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Abstract: A new alkaloid, geissospermiculatine was characterized in Geissospermum reticulatum A.
H. Gentry bark (Apocynaceae). Here, following a simplified isolation protocol, the structure of the
alkaloid was elucidated through GC-MS, LC-MS/MS, 1D, and 2D NMR (COSY, ROESY, HSQC,
HMBC, 1H-15N HMBC). Cytotoxic properties were evaluated in vitro on malignant THP-1 cells,
and the results demonstrated that the cytotoxicity of the alkaloid (30 µg/mL) was comparable
with staurosporine (10 µM). Additionally, the toxicity was tested on zebrafish (Danio rerio) embryos
in vivo by monitoring their development (0–72 h); toxicity was not evident at 30 µg/mL.

Keywords: Geissospermum reticulatum; Apocynaceae; NMR; alkaloids; cytotoxic effects; Danio rerio

1. Introduction

Geissospermum species (Apocynaceae) grow in the Amazonian rainforest [1,2]. For
many years they have proven popular as therapeutic plants used in traditional medicines as
remedies for malarial, tumors, bacterial infections, and pain relief, and as anti-inflammatory
agents [1,3,4]. First investigations of the chemical composition of these trees date back
to the end of the 19th century [1]. However, in recent decades, little progress has been
made in the characterization of the compounds from the Geissospermum genus. In fact,
among 12 species, only six (G. argenteum, G. fuscum, G. leave, G. reticulatum, G. sericeum,
and G. urceolatum) have been studied phytochemically [1,3,5–14]. Specifically, it has been
reported that these trees are a rich source of indole alkaloids [1,3]. Nevertheless, the
phytochemical profile of Geissospermum reticulatum A. H. Gentry bark has received minimal
attention with only one published study that described the presence of three alkaloids:
11-methoxygeissospermidine, flavopereirine, and geissosreticulatine [3].

As a part of our investigation into the composition and properties of plants from
the Amazon region, we now document discovery of a new indole alkaloid from G. retic-
ulatum bark—geissospermiculatine. Utilizing LC-MS/MS and GC-MS, the presence in
the alkaloidal fraction was identified after a short isolation procedure. Moreover, the
alkaloid structure was determined using 1D and 2D NMR. Finally, to assess biological
properties of the compound, potential toxic effects on THP-1 cells and Danio rerio embryos
were evaluated.
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2. Results and Discussion
2.1. Structural Determination by 1D and 2D NMR Spectroscopy

Using our isolation procedure, approximately 1.8 g of the alkaloid was obtained from
100 g of G. reticulatum bark following. Next, we analyzed the chemical properties utilizing a
range of analytical techniques. The mass spectrum of the alkaloidal fraction demonstrated
that one alkaloid with a molecular ion at m/z 368 constituted 86% of the total composition
(Figures S1 and S2 in Supplementary Materials). Since it was the silylated fraction, it was
predicted that the molecular weight of this alkaloid was 296 g/mol. Next, the molecular
formula of this alkaloid was established to be C19H24N2O by LC-MS/MS.

The 1H-NMR spectrum (in CDCl3) demonstrated the presence of an ethyl side chain
(methyl group at δH 0.89 ppm, t, H-19, and methylene protons at δH 1.21 and 1.24 ppm, m,
H-18). The 1H-NMR spectrum (Figure S4) also revealed four signals at δH 6.57 (d, J = 7.7 Hz,
H-9), δH 6.74 (t, J = 7.4 Hz, H-10), δH 7.02 (t, J = 7.6 Hz, H-11), and δH 7.04 (d, J = 7.4 Hz,
H-12) which were characteristic for aromatic moieties. The 13C-NMR spectrum (Figure S5),
complemented by DEPT-135 and DEPT-90 experiments (Figure S6), displayed 19 signals
from the alkaloid, including two methyl groups, five methylenes, eight methines, and four
quaternary carbons, at δC 52.14 (C-7), δC 135.97 (C-8), δC 149.51 (C-13), and δC 172.51 (C-20).

Additionally, a range of 2D NMR spectroscopic techniques (COSY, ROESY, HSQC,
HMBC, 1H-15N HMBC, Figures S7–S11) was applied to identify the structure of geissosper-
miculatine. The HMBC correlation networks of H-9/C-10, C-8, and H-11/C-12, C-13
indicated the linkages of C-8–C-9–C-10 and C-11–C-12–C-13, respectively. Next, HMBC
analysis also showed correlations from H-2 to C-7. Moreover, the presence of a quaternary
carbon at δC 172.51 (C-20) with one strong correlation to δH 2.00 (m, H-21) suggested that
they formed a substituted indole ring. Correspondingly, a chemical shift of δC 172.51 (char-
acteristic for R1CONR2 groups) and a chemical shift of δH 2.00 typical for methyl protons
near a carbonyl group (CH3-C=O) revealed the presence of an indole ring substituted by
CH3-C=O. In the 1H-15N HMBC spectrum, there was a correlation from H-21 (δH 2.00) and
a nitrogen signal (δN 103.34), specific for primary amides, which confirmed the structure
of substituent. Additionally, COSY NMR spectra displayed correlations between H-18–
H-19, H-14–H-15, and H-16–H-17. The above analysis helped to determine the presence
of octahydroindolizine moiety in the structure. Importantly, the presence of the bridge
between C-6 and C-14 was concluded from COSY cross-peaks supported with ROESY
analysis. The structure of this indole alkaloid (geissospermiculatine, Figure 1, Table 1) was,
therefore, elucidated as 1-(7-ethyl-6,7,8,9-tetrahydro-6,11a-methanoindolizino[1,2-b]indol-
5(5aH,5bH,11H)-yl)ethanone, which we named geissospermiculatine. Additionally, its
three-dimensional conformation was predicted using in silico calculations.
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Table 1. NMR data and HMBC correlations for geissospermiculatine (δ in ppm) a.

Compound

Position δH (mult., J in HZ) δC HMBC b

2 3.97 (d, 5.5) 64.44 6, 7, 14
3 1.91 (br s) 33.76
5 2.99 (m) and 3.47 (m) 54.75 7, 16
6 2.17 (ddd, 11.6, 11.1, 3.4) and 2.37 (m) 37.93 2, 5, 7
7 52.14
8 135.97
9 6.57 (d, 7.7) 109.75 8, 10

10 6.74 (d, 7.4) 119.47 8, 9
11 7.02 (d, 7.6) 128.01 12, 13
12 7.04 (d, 7.4) 122.30 11, 13
13 149.51
14 3.38 (m) 66.35
15 1.66 (dt, 9.9, 14.7) 41.38
16 2.40 (m) and 3.04 (s) 49.28 14, 15
17 1.69 (dt, 9.9, 14.7) and 2.21 (m) 25.27
18 1.21 and 1.24 (m) 23.70 15, 16
19 0.89 (t) 11.45 15, 18
20 172.51
21 2.00 (m) 22.59 20

a Measured at 600 (1H) and 150 (13C) MHz in CDCl3; b HMBC correlations are from proton(s) stated
to the indicated carbon.

2.2. Cytotoxic Activity on In Vitro Cultured Cells

We have previously assessed and reported cytotoxic properties of the extracts from
G. reticulatum using THP-1 cell line [4]. This model has also been employed by others
to study cytotoxic properties of plant substances, including indole alkaloids [15,16]. Our
results show that the alkaloid fraction (30 µg/mL with 48 h of exposure) induced significant
cell death, comparable to staurosporine (10 µM) (Figure 2). Importantly, the vehicle (0.12%
ethanol) had no effect on the cell viability in this assay. Additionally, the treatment of the
cells with the lower concentration (10 µg/mL) of the fraction also resulted in a decrease
in the number of live cells. However, the more modest reduction did not reach statistical
significance but demonstrated a concentration-dependent effect of geissospermiculatine
(Figure 2). Our results suggest that the alkaloid, geissospermiculatine, could be further
evaluated for the treatment of leukemia.
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2.3. Effect on Zebrafish (Danio rerio)

The introduction of a new compound onto the market requires performing various
analyses, including animal tests of toxicity. Aside from the ethical concerns raised by the
public, the industry is also interested in alternative testing methods that are less time and
space consuming. Fish embryos represent an attractive model for toxicological assays since
they offer the possibility to perform small-scale, high-throughput analyses. Moreover, as
a toxicology model, zebrafish has the potential to reveal the pathways of developmental
toxicity due to their similarity with those present in mammals. Therefore, zebrafish are
often considered a useful model to screen as a part of a Target Product Profile to support
selection of relatively safe lead candidates early in the drug discovery process [17,18].

To test the toxicity of the fraction in vivo, we administered the alkaloid fraction to
zebrafish embryos and subsequently monitored their development (0–72 h) (Tables 2 and
3). We did not observe any evident toxic effect at 30 µg/mL—that is the concentration that
caused significant THP-1 cell death in our assays (Figure 2). However, the embryos did
display growth retardation upon exposure to higher concentrations of the alkaloid (100
and 300 µg/mL) (Table 3).

Table 2. Zebrafish embryo mortality.

Substance
E3 [%]

Alkaloidal Fraction

Time 100 µg/mL [%] 300 µg/mL [%]

24 h 2 2.5 50
48 h 0 0 0
72 h 0 0 100

Table 3. Toxicological effects during 72 h embryonic development of Danio rerio.

Substance
E3 [%]

Alkaloidal Fraction

Development Features 100 µg/mL [%] 300 µg/mL [%]

24 h n = 8 n = 39 n = 20
length [%] not hatched not hatched not hatched

heartbeats [/min] 132 ± 3 139 ± 2 * 125 ± 2
pericardial edema [%] none none none

48 h n = 8 n = 7, 32 not
hatched

n = 6, 14 not
hatched

length [%] reference (100%) ↓ 5% * ↓ 12% *
heartbeats [/min] 154 ± 5 133 ± 3 * 44 ± 2 *

pericardial edema [%] reference (100%) ↑ 8% ↑ 46%

72 h n = 8 n = 8, 1 not
hatched n = 8

length [%] reference (100%) ↓ 16% * death
heartbeats [/min] not measured not measured death

pericardial edema [%] reference (100%) ↑ 33% death

* Significantly different values; h, hours; ↓ decrease compared with E3; ↑ increase compared with E3.

3. Materials and Methods
3.1. General Experimental Procedures

GC-MS analysis was performed with an Agilent 7890A gas chromatograph equipped
with an Agilent 5975C mass selective detector. The injection of a 1 µL sample (10 mg of ex-
tract dissolved with 1 mL of pyridine and 100 µL BSTFA was added, after which the sample
was heated for 30 min at 60 ◦C for silylation) was performed with the aid of Agilent 7693A
autosampler. The separation was performed on an HP-5MS (30 m × 0.25 mm × 0.25 µm
film thickness) fused silica column at a helium flow rate of 1 mL/min. The ion source and
quadrupole temperatures were 230 ◦C and 150 ◦C, respectively. The electron ionization
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mass spectra (EIMS) were obtained at ionization energy 70 eV. LC-MS/MS analysis was
carried out by liquid chromatography (Agilent 1260 Infinity, Agilent Technologies, Santa
Clara, CA, USA) coupled with a hybrid triple quadrupole/linear ion trap mass spectrome-
ter (QTRAP 4000; AB SCIEX, Framingham, MA, USA). The 1D (1H, 13C, DEPT-135, and
DEPT-90) and 2D (COSY, ROESY, HSQC, HMBC, and 1H-15N HMBC) NMR spectra were
acquired on a Bruker Avance III 600-MHz spectrometer (Bruker Co., Ettlingen, Germany).
The experiments were performed in a 5 mm, three-channel probe (TXI-inverse) at 295 K.
Impulse sequences that came from the Bruker standard library of programs were used
for the measurements. Chemical shifts for the spectra were calibrated relative to the shift
of the 1H and 13C signals of the solvent (CDCl3). The spectra were analyzed using the
MestReNova program (version 14.1.2, Mestrelab Research S.L., Santiago de Compostela,
Spain) and TopSpinTM (Bruker). The 3D conformation (Figure 3) was predicted of the
alkaloid using the PM3 semi-empirical calculations followed by the HF/6-31G quantum
mechanical calculations.
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of theory). Three different views of this conformation are shown.

3.2. Plant Material

The sample of dried bark of Geissospermum reticulatum was collected in the Amazon
rainforest and stored at National Agrarian University—La Molina (Lima, Peru) in June
2013. The identity of the plant was confirmed at the same University by Engr. Santos Jaimes
Serkovic. A voucher specimen (GDMD 21760) is deposited at the Herbarium, Medical
University of Gdańsk, Poland.

3.3. Extraction and Isolation

The process of extraction was based on that proposed by Pilarski et al. [19], with some
modifications made by our team. Moreover, in comparison with Reina et al. [3], in the
present study, we employed a quicker and potentially cheaper extraction protocol. Twenty
mL MeOH(aq) (Chempur) was added to 1 g of minced bark and sonicated for 45 min in an
ultrasonic bath (Polsonic type sonic-2) set to 45 ◦C. Then, 10 mL MeOH(aq) was added, and
the mixture was sonicated again: for 15 min at 45 ◦C, and then for 45 min with switched-off
ultrasound. The mixture was then filtered and evaporated to dryness. The residue was
dissolved in the mixture of 10 mL of 2% H2SO4(aq) (POCH) and 10 mL of EtOAc(aq)
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(POCH) and sonicated for 15 min in an ultrasonic bath. The aqueous phase was separated
and extracted with 10 mL of EtOAc(aq). The aqueous phase was collected and stored at
4 ◦C for 24 h. Then the solution was decanted from the sediment. The aqueous phase
was adjusted to pH 10 with 10% NH4OH(aq) (Chempur), 10 mL of EtOAc(aq) was added,
and the mixture was shaken (Dragon Lab shaker, Beijing, China) for 10 min. The organic
phase separated, while the aqueous one was extracted again with 10 mL of EtOAc(aq). The
organic fractions of alkaloids were combined and evaporated to dryness.

3.4. Cell Culture

THP-1 (cell line typifying human monocytic leukemia; source ATCC TIB-202TM) cells
were cultured in RPMI-1640 medium (Sigma-Aldrich, St. Louis, MI, USA) supplemented
with 1% L-glutamine (Life Technologies, Carlsbad, CA, USA), 1% penicillin/streptomycin
(Sigma-Aldrich, 10,000 units penicillin and 10 mg streptomycin per mL) and 10% heat-
inactivated fetal bovine serum. Cells were subcultured at a density of 1–1.5 × 106 cells/mL.

3.5. Cytotoxic Activity Test with 7-AAD

Cells were stimulated for 24 h and, following the incubation, they were washed with
PBS by centrifugation at 400× g for 5 min. The supernatant was discarded, and the cells
were resuspended in 7-AAD solution (50µg/mL, eBioscience, San Diego, CA, USA) and
incubated for 20 min at 4 ◦C. Cells were kept on ice and immediately analyzed on an ADP
Cyan flow cytometer (Beckman Coulter, Brea, CA, USA). The flow cytometry data were
analyzed using FlowJo V10 (Tree Star, Ashland, OR, USA).

3.6. Zebrafish (Danio rerio) Embryo Toxicity Test

The zebrafish embryo toxicity test was performed according to published guidelines.
It should be noted that according to the EU Directive 2010/63/EU on the protection of
animals used for scientific purposes, the earliest life stages of animals are not defined as
protected and, therefore, do not fall into the regulatory frameworks dealing with animal
experimentation. Zebrafish (Danio rerio) used in this experiment were of the wild-type
AbxTL strain. The fish were housed in a circulating system that continuously aerates and
filters the water to maintain it in the right quality. The temperature in the room and tanks
was maintained between 26.0–28.5 ◦C (pH 6.8–7.5) on a 14 h light:10 h dark cycle. For
all experiments, E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM
MgSO4) was used. Twenty fertilized eggs of 4 h postfertilization (hpf) were used for each
experiment. The selected eggs were exposed to 5 mL of alkaloid fraction of 100 µg/mL
and 300 µg/mL Geissospermum reticulatum dissolved in E3 or E3 alone as a control.

All experiments were performed in duplicates. E3 controls were performed with
each set of experiments. The samples were incubated at 28 ◦C for 24, 48, and 72 h and
embryonic development was observed with a Leica M165 microscope after exposure to
the studied environment. The observations were made at room temperature (20 ◦C). The
delay in the development, the number of spontaneous movements (in 20 s), heartbeats,
length of each fish, development of ears, size of the pericardium, tail deformation, and
mortality were evaluated. The delay in the development was estimated based on the
percent of embryos not developed to the same stage as those treated with E3. To measure
the heart rate, individual embryos were placed under the microscope, and then a 10-s
lapse video was recorded. The number of heartbeats was recalculated to the beats per
minute. To measure the length of fish or the size of the pericardium, a photo was taken
while individual embryos were placed under the microscope. Other observations were
appraised visually. The figures were analyzed using the ImageJ program.
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4. Conclusions

In comparison with the previous report, here, we employed an optimized (faster and
potentially more cost efficient) protocol that enabled us to extract a novel indole alkaloid
(geissospermiculatine). The compound exhibited cytotoxic properties upon malignant
THP-1 cells in vitro, yet did not cause substantial defects of normal zebrafish embryos at a
THP-1 cell cytotoxic concentration.

Supplementary Materials: The following are available online. Figure S1: GC-MS chromatogram of
studied fraction after the silylation process. Figure S2: Mass spectrum of silylated geissospermicu-
latine (Rt = 58.124 min.) from GC-MS analysis. Figure S3: Significant HMBC (in black) and COSY
(in blue) correlations. Figure S4: 1H-NMR spectrum of geissospermiculatine. Figure S5: 13C-NMR
spectrum of geissospermiculatine. Figure S6: DEPT-135 (A) and DEPT-90 (B) NMR spectra of geis-
sospermiculatine. Figure S7: COSY spectrum of geissospermiculatine. Figure S8: ROESY spectrum
of geissospermiculatine. Figure S9: HSQC spectrum of geissospermiculatine. Figure S10: HMBC
spectrum of geissospermiculatine. Figure S11: 1H-15N HMBC spectrum of geissospermiculatine.
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