pi^{ \pm} \gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at 7 and 8 TeV center-of-mass energies. In this sample, corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$, nearly 14000 signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^{ \pm} \pi^{\mp} \pi^{ \pm}$final state in the $[1.1,1.9] \mathrm{GeV} / \mathrm{c}^{2}$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^{ \pm} \pi^{\mp} \pi^{ \pm}$mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \rightarrow s \gamma$ transition is reported with a significance of 5.2 σ.

DOI: 10.1103/PhysRevLett.112.161801
PACS numbers: $13.20 . \mathrm{He}, 12.15 . \mathrm{Mm}, 14.40 \mathrm{Nd}$

The standard model (SM) predicts that the photon emitted from the electroweak penguin loop in $b \rightarrow s \gamma$ transitions is predominantly left-handed, since the recoiling s quark that couples to a W boson is left-handed. This implies maximal parity violation up to small corrections of the order m_{s} / m_{b}. While the measured inclusive $b \rightarrow s \gamma$ rate [1] agrees with the SM calculations, no direct evidence exists for a nonzero photon polarization in this type of decay. Several extensions of the SM [2], compatible with all current measurements, predict that the photon acquires a significant right-handed component, in particular, due to the exchange of a heavy fermion in the penguin loop [3].

This Letter presents a study of the radiative decay $B^{+} \rightarrow$ $K^{+} \pi^{-} \pi^{+} \gamma$, previously observed at the B factories with a measured branching fraction of $(27.6 \pm 2.2) \times 10^{-6}$ $[1,4,5]$. The inclusion of charge-conjugate processes is implied throughout. Information about the photon polarization is obtained from the angular distribution of the photon direction with respect to the normal to the plane defined by the momenta of the three final-state hadrons in their center-of-mass frame. The shape of this distribution, including the up-down asymmetry between the number of events with the photon on either side of the plane, is determined. This investigation is conceptually similar to the historical experiment that discovered parity violation by measuring the up-down asymmetry of the direction of a particle emitted in a weak decay with respect to an axial vector [6]. In $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ decays, the up-down asymmetry is proportional to the photon polarization $\lambda_{\gamma}[7,8]$ and therefore measuring a value different from zero corresponds to demonstrating that the photon is polarized. The

[^0]currently limited knowledge of the structure of the $K^{+} \pi^{-} \pi^{+}$ mass spectrum, which includes interfering kaon resonances, prevents the translation of a measured asymmetry into an actual value for λ_{γ}.

The differential $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ decay rate can be described in terms of θ, defined in the rest frame of the final state hadrons as the angle between the direction opposite to the photon momentum \vec{p}_{γ} and the normal $\vec{p}_{\pi, \text { slow }} \times \vec{p}_{\pi, \text { fast }}$ to the $K^{+} \pi^{-} \pi^{+}$plane, where $\vec{p}_{\pi, \text { slow }}$ and $\vec{p}_{\pi, \text { fast }}$ correspond to the momenta of the lower and higher momentum pions, respectively. Following the notation and developments of Ref. [7], the differential decay rate of $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ can be written as a fourth-order polynomial in $\cos \theta$

$$
\begin{align*}
\frac{d \Gamma}{d s d s_{13} d s_{23} d \cos \theta} \propto & \sum_{i=0,2,4} a_{i}\left(s, s_{13}, s_{23}\right) \cos ^{i} \theta \\
& +\lambda_{\gamma} \sum_{j=1,3} a_{j}\left(s, s_{13}, s_{23}\right) \cos ^{j} \theta \tag{1}
\end{align*}
$$

where $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$ and $s=\left(p_{1}+p_{2}+p_{3}\right)^{2}$, and p_{1}, p_{2}, and p_{3} are the four-momenta of the π^{-}, π^{+}, and K^{+} mesons, respectively. The functions a_{k} depend on the resonances present in the $K^{+} \pi^{-} \pi^{+}$mass range of interest and their interferences. The up-down asymmetry is defined as

$$
\begin{equation*}
\mathcal{A}_{\mathrm{ud}} \equiv \frac{\int_{0}^{1} d \cos \theta \frac{d \Gamma}{d \cos \theta}-\int_{-1}^{0} d \cos \theta \frac{d \Gamma}{d \cos \theta}}{\int_{-1}^{1} d \cos \theta \frac{d \Gamma}{d \cos \theta}}, \tag{2}
\end{equation*}
$$

which is proportional to λ_{Y}.
The LHCb detector [9] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the
$p p$ interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm , and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system provides a momentum measurement with relative uncertainty that varies from 0.4% at $5 \mathrm{GeV} / c$ to 0.6% at $100 \mathrm{GeV} / c$, and impact parameter resolution of $20 \mu \mathrm{~m}$ for tracks with a few GeV / c of transverse momentum $\left(p_{\mathrm{T}}\right)$. Different types of charged hadrons are distinguished by information from two ring-imaging Cherenkov detectors. Photon, electron, and hadron candidates are identified by a calorimeter system consisting of scintillat-ing-pad and preshower detectors, an electromagnetic calorimeter, and a hadronic calorimeter. The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Samples of simulated events are used to understand signal and backgrounds. In the simulation, $p p$ collisions are generated using Pythia [10] with a specific LHCb configuration [11]. Decays of hadronic particles are described by EvtGen [12], in which final state radiation is generated using Рнотоs [13]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [14] as described in Ref. [15].

This analysis is based on the LHCb data sample collected from $p p$ collisions at 7 and 8 TeV center-of-mass energies in 2011 and 2012, respectively, corresponding to $3 \mathrm{fb}^{-1}$ of integrated luminosity. The $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ candidates are built from a photon candidate and a hadronic system reconstructed from a kaon and two oppositely charged pions satisfying particle identification requirements. Each of the hadrons is required to have a minimum p_{T} of $0.5 \mathrm{GeV} / c$ and at least one of them needs to have a p_{T} larger than $1.2 \mathrm{GeV} / c$. The isolation of the $K^{+} \pi^{-} \pi^{+}$vertex from other tracks in the event is ensured by requiring that the χ^{2} of the three-track vertex fit and the χ^{2} of all possible vertices that can be obtained by adding an extra track differ by more than 2 . The $K^{+} \pi^{-} \pi^{+}$mass is required to be in the $[1.1,1.9] \mathrm{GeV} / c^{2}$ range. High transverse energy ($>3.0 \mathrm{GeV}$) photon candidates are constructed from energy depositions in the electromagnetic calorimeter. The absence of tracks pointing to the calorimeter is used to distinguish neutral from charged electromagnetic particles. A multivariate algorithm based on the energy cluster shape parameters is used to reject approximately 65% of the $\pi^{0} \rightarrow \gamma \gamma$ background in which the two photons are reconstructed as a single cluster, while keeping about 95% of the signal photons. The B^{+}candidate mass is required to be in the $[4.3,6.9] \mathrm{GeV} / c^{2}$ range. Backgrounds that are expected to peak in this mass range are suppressed by removing all candidates consistent with a $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ or $\rho^{+} \rightarrow \pi^{+} \pi^{0}$ decay when the photon candidate is assumed to be a π^{0}.

A boosted decision tree $[16,17]$ is used to further improve the separation between signal and background. Its training is based on the following variables: the impact parameter χ^{2} of the B^{+}meson and of each of the final state hadrons, defined as the difference between the χ^{2} of a primary vertex (PV) reconstructed with and without the considered particle; the cosine of the angle between the reconstructed B^{+}momentum and the vector pointing from the PV to the B^{+}decay vertex; the flight distance of the B^{+} meson, and the $K^{+} \pi^{-} \pi^{+}$vertex χ^{2}.

The mass distribution of the selected $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ signal is modeled with a double-tailed Crystal Ball [18] probability density function (PDF), with power-law tails above and below the B mass. The four tail parameters are fixed from simulation; the width of the signal peak is fit separately for the 2011 and 2012 data to account for differences in calorimeter calibration. Combinatorial and partially reconstructed backgrounds are considered in the fit, the former modeled with an exponential PDF, the latter described using an ARGUS PDF [19] convolved with a Gaussian function with the same width as the signal to account for the photon energy resolution. The contribution to the partially reconstructed background from events with only one missing pion is considered separately.

The fit of the mass distribution of the selected $B^{+} \rightarrow$ $K^{+} \pi^{-} \pi^{+} \gamma$ candidates (Fig. 1) returns a total signal yield of 13876 ± 153 events, the largest sample recorded for this channel to date. Figure 2 shows the background-subtracted $K^{+} \pi^{-} \pi^{+}$mass spectrum determined using the technique of Ref. [20], after constraining the B mass to its nominal value. No peak other than that of the $K_{1}(1270)^{+}$resonance can be clearly identified. Many kaon resonances, with various masses, spins, and angular momenta, are expected to contribute and interfere in the considered mass range [1].

The contributions from single resonances cannot be isolated because of the complicated structure of the

FIG. 1 (color online). Mass distribution of the selected $B^{+} \rightarrow$ $K^{+} \pi^{-} \pi^{+} \gamma$ candidates. The blue solid curve shows the fit results as the sum of the following components: signal (red solid), combinatorial background (green dotted), missing pion background (black dashed), and other partially reconstructed backgrounds (purple dash-dotted).

FIG. 2. Background-subtracted $K^{+} \pi^{-} \pi^{+}$mass distribution of the $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ signal. The four intervals of interest, separated by dashed lines, are shown.
$K^{+} \pi^{-} \pi^{+}$mass spectrum. The up-down asymmetry is thus studied inclusively in four intervals of $K^{+} \pi^{-} \pi^{+}$mass. The $[1.4,1.6] \mathrm{GeV} / c^{2}$ interval, studied in Ref. [7], includes the $K_{1}(1400)^{+}, K_{2}^{*}(1430)^{+}$and $K^{*}(1410)^{+}$resonances with small contributions from the upper tail of the $K_{1}(1270)^{+}$. At the time of the writing of Ref. [7], the $K_{1}(1400)^{+}$was believed to be the dominant 1^{+}resonance, so the $K_{1}(1270)^{+}$was not considered. However, subsequent experimental results [21] demonstrated that the $K_{1}(1270)^{+}$is more prominent than the $K_{1}(1400)^{+}$; hence, the $[1.1,1.3] \mathrm{GeV} / c^{2}$ interval is also studied here. The $[1.3,1.4] \mathrm{GeV} / c^{2}$ mass interval, which contains the overlap region between the two K_{1} resonances, and the $[1.6,1.9] \mathrm{GeV} / c^{2}$ high mass interval, which includes spin-2 and spin-3 resonances, are also considered.

In each of the four $K^{+} \pi^{-} \pi^{+}$mass intervals, a simultaneous fit to the B-candidate mass spectra in bins of the photon angle is performed in order to determine the background-subtracted angular distribution; the previously described PDF is used to model the mass spectrum in each bin, with all of the fit parameters being shared except for the yields. Since the sign of the photon polarization depends on the sign of the electric charge of the B candidate, the angular variable $\cos \hat{\theta} \equiv \operatorname{charge}(B) \cos \theta$ is used. The resulting background-subtracted $\cos \hat{\theta}$ distribution, corrected for the selection acceptance and normalized to the inverse of the bin width, is fit with a fourth-order polynomial function normalized to unit area,

$$
\begin{equation*}
f\left(\cos \hat{\theta} ; c_{0}=0.5, c_{1}, c_{2}, c_{3}, c_{4}\right)=\sum_{i=0}^{4} c_{i} L_{i}(\cos \hat{\theta}) \tag{3}
\end{equation*}
$$

where $L_{i}(x)$ is the Legendre polynomial of order i and c_{i} is the corresponding coefficient. Using Eqs. (1) and (3) the up-down asymmetry defined in Eq. (2) can be expressed as

$$
\begin{equation*}
\mathcal{A}_{\mathrm{ud}}=c_{1}-\frac{c_{3}}{4} \tag{4}
\end{equation*}
$$

As a cross-check, the up-down asymmetry in each mass interval is also determined with a counting method, rather than an angular fit, as well as considering separately the B^{+}and B^{-}candidates. All these checks yield compatible results.

The results obtained from a χ^{2} fit of the normalized binned angular distribution, performed taking into account the full covariance matrix of the bin contents and all of the systematic uncertainties, are summarized in Table I. These systematic uncertainties account for the effect of choosing a different fit model, the impact of the limited size of the simulated samples on the fixed parameters, and the possibility of some events migrating from a bin to its neighbor because of the detector resolution, which gives the dominant contribution. The systematic uncertainty associated with the fit model is determined by performing the mass fit using several alternative PDFs, while the other two are estimated with simulated pseudoexperiments. Such uncertainties, despite being of the same size as the statistical uncertainty, do not substantially affect the fit results since they are strongly correlated across all angular bins.

The fitted distributions in the four $K^{+} \pi^{-} \pi^{+}$mass intervals of interest are shown in Fig. 3. In order to illustrate the effect of the up-down asymmetry, the results of another fit imposing $c_{1}=c_{3}=0$, hence forbidding the terms that carry the λ_{γ} dependence, are overlaid for comparison.

The combined significance of the observed up-down asymmetries is determined from a χ^{2} test where the null hypothesis is defined as $\lambda_{\gamma}=0$, implying that the up-down asymmetry is expected to be zero in each mass interval. The corresponding χ^{2} distribution has 4 degrees of freedom, and the observed value corresponds to a p value of 1.7×10^{-7}. This translates into a 5.2σ significance for nonzero up-down asymmetry. Up-down asymmetries can be computed also for an alternative definition of the photon

TABLE I. Legendre coefficients obtained from fits to the normalized background-subtracted $\cos \hat{\theta}$ distribution in the four $K^{+} \pi^{-} \pi^{+}$mass intervals of interest. The up-down asymmetries are obtained from Eq. (4). The quoted uncertainties contain statistical and systematic contributions. The $K^{+} \pi^{-} \pi^{+}$mass ranges are indicated in GeV / c^{2} and all the parameters are expressed in units of 10^{-2}. The covariance matrices are given in Ref. [22].

	$[1.1,1.3]$	$[1.3,1.4]$	$[1.4,1.6]$	$[1.6,1.9]$
c_{1}	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8
c_{2}	31.6 ± 2.2	27.0 ± 2.6	43.1 ± 2.3	28.0 ± 2.3
c_{3}	-2.1 ± 2.6	2.0 ± 3.1	-5.2 ± 2.8	-0.6 ± 2.7
c_{4}	3.0 ± 3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
$\mathcal{A}_{\text {ud }}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

FIG. 3 (color online). Distributions of $\cos \hat{\theta}$ for $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ signal in four intervals of $K^{+} \pi^{-} \pi^{+}$mass. The solid blue (dashed red) curves are the result of fits allowing all (only even) Legendre components up to the fourth power.
angle, obtained using the normal $\vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}}$, instead of $\vec{p}_{\pi, \text { slow }} \times \vec{p}_{\pi, \text { fast }}$. The obtained values, along with the relative fit coefficients, are listed in Table II.

To summarize, a study of the inclusive flavor-changing neutral current radiative $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$ decay, with the $K^{+} \pi^{-} \pi^{+}$mass in the $[1.1,1.9] \mathrm{GeV} / c^{2}$ range, is performed on a data sample corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$ collected in $p p$ collisions at 7 and 8 TeV center-of-mass energies by the LHCb detector. A total of $13876 \pm$ 153 signal events is observed. The shape of the angular distribution of the photon with respect to the plane defined by the three final-state hadrons in their rest frame is determined in four intervals of interest in the $K^{+} \pi^{-} \pi^{+}$ mass spectrum. The up-down asymmetry, which is proportional to the photon polarization, is measured for the first

TABLE II. Legendre coefficients obtained from fits to the normalized background-subtracted $\cos \hat{\theta}$ distribution, using the alternative normal $\vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}}$for defining the direction of the photon, in the four $K^{+} \pi^{-} \pi^{+}$mass intervals of interest. The up-down asymmetries are obtained from Eq. (4). The quoted uncertainties contain statistical and systematic contributions. The $K^{+} \pi^{-} \pi^{+}$mass ranges are indicated in GeV / c^{2} and all the parameters are expressed in units of 10^{-2}. The covariance matrices are given in Ref. [22].

	$[1.1,1.3]$	$[1.3,1.4]$	$[1.4,1.6]$	$[1.6,1.9]$
c_{1}^{\prime}	-0.9 ± 1.7	7.4 ± 2.0	5.3 ± 1.9	-3.4 ± 1.8
c_{2}^{\prime}	31.6 ± 2.2	27.4 ± 2.6	43.6 ± 2.3	27.8 ± 2.3
c_{3}^{\prime}	0.8 ± 2.6	0.8 ± 3.1	-4.4 ± 2.8	2.3 ± 2.7
c_{4}^{\prime}	3.4 ± 3.0	7.0 ± 3.6	8.0 ± 3.1	-6.6 ± 3.2
$\mathcal{A}_{\mathrm{ud}}^{\prime}$	-1.1 ± 1.7	7.2 ± 2.0	6.4 ± 1.8	-3.9 ± 1.9

time for each of these $K^{+} \pi^{-} \pi^{+}$mass intervals. The first observation of a parity-violating photon polarization different from zero at the 5.2σ significance level in $b \rightarrow s \gamma$ transitions is reported. The shape of the photon angular distribution in each bin, as well as the values for the up-down asymmetry, may be used, if theoretical predictions become available, to determine for the first time a value for the photon polarization, and thus constrain the effects of physics beyond the SM in the $b \rightarrow s \gamma$ sector.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF, and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR, and NRC "Kurchatov Institute" (Russia); MinECo, XuntaGal, and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted towards the communities behind the multiple open source software packages we depend on. We are also thankful for the computing resources and the access to software R\&D tools provided by Yandex LLC (Russia).
[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012), and 2013 partial update for the 2014 edition.
[2] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); 11703 (1975); R. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975); G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975); G. Senjanovic, Nucl. Phys. B153, 334 (1979); R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981); C. Lim and T. Inami, Prog. Theor. Phys. 67, 1569 (1982); L. Everett, S. Rigolin, G. L. Kane, L.-T. Wang, and T. T. Wang, J. High Energy Phys. 01 (2002) 022.
[3] D. Atwood, M. Gronau, and A. Soni, Phys. Rev. Lett. 79, 185 (1997).
[4] S. Nishida et al. (Belle Collaboration), Phys. Rev. Lett. 89, 231801 (2002).
[5] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 98, 211804 (2007).
[6] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413 (1957).
[7] M. Gronau and D. Pirjol, Phys. Rev. D 66, 054008 (2002).
[8] E. Kou, A. Le Yaouanc, and A. Tayduganov, Phys. Rev. D 83, 094007 (2011).
[9] A. A. Alves, Jr. et al. (LHCb Collaboration), JINST 3, S08005 (2008).
[10] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026; Comput. Phys. Commun. 178, 852 (2008).
[11] I. Belyaev et al., Nuclear Science Symposium Conference Record(NSS/MIC), (IEEE, Bellingham, WA, 2010), p. 1155.
[12] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[13] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).
[14] J. Allison et al. (Geant4 Collaboration), IEEE Trans. Nucl. Sci. 53, 270 (2006); S. Agostinelli et al., (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[15] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, J. Phys. Conf. Ser. 331, 032023 (2011).
[16] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees (Wadsworth International Group, Belmont, CA, 1984).
[17] R. E. Schapire and Y. Freund, J. Comput. Syst. Sci. 55, 119 (1997).
[18] T. Skwarnicki, Ph.D thesis, Institute of Nuclear Physics, 1986 [DESY F31-86-02, Appendix E].
[19] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[20] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[21] H. Yang et al. (Belle Collaboration), Phys. Rev. Lett. 94, 111802 (2005).
[22] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.112.161801 for details.
R. Aaij, ${ }^{41}$ B. Adeva, ${ }^{37}$ M. Adinolfi, ${ }^{46}$ A. Affolder, ${ }^{52}$ Z. Ajaltouni, ${ }^{5}$ J. Albrecht, ${ }^{9}$ F. Alessio, ${ }^{38}$ M. Alexander, ${ }^{51}$ S. Ali, ${ }^{41}$ G. Alkhazov, ${ }^{30}$ P. Alvarez Cartelle, ${ }^{37}$ A. A. Alves Jr., ${ }^{25}$ S. Amato, ${ }^{2}$ S. Amerio, ${ }^{22}$ Y. Amhis, ${ }^{7}$ L. Anderlini, ${ }^{17, a}$ J. Anderson, ${ }^{40}$ R. Andreassen, ${ }^{57}$ M. Andreotti, ${ }^{16, b}$ J. E. Andrews, ${ }^{58}$ R. B. Appleby, ${ }^{54}$ O. Aquines Gutierrez, ${ }^{10}$ F. Archilli, ${ }^{38}$ A. Artamonov, ${ }^{35}$ M. Artuso, ${ }^{59}$ E. Aslanides, ${ }^{6}$ G. Auriemma, ${ }^{25, c}$ M. Baalouch, ${ }^{5}$ S. Bachmann, ${ }^{11}$ J. J. Back, ${ }^{48}$ A. Badalov, ${ }^{36}$ V. Balagura, ${ }^{31}$ W. Baldini, ${ }^{16}$ R. J. Barlow, ${ }^{54}$ C. Barschel, ${ }^{39}$ S. Barsuk, ${ }^{7}$ W. Barter, ${ }^{47}$ V. Batozskaya, ${ }^{28}$ T. Bauer, ${ }^{41}$ A. Bay, ${ }^{39}$ J. Beddow, ${ }^{51}$ F. Bedeschi, ${ }^{23}$ I. Bediaga, ${ }^{1}$ S. Belogurov, ${ }^{31}$ K. Belous, ${ }^{35}$ I. Belyaev, ${ }^{31}$ E. Ben-Haim, ${ }^{8}$ G. Bencivenni, ${ }^{18}$ S. Benson, ${ }^{50}$ J. Benton, ${ }^{46}$ A. Berezhnoy, ${ }^{32}$ R. Bernet, ${ }^{40}$ M.-O. Bettler, ${ }^{47}$ M. van Beuzekom, ${ }^{41}$ A. Bien, ${ }^{11}$ S. Bifani, ${ }^{45}$ T. Bird, ${ }^{54}$ A. Bizzeti, ${ }^{17, d}$ P. M. Bjørnstad, ${ }^{54}$ T. Blake, ${ }^{48}$ F. Blanc, ${ }^{39}$ J. Blouw, ${ }^{10}$ S. Blusk, ${ }^{59}$ V. Bocci, ${ }^{25}$ A. Bondar, ${ }^{34}$ N. Bondar, ${ }^{30}$ W. Bonivento,,15,38 S. Borghi, ${ }^{54}$ A. Borgia, ${ }^{59}$ M. Borsato, ${ }^{7}$ T. J. V. Bowcock, ${ }^{52}$ E. Bowen, ${ }^{40}$ C. Bozzi, ${ }^{16}$ T. Brambach, ${ }^{9}$ J. van den Brand, ${ }^{42}$ J. Bressieux, ${ }^{39}$ D. Brett, ${ }^{54}$ M. Britsch, ${ }^{10}$ T. Britton, ${ }^{59}$ N. H. Brook, ${ }^{46}$ H. Brown, ${ }^{52}$ A. Bursche, ${ }^{40}$ G. Busetto, ${ }^{22, e}$ J. Buytaert, ${ }^{38}$ S. Cadeddu, ${ }^{15}$ R. Calabrese, ${ }^{16, b}$ O. Callot, ${ }^{7}$ M. Calvi, ${ }^{20, f}$ M. Calvo Gomez, ${ }^{36, g}$ A. Camboni, ${ }^{36}$ P. Campana, ${ }^{18,38}$ D. Campora Perez, ${ }^{38}$ F. Caponio, ${ }^{21}$ A. Carbone,,${ }^{14, h}$ G. Carboni, ${ }^{24, i}$ R. Cardinale,,${ }^{19, j}$ A. Cardini, ${ }^{15}$ H. Carranza-Mejia, ${ }^{50}$ L. Carson, ${ }^{50}$ K. Carvalho Akiba, ${ }^{2}$ G. Casse, ${ }^{52}$ L. Cassina, ${ }^{20}$ L. Castillo Garcia, ${ }^{38}$ M. Cattaneo, ${ }^{38}$ C. Cauet, ${ }^{9}$ R. Cenci, ${ }^{58}$ M. Charles, ${ }^{8}$ P. Charpentier, ${ }^{38}$ S.-F. Cheung, ${ }^{55}$ N. Chiapolini, ${ }^{40}$ M. Chrzaszcz, ${ }^{40,26}$ K. Ciba, ${ }^{38}$ X. Cid Vidal, ${ }^{38}$ G. Ciezarek, ${ }^{53}$ P. E. L. Clarke, ${ }^{50}$ M. Clemencic, ${ }^{38}$ H. V. Cliff, ${ }^{47}$ J. Closier, ${ }^{38}$ C. Coca, ${ }^{29}$ V. Coco, ${ }^{38}$ J. Cogan, ${ }^{6}$ E. Cogneras, ${ }^{5}$ P. Collins, ${ }^{38}$ A. Comerma-Montells, ${ }^{36}$ A. Contu, ${ }^{15,38}$ A. Cook, ${ }^{46}$ M. Coombes, ${ }^{46}$ S. Coquereau, ${ }^{8}$ G. Corti, ${ }^{38}$ I. Counts, ${ }^{56}$ B. Couturier, ${ }^{38}$ G. A. Cowan, ${ }^{50}$ D. C. Craik, ${ }^{48}$ M. Cruz Torres, ${ }^{60}$ S. Cunliffe, ${ }^{53}$ R. Currie, ${ }^{50}$ C. D'Ambrosio, ${ }^{38}$ J. Dalseno, ${ }^{46}$ P. David, ${ }^{8}$ P. N. Y. David, ${ }^{41}$ A. Davis, ${ }^{57}$ I. De Bonis, ${ }^{4}$ K. De Bruyn, ${ }^{41}$ S. De Capua, ${ }^{54}$ M. De Cian, ${ }^{11}$ J. M. De Miranda, ${ }^{1}$ L. De Paula, ${ }^{2}$ W. De Silva, ${ }^{57}$ P. De Simone, ${ }^{18}$ D. Decamp, ${ }^{4}$ M. Deckenhoff, ${ }^{9}$ L. Del Buono, ${ }^{8}$ N. Déléage, ${ }^{4}$ D. Derkach, ${ }^{55}$ O. Deschamps, ${ }^{5}$ F. Dettori, ${ }^{42}$ A. Di Canto, ${ }^{11}$ H. Dijkstra, ${ }^{38}$ S. Donleavy, ${ }^{52}$ F. Dordei, ${ }^{11}$ M. Dorigo, ${ }^{39}$ P. Dorosz, ${ }^{26, k}$ A. Dosil Suárez, ${ }^{37}$ D. Dossett, ${ }^{48}$ A. Dovbnya, ${ }^{43}$ F. Dupertuis, ${ }^{39}$ P. Durante, ${ }^{38}$ R. Dzhelyadin, ${ }^{35}$ A. Dziurda, ${ }^{26}$ A. Dzyuba, ${ }^{30}$ S. Easo, ${ }^{49}$ U. Egede, ${ }^{53}$ V. Egorychev, ${ }^{31}$ S. Eidelman, ${ }^{34}$ S. Eisenhardt, ${ }^{50}$ U. Eitschberger, ${ }^{9}$ R. Ekelhof, ${ }^{9}$ L. Eklund, ${ }^{51,38}$ I. El Rifai, ${ }^{5}$ C. Elsasser, ${ }^{40}$ S. Esen, ${ }^{11}$ A. Falabella, ${ }^{16, b}$ C. Färber, ${ }^{11}$ C. Farinelli, ${ }^{41}$ S. Farry, ${ }^{52}$ D. Ferguson, ${ }^{50}$ V. Fernandez Albor, ${ }^{37}$ F. Ferreira Rodrigues, ${ }^{1}$ M. Ferro-Luzzi, ${ }^{38}$ S. Filippov, ${ }^{33}$ M. Fiore, ${ }^{16, b}$ M. Fiorini, ${ }^{16, b}$ C. Fitzpatrick, ${ }^{38}$ M. Fontana, ${ }^{10}$
F. Fontanelli, ${ }^{19, j}$ R. Forty, ${ }^{38}$ O. Francisco, ${ }^{2}$ M. Frank, ${ }^{38}$ C. Frei, ${ }^{38}$ M. Frosini, ${ }^{17,38, a}$ J. Fu, ${ }^{21}$ E. Furfaro, ${ }^{24, i}$ A. Gallas Torreira, ${ }^{37}$ D. Galli, ${ }^{14, h}$ S. Gambetta, ${ }^{19, j}$ M. Gandelman, ${ }^{2}$ P. Gandini, ${ }^{59}$ Y. Gao, ${ }^{3}$ J. Garofoli, ${ }^{59}$ J. Garra Tico, ${ }^{47}$ L. Garrido, ${ }^{36}$ C. Gaspar, ${ }^{38}$ R. Gauld, ${ }^{55}$ L. Gavardi, ${ }^{9}$ E. Gersabeck, ${ }^{11}$ M. Gersabeck, ${ }^{54}$ T. Gershon, ${ }^{48}$ P. Ghez, ${ }^{4}$ A. Gianelle, ${ }^{22}$ S. Giani, ${ }^{39}$ V. Gibson, ${ }^{47}$ L. Giubega, ${ }^{29}$ V. V. Gligorov, ${ }^{38}$ C. Göbel, ${ }^{60}$ D. Golubkov, ${ }^{31}$ A. Golutvin,,${ }^{53,31,38}$ A. Gomes, ${ }^{1,1}$ H. Gordon, ${ }^{38}$ M. Grabalosa

Gándara, ${ }^{5}$ R. Graciani Diaz, ${ }^{36}$ L. A. Granado Cardoso, ${ }^{38}$ E. Graugés, ${ }^{36}$ G. Graziani, ${ }^{17}$ A. Grecu, ${ }^{29}$ E. Greening, ${ }^{55}$
S. Gregson, ${ }^{47}$ P. Griffith, ${ }^{45}$ L. Grillo, ${ }^{11}$ O. Grünberg, ${ }^{61}$ B. Gui, ${ }^{59}$ E. Gushchin,,${ }^{33}$ Y. Guz, ${ }^{35,38}$ T. Gys, ${ }^{38}$ C. Hadjivasiliou, ${ }^{59}$ G. Haefeli, ${ }^{39}$ C. Haen, ${ }^{38}$ T. W. Hafkenscheid, ${ }^{64}$ S. C. Haines, ${ }^{47}$ S. Hall, ${ }^{53}$ B. Hamilton, ${ }^{58}$ T. Hampson, ${ }^{46}$ S. HansmannMenzemer, ${ }^{11}$ N. Harnew, ${ }^{55}$ S. T. Harnew, ${ }^{46}$ J. Harrison, ${ }^{54}$ T. Hartmann, ${ }^{61}$ J. He, ${ }^{38}$ T. Head, ${ }^{38}$ V. Heijne, ${ }^{41}$ K. Hennessy, ${ }^{52}$ P. Henrard, ${ }^{5}$ L. Henry, ${ }^{8}$ J. A. Hernando Morata, ${ }^{37}$ E. van Herwijnen, ${ }^{38}$ M. Heß, ${ }^{61}$ A. Hicheur, ${ }^{1}$ D. Hill, ${ }^{55}$ M. Hoballah, ${ }^{5}$ C. Hombach, ${ }^{54}$ W. Hulsbergen, ${ }^{41}$ P. Hunt, ${ }^{55}$ N. Hussain, ${ }^{55}$ D. Hutchcroft, ${ }^{52}$ D. Hynds, ${ }^{51}$ M. Idzik, ${ }^{27}$ P. Ilten, ${ }^{56}$ R. Jacobsson, ${ }^{38}$ A. Jaeger, ${ }^{11}$ E. Jans, ${ }^{41}$ P. Jaton, ${ }^{39}$ A. Jawahery, ${ }^{58}$ F. Jing, ${ }^{3}$ M. John, ${ }^{55}$ D. Johnson, ${ }^{55}$ C. R. Jones, ${ }^{47}$ C. Joram, ${ }^{38}$ B. Jost,,38 N. Jurik, ${ }^{59}$ M. Kaballo, ${ }^{9}$ S. Kandybei, ${ }^{43}$ W. Kanso, ${ }^{6}$ M. Karacson, ${ }^{38}$ T. M. Karbach, ${ }^{38}$ M. Kelsey, ${ }^{59}$ I. R. Kenyon, ${ }^{45}$ T. Ketel, ${ }^{42}$ B. Khanji, ${ }^{20}$ C. Khurewathanakul, ${ }^{39}$ S. Klaver, ${ }^{54}$ O. Kochebina, ${ }^{7}$ I. Komarov, ${ }^{39}$ R. F. Koopman, ${ }^{42}$ P. Koppenburg, ${ }^{41}$ M. Korolev, ${ }^{32}$ A. Kozlinskiy, ${ }^{41}$ L. Kravchuk,,${ }^{33}$ K. Kreplin, ${ }^{11}$ M. Kreps, ${ }^{48}$ G. Krocker, ${ }^{11}$ P. Krokovny, ${ }^{34}$ F. Kruse, ${ }^{9}$ M. Kucharczyk, ${ }^{20,26,38, f}$ V. Kudryavtsev, ${ }^{34}$ K. Kurek, ${ }^{28}$ T. Kvaratskheliya, ${ }^{31,38}$ V. N. La Thi, ${ }^{39}$ D. Lacarrere, ${ }^{38}$ G. Lafferty, ${ }^{54}$ A. Lai,,${ }^{15}$ D. Lambert, ${ }^{50}$ R. W. Lambert, ${ }^{42}$ E. Lanciotti, ${ }^{38}$ G. Lanfranchi, ${ }^{18}$ C. Langenbruch, ${ }^{38}$ B. Langhans, ${ }^{38}$ T. Latham, ${ }^{48}$ C. Lazzeroni, ${ }^{45}$ R. Le Gac, ${ }^{6}$ J. van Leerdam, ${ }^{41}$ J.-P. Lees, ${ }^{4}$ R. Lefèvre, ${ }^{5}$ A. Leflat, ${ }^{32}$ J. Lefrançois, ${ }^{7}$ S. Leo, ${ }^{23}$ O. Leroy, ${ }^{6}$ T. Lesiak, ${ }^{26}$ B. Leverington, ${ }^{11}$ Y. Li, ${ }^{3}$ M. Liles, ${ }^{52}$ R. Lindner, ${ }^{38}$ C. Linn, ${ }^{38}$ F. Lionetto, ${ }^{40}$ B. Liu, ${ }^{15}$ G. Liu, ${ }^{38}$ S. Lohn, ${ }^{38}$ I. Longstaff, ${ }^{51}$ J. H. Lopes, ${ }^{2}$ N. Lopez-March, ${ }^{39}$ P. Lowdon, ${ }^{40}$ H. Lu, ${ }^{3}$ D. Lucchesi, ${ }^{22, e}$ H. Luo, ${ }^{50}$ E. Luppi, ${ }^{16, b}$ O. Lupton, ${ }^{55}$ F. Machefert, ${ }^{7}$ I. V. Machikhiliyan, ${ }^{31}$ F. Maciuc, ${ }^{29}$ O. Maev,,${ }^{30,38}$ S. Malde, ${ }^{55}$ G. Manca, ${ }^{15, \mathrm{~m}}$ G. Mancinelli, ${ }^{6}$ M. Manzali,,$^{16, b}$ J. Maratas, ${ }^{5}$ U. Marconi, ${ }^{14}$ C. Marin Benito, ${ }^{36}$ P. Marino,,${ }^{23, n}$ R. Märki, ${ }^{39}$ J. Marks, ${ }^{11}$ G. Martellotti, ${ }^{25}$
A. Martens, ${ }^{8}$ A. Martín Sánchez, ${ }^{7}$ M. Martinelli, ${ }^{41}$ D. Martinez Santos, ${ }^{42}$ F. Martinez Vidal, ${ }^{63}$ D. Martins Tostes, ${ }^{2}$ A. Massafferri, ${ }^{1}$ R. Matev, ${ }^{38}$ Z. Mathe, ${ }^{38}$ C. Matteuzzi, ${ }^{20}$ A. Mazurov, ${ }^{16,38, b}$ M. McCann, ${ }^{53}$ J. McCarthy, ${ }^{45}$ A. McNab, ${ }^{54}$ R. McNulty, ${ }^{12}$ B. McSkelly, ${ }^{52}$ B. Meadows, ${ }^{57,55}$ F. Meier, ${ }^{9}$ M. Meissner, ${ }^{11}$ M. Merk, ${ }^{41}$ D. A. Milanes, ${ }^{8}$ M.-N. Minard, ${ }^{4}$ J. Molina Rodriguez, ${ }^{60}$ S. Monteil, ${ }^{5}$ D. Moran, ${ }^{54}$ M. Morandin, ${ }^{22}$ P. Morawski, ${ }^{26}$ A. Mordà, ${ }^{6}$ M. J. Morello, ${ }^{23, n}$ R. Mountain, ${ }^{59}$ F. Muheim, ${ }^{50}$ K. Müller, ${ }^{40}$ R. Muresan, ${ }^{29}$ B. Muryn, ${ }^{27}$ B. Muster, ${ }^{39}$ P. Naik, ${ }^{46}$ T. Nakada, ${ }^{39}$ R. Nandakumar ${ }^{49}$ I. Nasteva, ${ }^{1}$ M. Needham, ${ }^{50}$ N. Neri, ${ }^{21}$ S. Neubert, ${ }^{38}$ N. Neufeld, ${ }^{38}$ A. D. Nguyen, ${ }^{39}$ T. D. Nguyen, ${ }^{39}$ C. Nguyen-Mau, ${ }^{39,0}$ M. Nicol, ${ }^{7}$ V. Niess, ${ }^{5}$ R. Niet, ${ }^{9}$ N. Nikitin, ${ }^{32}$ T. Nikodem, ${ }^{11}$ A. Novoselov, ${ }^{35}$ A. Oblakowska-Mucha, ${ }^{27}$ V. Obraztsov, ${ }^{35}$ S. Oggero, ${ }^{41}$ S. Ogilvy, ${ }^{51}$ O. Okhrimenko, ${ }^{44}$ R. Oldeman,,${ }^{15, \mathrm{~m}}$ G. Onderwater, ${ }^{64}$ M. Orlandea, ${ }^{29}$ J. M. Otalora Goicochea, ${ }^{2}$ P. Owen, ${ }^{53}$ A. Oyanguren, ${ }^{36}$ B. K. Pal, ${ }^{59}$ A. Palano, ${ }^{13, p}$ F. Palombo, ${ }^{21, q}$ M. Palutan, ${ }^{18}$ J. Panman, ${ }^{38}$ A. Papanestis, ${ }^{49,38}$ M. Pappagallo, ${ }^{51}$ L. Pappalardo, ${ }^{16}$ C. Parkes, ${ }^{54}$ C. J. Parkinson, ${ }^{9}$ G. Passaleva, ${ }^{17}$ G. D. Patel, ${ }^{52}$ M. Patel, ${ }^{53}$ C. Patrignani, ${ }^{19, j}$ C. Pavel-Nicorescu, ${ }^{29}$ A. Pazos Alvarez, ${ }^{37}$ A. Pearce, ${ }^{54}$ A. Pellegrino, ${ }^{41}$ M. Pepe Altarelli, ${ }^{38}$ S. Perazzini, ${ }^{14, h}$ E. Perez Trigo, ${ }^{37}$ P. Perret, ${ }^{5}$ M. Perrin-Terrin, ${ }^{6}$ L. Pescatore, ${ }^{45}$ E. Pesen, ${ }^{65}$ G. Pessina, ${ }^{20}$ K. Petridis, ${ }^{53}$ A. Petrolini, ${ }^{19, j}$ E. Picatoste Olloqui, ${ }^{36}$ B. Pietrzyk, ${ }^{4}$ T. Pilař,,48 D. Pinci, ${ }^{25}$ A. Pistone, ${ }^{19}$ S. Playfer, ${ }^{50}$ M. Plo Casasus, ${ }^{37}$ F. Polci, ${ }^{8}$ A. Poluektov, ${ }^{48,34}$ E. Polycarpo, ${ }^{2}$ A. Popov, ${ }^{35}$ D. Popov, ${ }^{10}$ B. Popovici, ${ }^{29}$ C. Potterat, ${ }^{36}$ A. Powell, ${ }^{55}$ J. Prisciandaro, ${ }^{39}$ A. Pritchard, ${ }^{52}$
C. Prouve, ${ }^{46}$ V. Pugatch, ${ }^{44}$ A. Puig Navarro, ${ }^{39}$ G. Punzi, ${ }^{23, r}$ W. Qian, ${ }^{4}$ B. Rachwal, ${ }^{26}$ J. H. Rademacker, ${ }^{46}$
B. Rakotomiaramanana, ${ }^{39}$ M. Rama, ${ }^{18}$ M. S. Rangel, ${ }^{2}$ I. Raniuk, ${ }^{43}$ N. Rauschmayr, ${ }^{38}$ G. Raven, ${ }^{42}$ S. Reichert, ${ }^{54}$ M. M. Reid, ${ }^{48}$ A. C. dos Reis, ${ }^{1}$ S. Ricciardi, ${ }^{49}$ A. Richards, ${ }^{53}$ K. Rinnert, ${ }^{52}$ V. Rives Molina, ${ }^{36}$ D. A. Roa Romero, ${ }^{5}$ P. Robbe, ${ }^{7}$ D. A. Roberts, ${ }^{58}$ A. B. Rodrigues, ${ }^{1}$ E. Rodrigues, ${ }^{54}$ P. Rodriguez Perez, ${ }^{37}$ S. Roiser, ${ }^{38}$ V. Romanovsky, ${ }^{35}$ A. Romero Vidal, ${ }^{37}$ M. Rotondo, ${ }^{22}$ J. Rouvinet, ${ }^{39}$ T. Ruf, ${ }^{38}$ F. Ruffini, ${ }^{23}$ H. Ruiz, ${ }^{36}$ P. Ruiz Valls, ${ }^{36}$ G. Sabatino, ${ }^{25, i}$ J. J. Saborido Silva, ${ }^{37}$ N. Sagidova, ${ }^{30}$ P. Sail, ${ }^{51}$ B. Saitta, ${ }^{15, m}$ V. Salustino Guimaraes, ${ }^{2}$ B. Sanmartin Sedes, ${ }^{37}$ R. Santacesaria, ${ }^{25}$ C. Santamarina Rios,,${ }^{37}$ E. Santovetti, ${ }^{24, \mathrm{i}}$ M. Sapunov, ${ }^{6}$ A. Sarti, ${ }^{18}$ C. Satriano, ${ }^{25, \mathrm{c}}$ A. Satta, ${ }^{24}$ M. Savrie,,${ }^{16, b}$ D. Savrina, ${ }^{31,32}$ M. Schiller, ${ }^{42}$ H. Schindler, ${ }^{38}$ M. Schlupp, ${ }^{9}$ M. Schmelling, ${ }^{10}$ B. Schmidt, ${ }^{38}$ O. Schneider, ${ }^{39}$ A. Schopper, ${ }^{38}$ M.-H. Schune, ${ }^{7}$ R. Schwemmer, ${ }^{38}$ B. Sciascia, ${ }^{18}$ A. Sciubba, ${ }^{25}$ M. Seco, ${ }^{37}$ A. Semennikov, ${ }^{31}$ K. Senderowska, ${ }^{27}$ I. Sepp, ${ }^{53}$ N. Serra, ${ }^{40}$ J. Serrano, ${ }^{6}$ P. Seyfert, ${ }^{11}$ M. Shapkin, ${ }^{35}$ I. Shapoval, ${ }^{16,43, b}$ Y. Shcheglov, ${ }^{30}$ T. Shears, ${ }^{52}$ L. Shekhtman, ${ }^{34}$ O. Shevchenko, ${ }^{43}$ V. Shevchenko, ${ }^{62}$ A. Shires, ${ }^{9}$ R. Silva Coutinho, ${ }^{48}$ G. Simi, ${ }^{22}$ M. Sirendi, ${ }^{47}$ N. Skidmore,,${ }^{46}$ T. Skwarnicki, ${ }^{59}$ N. A. Smith,,${ }^{52}$ E. Smith,,${ }^{55,49}$ E. Smith, ${ }^{53}$ J. Smith,,${ }^{47}$ M. Smith, ${ }^{54}$ H. Snoek,,${ }^{41}$ M. D. Sokoloff, ${ }^{57}$ F. J. P. Soler, ${ }^{51}$ F. Soomro, ${ }^{39}$ D. Souza, ${ }^{46}$ B. Souza De Paula, ${ }^{2}$ B. Spaan, ${ }^{9}$ A. Sparkes, ${ }^{50}$ F. Spinella, ${ }^{23}$ P. Spradlin, ${ }^{51}$ F. Stagni, ${ }^{38}$ S. Stahl, ${ }^{11}$ O. Steinkamp, ${ }^{40}$ S. Stevenson, ${ }^{55}$ S. Stoica, ${ }^{29}$ S. Stone, ${ }^{59}$ B. Storaci, ${ }^{40}$ S. Stracka, ${ }^{23,38}$ M. Straticiuc, ${ }^{29}$
U. Straumann, ${ }^{40}$ R. Stroili, ${ }^{22}$ V. K. Subbiah, ${ }^{38}$ L. Sun, ${ }^{57}$ W. Sutcliffe,,${ }^{53}$ S. Swientek, ${ }^{9}$ V. Syropoulos, ${ }^{42}$ M. Szczekowski, ${ }^{28}$ P. Szczypka, ${ }^{39,38}$ D. Szilard, ${ }^{2}$ T. Szumlak, ${ }^{27}$ S. T'Jampens, ${ }^{4}$ M. Teklishyn, ${ }^{7}$ G. Tellarini, ${ }^{16, b}$ E. Teodorescu, ${ }^{29}$ F. Teubert, ${ }^{38}$ C. Thomas, ${ }^{55}$ E. Thomas, ${ }^{38}$ J. van Tilburg, ${ }^{11}$ V. Tisserand, ${ }^{4}$ M. Tobin, ${ }^{39}$ S. Tolk,,${ }^{42}$ L. Tomassetti, ${ }^{16, b}$ D. Tonelli, ${ }^{38}$ S. ToppJoergensen, ${ }^{55}$ N. Torr, ${ }^{55}$ E. Tournefier, ${ }^{4,53}$ S. Tourneur, ${ }^{39}$ M. T. Tran, ${ }^{39}$ M. Tresch, ${ }^{40}$ A. Tsaregorodtsev, ${ }^{6}$ P. Tsopelas, ${ }^{41}$ N. Tuning, ${ }^{41}$ M. Ubeda Garcia, ${ }^{38}$ A. Ukleja, ${ }^{28}$ A. Ustyuzhanin, ${ }^{62}$ U. Uwer, ${ }^{11}$ V. Vagnoni, ${ }^{14}$ G. Valenti, ${ }^{14}$ A. Vallier, ${ }^{7}$ R. Vazquez Gomez, ${ }^{18}$ P. Vazquez Regueiro, ${ }^{37}$ C. Vázquez Sierra, ${ }^{37}$ S. Vecchi, ${ }^{16}$ J. J. Velthuis, ${ }^{46}$ M. Veltri, ${ }^{17, s}$ G. Veneziano, ${ }^{39, \dagger}$ M. Vesterinen, ${ }^{11}$ B. Viaud, ${ }^{7}$ D. Vieira, ${ }^{2}$ X. Vilasis-Cardona, ${ }^{36, g}$ A. Vollhardt, ${ }^{40}$ D. Volyanskyy, ${ }^{10}$ D. Voong, ${ }^{46}$ A. Vorobyev, ${ }^{30}$ V. Vorobyev, ${ }^{34}$ C. Voß, ${ }^{61}$ H. Voss, ${ }^{10}$ J. A. de Vries, ${ }^{41}$ R. Waldi, ${ }^{61}$ C. Wallace, ${ }^{48}$ R. Wallace, ${ }^{12}$ S. Wandernoth, ${ }^{11}$ J. Wang, ${ }^{59}$ D. R. Ward, ${ }^{47}$ N. K. Watson, ${ }^{45}$ A. D. Webber, ${ }^{54}$ D. Websdale, ${ }^{53}$ M. Whitehead, ${ }^{48}$ J. Wicht, ${ }^{38}$ J. Wiechczynski, ${ }^{26}$ D. Wiedner, ${ }^{11}$ G. Wilkinson, ${ }^{55}$ M. P. Williams, ${ }^{48,49}$ M. Williams, ${ }^{56}$ F. F. Wilson, ${ }^{49}$ J. Wimberley, ${ }^{58}$ J. Wishahi, ${ }^{9}$ W. Wislicki, ${ }^{28}$ M. Witek, ${ }^{26}$ G. Wormser, ${ }^{7}$ S. A. Wotton, ${ }^{47}$ S. Wright, ${ }^{47}$ S. Wu, ${ }^{3}$ K. Wyllie, ${ }^{38}$ Y. Xie, ${ }^{50,38}$ Z. Xing, ${ }^{59}$ Z. Yang, ${ }^{3}$ X. Yuan, ${ }^{3}$ O. Yushchenko, ${ }^{35}$ M. Zangoli, ${ }^{14}$ M. Zavertyaev, ${ }^{10, t}$ F. Zhang, ${ }^{3}$ L. Zhang, ${ }^{59}$ W. C. Zhang, ${ }^{12}$ Y. Zhang, ${ }^{3}$ A. Zhelezov, ${ }^{11}$ A. Zhokhov, ${ }^{31}$ L. Zhong ${ }^{3}$ and A. Zvyagin ${ }^{38}$

(LHCb Collaboration)

[^1]```
\({ }^{42}\) Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
 \({ }^{43}\) NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
 \({ }^{44}\) Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
 \({ }^{45}\) University of Birmingham, Birmingham, United Kingdom
 \({ }^{46}\) H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
 \({ }^{47}\) Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
 \({ }^{48}\) Department of Physics, University of Warwick, Coventry, United Kingdom
 \({ }^{49}\) STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
 \({ }^{50}\) School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
 \({ }^{51}\) School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
 \({ }^{52}\) Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
 \({ }^{53}\) Imperial College London, London, United Kingdom
 \({ }^{54}\) School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
 \({ }_{56}^{55}\) Department of Physics, University of Oxford, Oxford, United Kingdom
 \({ }^{56}\) Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
 \({ }^{57}\) University of Cincinnati, Cincinnati, Ohio, USA
 \({ }^{58}\) University of Maryland, College Park, Maryland, USA
 \({ }^{59}\) Syracuse University, Syracuse, New York, USA
 \({ }^{60}\) Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
 (associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
 \({ }^{61}\) Institut für Physik, Universität Rostock, Rostock, Germany
 (associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
 \({ }^{62}\) National Research Centre Kurchatov Institute, Moscow, Russia
 (associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
 \({ }^{63}\) Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain
 (associated with Universitat de Barcelona, Barcelona, Spain)
 \({ }^{64}\) KVI—University of Groningen, Groningen, The Netherlands
 (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)
 \({ }^{65}\) Celal Bayar University, Manisa, Turkey
 (associated with European Organization for Nuclear Research (CERN), Geneva, Switzerland)
```

    \({ }^{a}\) Also at Università di Firenze, Firenze, Italy.
    \({ }^{\mathrm{b}}\) Also at Università di Ferrara, Ferrara, Italy.
    \({ }^{\text {c}}\) Also at Università della Basilicata, Potenza, Italy.
    \({ }^{\mathrm{d}}\) Also at Università di Modena e Reggio Emilia, Modena, Italy.
    \({ }^{\mathrm{e}}\) Also at Università di Padova, Padova, Italy.
    \({ }^{\mathrm{f}}\) Also at Università di Milano Bicocca, Milano, Italy.
    \({ }^{\mathrm{g}}\) Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
    \({ }^{h}\) Also at Università di Bologna, Bologna, Italy.
    \({ }^{\text {i }}\) Also at Università di Roma Tor Vergata, Roma, Italy.
    \({ }^{\mathrm{j}}\) Also at Università di Genova, Genova, Italy.
    \({ }^{\text {k }}\) Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków,
    Poland.
    \({ }^{1}\) Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
    \({ }^{\mathrm{m}}\) Also at Università di Cagliari, Cagliari, Italy.
    \({ }^{n}\) Also at Scuola Normale Superiore, Pisa, Italy.
    \({ }^{\circ}\) Also at Hanoi University of Science, Hanoi, Vietnam.
    \({ }^{\mathrm{p}}\) Also at Università di Bari, Bari, Italy.
    \({ }^{\mathrm{q}}\) Also at Università degli Studi di Milano, Milano, Italy.
    \({ }^{r}\) Also at Università di Pisa, Pisa, Italy.
    \({ }^{s}\) Also at Università di Urbino, Urbino, Italy.
    \({ }^{t}\) Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
    \({ }^{\dagger}\) Corresponding author.giovanni.veneziano@cern.ch
[^0]:    *Full author list given at the end of the article.
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

[^1]:    ${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
    ${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    ${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
    ${ }^{4}$ LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
    ${ }^{5}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
    ${ }^{6}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
    ${ }^{7}$ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
    ${ }^{8}$ LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3 Paris, France
    ${ }^{9}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
    ${ }^{10}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
    ${ }^{11}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
    ${ }^{12}$ School of Physics, University College Dublin, Dublin, Ireland
    ${ }^{13}$ Sezione INFN di Bari, Bari, Italy
    ${ }^{14}$ Sezione INFN di Bologna, Bologna, Italy
    ${ }^{15}$ Sezione INFN di Cagliari, Cagliari, Italy
    ${ }^{16}$ Sezione INFN di Ferrara, Ferrara, Italy
    ${ }^{17}$ Sezione INFN di Firenze, Firenze, Italy
    ${ }^{18}$ Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
    ${ }^{19}$ Sezione INFN di Genova, Genova, Italy
    ${ }^{20}$ Sezione INFN di Milano Bicocca, Milano, Italy
    ${ }^{21}$ Sezione INFN di Milano, Milano, Italy
    ${ }^{22}$ Sezione INFN di Padova, Padova, Italy
    ${ }^{23}$ Sezione INFN di Pisa, Pisa, Italy
    ${ }^{24}$ Sezione INFN di Roma Tor Vergata, Roma, Italy
    ${ }^{25}$ Sezione INFN di Roma La Sapienza, Roma, Italy
    ${ }^{26}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
    ${ }^{27}$ Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Kraków, Poland
    ${ }^{28}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
    ${ }^{29}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania ${ }^{30}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
    ${ }^{31}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
    ${ }^{32}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
    ${ }^{33}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
    ${ }^{34}$ Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
    ${ }^{35}$ Institute for High Energy Physics (IHEP), Protvino, Russia
    ${ }^{36}$ Universitat de Barcelona, Barcelona, Spain
    ${ }^{37}$ Universidad de Santiago de Compostela, Santiago de Compostela, Spain
    ${ }^{38}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
    ${ }^{39}$ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    ${ }^{40}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
    ${ }^{41}$ Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

