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A B S T R A C T

Mycobacterium chelonae is an environmental, non-tuberculous mycobacterial species, capable of causing infec-
tions in humans. Biofilm formation is a key strategy used by M. chelonae in colonising niches in the environment
and in the host. We studied a water-air interface (pellicle) biofilm of M. chelonae using a wide array of ap-
proaches to outline the molecular structure and composition of the biofilm. Scanning electron micrographs
showed thatM. chelonae biofilms produced an extracellular matrix. Using a combination of biochemical analysis,
Raman spectroscopy, and fluorescence microscopy, we showed the matrix to consist of proteins, carbohydrates,
lipids and eDNA. Glucose was the predominant sugar present in the biofilm matrix, and its relative abundance
decreased in late (established) biofilms. RNA-seq analysis of the biofilms showed upregulation of genes involved
in redox metabolism. Additionally, genes involved in mycolic acid, other lipid and glyoxylate metabolism were
also upregulated in the early biofilms.

1. Introduction

Bacteria belonging to the genus Mycobacterium are predominantly
environmental species, though some have evolved to become human
and animal pathogens, including the causative agents of tuberculosis
and leprosy (Bottai et al., 2014). A group of mycobacteria, termed non-
tuberculous mycobacteria (NTMs), are capable of a dual lifestyle,
usually occupying an environmental niche, but can cause a broad range
of infections in humans (Falkinham, 2013). These include Myco-
bacterium fortuitum, and subspecies of theMycobacterium avium complex
(MAC) and Mycobacterium abscessus complex that cause pulmonary in-
fections, and Mycobacterium chelonae, Mycobacterium marinum and
Mycobacterium ulcerans that infect skin and soft tissue. In particular the
members of the MAC are associated with HIV mortality (Corti and
Palmero, 2008) and M. abscessus is often identified in the lungs of cystic
fibrosis patients (Jönsson et al., 2007; Qvist et al., 2013). A key strategy
for colonisation of both environmental and host niches by NTMs is the
formation of biofilms (Falkinham, 2009). In the environment, NTM
biofilms are found in water bodies including lakes, rivers and streams

(De Groote et al., 2006; Iivanainen et al., 2010). The journey from the
environment to host can also take place via intermediary or ‘man-made’
niches which includes tubing in hospital equipment, catheters, and
plumbing for residential water supply (Falkinham, 2009). NTM biofilms
in an infected host (Holland et al., 2017; Qvist et al., 2015, 2013) are
likely to play a key role in virulence (Faria et al., 2015), either by easing
the colonization of the human host, evading the immune response, and/
or fostering bacilli with an increased drug-tolerant phenotype (Aung
et al., 2017, 2016; Davidson et al., 2011; Falkinham, 2009; Nessar et al.,
2011; Orme and Ordway, 2014; Rhoades et al., 2019; Roux et al.,
2016). Biofilms of NTMs can also act as reservoirs to seed bacteria into
hosts (Benwill and Wallace, 2014; Gilbert, 2017; Jeon, 2019; Schreiber
et al., 2018).

A number of mycobacterial species are known to forms biofilms in
nature or in vitro (Chakraborty and Kumar, 2019; Zambrano and Kolter,
2005), and while some mycobacterial biofilm-associated phenotypes
and components are common, other characteristics are species specific
(Chakraborty and Kumar, 2019). An example of both can be found in
the distinct lipids found in the mycobacterial cell envelope. Many
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mycobacterial biofilms accumulate free mycolic acids (FMA) (Ojha
et al., 2010, 2008; Sambandan et al., 2013) which form part of an ex-
tracellular matrix, and in M. smegmatis FMAs are released by enzymatic
hydrolysis of trehalose dimycolate (TDM) by a cutinase-like serine es-
terase encoded by MSMEG_1529 (Ojha et al., 2010). Both M. smegmatis
and M. tuberculosis produce three subclasses of mycolic acids, of which
the α-mycolates are found in both. Additionally M. smegmatis synthe-
sises α’ and epoxy mycolates, while M. tuberculosis makes the oxyge-
nated mycolates-methoxy and keto mycolic acids. Interestingly, keto
mycolic acids, absent in M. smegmatis and other mycobacteria including
NTMs, are also essential for biofilm formation in M. tuberculosis
(Sambandan et al., 2013). Furthermore, glycopeptidolipids from the
MAC and M. smegmatis play a key role in biofilm formation in these
species (Freeman et al., 2006; Nessar et al., 2011; Recht and Kolter,
2001), but are not produced by other mycobacteria including members
of the Mycobacterium tuberculosis complex.

Mycobacterium chelonae is an NTM that causes skin and soft tissue
infections and is also the leading cause of mycobacterial ocular infec-
tions (Kheir et al., 2015). While M. chelonae has been often char-
acterised as an opportunistic pathogen, causing infections in im-
munocompromised hosts who have undergone trauma or iatrogenic
procedures, it has also been reported to infect individuals with no un-
derlying immune deficiencies (Campbell et al., 2013; Jagadeesan et al.,
2013). In this study we chose to study biofilms of M. chelonae for a
number of reasons. First, M. chelonae is a rapid biofilm former and can
form biofilms under a range of nutrient proficiencies (Hall-Stoodley
et al., 1999). Next, across a range of niches, ranging from water bodies,
medical equipment and catheters, to diverse infected regions in a host,
including skin, cornea and implants, biofilm formation is a key strategy
for M. chelonae colonisation (Falkinham, 2009; Martín-de-Hijas et al.,
2009). Unlike a lot of other mycobacteria, M. chelonae has been shown
to form biofilms in vivo (Aung et al., 2017; Chandra et al., 2001). And
finally, M. chelonae is regarded as a highly drug tolerant NTM (Brown-
Elliott et al., 2012; Cowman et al., 2016), attributed in part to the
presence of strains with decreased expression of porins (Garcia et al.,
2019; Svetlíková et al., 2009), as well as the presence of beta lactamases
(Kwon et al., 1995) encoded in its genome (Fedrizzi et al., 2017),
properties which potentially make it difficult to treat infections that
involve biofilms of M. chelonae. Despite the importance of biofilms in
the pathobiology of M. chelonae, we do not have a good understanding
of how this NTM species forms biofilms, what they are composed of,
and if they differ in composition to those of other mycobacteria.

Deciphering biofilm formation inM. chelonae not only sheds light on
our understanding of mycobacterial biofilm formation in general, but
also has implications for future therapies that combine strategies to
weaken these structures in addition to standard antimicrobial regimes
when treating NTM infections. In this study we aimed to study the
molecular components of M. chelonae pellicles, a water-air interphase
biofilm, using an array of approaches that use electron microscopy,
confocal microscopy, Raman spectroscopy and other analytical
methods to define its ultrastructure, and biochemical content.
Furthermore, we used transcriptomics to outline distinct expression
patterns in the pellicles compared to planktonic cultures, enabling us to
conduct future studies outlining the temporal mechanisms of biofilm
establishment and formation.

2. Materials and methods

2.1. Culture conditions

M. chelonae CCUG47445 was routinely grown in Middlebrook 7H9
(DifcoTM) supplemented with OADC (Oleic acid-Albumin-Dextrose-
Catalase, BD DifcoTM) and 0.05% tyloxapol (Sigma-Aldrich) or 7H10
(DifcoTM) supplemented with OADC (BD DifcoTM) at 30 °C. For pellicle
formation, logarithmic cultures (OD 0.8–1) were diluted in Sauton’s
media supplemented with 0.5% glucose (Sigma), until an OD of 0.03,

and growth in either on 24-well plates (for microscopy and lipid ana-
lysis) or on 75 cm2 cap-vented culture flasks (for transcriptomics and
carbohydrate analysis), in a 30 °C static incubator for 5 (Biofilm t1) or
10 days (Biofilm t2). These specific time points were selected to capture
two key transitions in M. chelonae biofilm formation, one occurring
early (Biofilm t1) and linked to characteristic wrinkling of a mature
mycobacterial pellicle. The second time point (Biofilm t2) aligned with
a later event where the pellicular structure had sunk and was easily
dispersed on agitation. For growing planktonic cultures, M. chelonae
was inoculated in the same way as for pellicles, but tyloxapol was
added to the cultures to a final concentration of 0.05%, and incubated
at 100 rpm until an OD of 1.

2.2. RNA-Seq analysis

Biofilms (timepoint 1 and 2) and planktonic cultures from four
different experiments were used for whole transcriptomics analysis.
Total RNA was extracted from a 200 μL bacterial pellet, either from
biofilms or planktonic bacteria. The bacterial pellets were resuspended
in a lysis tube with 600 μL of a lysozyme (Amersham Pharmacia Biotec)
solution (5 mg/mL in Tris-EDTA pH = 8, Thermo Fisher scientific) and
7 μL of β-mercaptoethanol (Sigma-Aldrich), and agitated at maximum
speed in a FastPrep 120 Homogenizer (QBiogene) for one minute at
room temperature. Following agitation, 60 μL of 10% sodium dodecyl
sulfate (Sigma-Aldrich) were added to the mix, and the samples were
homogenized at the same speed for two more minutes. To the recovered
supernatant (600 μL), 60 μL of 3 M sodium acetate pH = 5.2 (Sigma-
Aldrich) was added, followed by 720 μL of acid phenol pH = 4.2
(Fisher Bioreagents). After a five-minute incubation at 65 °C, the upper
aqueous phase was recovered and washed once with 720 μL of acid
phenol pH = 4.2, and once with 550 μL of chloroform/isoamyl alcohol
24:1 (Sigma-Aldrich). 400 μL of the recovered upper aqueous phase
were mixed with 40 μL of 3 M sodium acetate pH = 5.2, followed by 3
volumes of chilled ethanol (Sigma-Aldrich). The RNA was precipitated
overnight at 4 °C, and the obtained pellet was washed once with 70%
ethanol. Once dry, the RNA pellet was resuspended in RNAse free water
(Thermo Fisher Scientific), followed by a treatment with DNAse
(Promega). The resulting RNA was quantified in the NanoDrop (Thermo
Scientific), and its integrity was assessed in a 2100 Bioanalyzer system
(Agilent Technologies).

The ribosomal RNA was depleted using the Ribo-Zero Gold rRNA
Removal Kit (Illumina) according to the manufacturer directions. For
synthesizing the DNA library, the Tru-Seq Stranded RNA (Illumina) and
the samples were sequenced using an Illumina NextSeq Instrument.
Paired-end 75 bp reads were checked for technical artifacts using
Illumina default quality filtering steps. Raw FASTQ read data were
processed using the R package DuffyNGS as described previously
(Vignali et al., 2011). Briefly, raw reads were passed through a 3-stage
alignment pipeline: (i) a prealignment stage to filter out unwanted
transcripts, such as rRNA, mitochondrial RNA, albumin, and globin; (ii)
a main genomic alignment stage against the genome(s) of interest.
Reads were aligned to M. chelonae (ASM163280) with Bowtie2
(Langmead and Salzberg, 2012), using the command line option “very-
sensitive.” No mitochondrial RNA, albumin, and globin genomes were
provided for the bacterial samples. BAM files from stage (ii) was com-
bined into read depth wiggle tracks that recorded both uniquely
mapped and multiply mapped reads to each of the forward and reverse
strands of the genome(s) at single-nucleotide resolution. Gene tran-
script abundance was then measured by summing total reads landing
inside annotated gene boundaries, expressed as both RPKM and raw
read counts. RNA-seq data (raw fastq files and read counts) have been
deposited in the GEO repository under accession number GSE144514.

2.3. Differentially expressed genes

A panel of 5 differential expression (DE) analysis tools was used to
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identify gene expression changes between 5-day old biofilms (Biofilm
t1) samples and planktonic samples or 10-day old biofilms (Biofilm t2)
samples and planktonic samples. The tools included (i) RoundRobin (in-
house); (ii) RankProduct (Breitling et al., 2004); (iii) significance ana-
lysis of microarrays (SAM) (Tusher et al., 2001); (iv) EdgeR (Robinson
and Smyth, 2008); and (v) DESeq2 (Love et al., 2014). Each DE tool was
called with appropriate default parameters and operated on the same
set of transcription results, using RPKM abundance units for Round-
Robin, RankProduct, and SAM and raw read count abundance units for
DESeq2 and EdgeR. All 5 DE results were then synthesized, by com-
bining gene DE rank positions across all 5 DE tools. Specifically, a
gene’s rank position in all 5 results was averaged, using a generalized
mean to the 1/2 power, to yield the gene’s final net rank position. Each
DE tool’s explicit measurements of differential expression (fold change)
and significance (P-value) were similarly combined via appropriate
averaging (arithmetic and geometric mean, respectively). Genes with
averaged absolute log2 fold change bigger than two and multiple hy-
pothesis adjusted P-value below 0.01 were considered differentially
expressed.

2.4. Analysis for metabolic pathway enrichment

We mapped the significantly differentially expressed genes at bio-
film t1 and t2 against the most recent genome-scale metabolic network
construction of M. tuberculosis H37Rv iEK1011 (Kavvas et al., 2018) by
identifying orthologs using protein to protein sequence comparison
using the BLOSUM62 scoring matrix (Henikoff and Henikoff, 1992). We
used the subsystem definitions outlined in iEK1011 to explore pathway
usage at the network level. We identified metabolic pathways that were
significantly enriched in the M. chelonae biofilm stages (Benjamini
Hochberg corrected hypergeometric P-value < 0.05). For these path-
ways, we calculated the average fold-change of all genes.

2.5. Raman spectroscopy

Raman spectra were collected from M. chelonae planktonic bacteria
and biofilms (timepoint 1 and 2) using a Renishaw InVia Raman
Microscope (Renishaw, UK) equipped with 785 nm laser. The laser was
focussed onto the sample using a 50X objective with 0.75NA (Leica,
Germany). Spectral calibration was performed using the 520.5 cm−1

Raman band for silicon. The laser power on the sample was 12 mW.
Data collection was performed using the Wire 4.2 software with 8 s
exposures and 10 accumulations.

The planktonic and biofilm bacterial cultures from each replicate (4
replicates) was pelleted (6000 X g, 4 °C, thrice) and resuspended in
milliQ water. A concentrated bacterial solution of 2.5 µL was cast on
MgF2 substrate (Global optics, UK). From each dried drop at least 30
spectra per experiment were collected from different areas of sample
and each experiment was repeated thrice to account for biological
heterogeneity.

Raman spectra were subjected to pre-processing steps. The spectra
were checked for cosmic ray removal and baseline correction. All
spectra were vector normalised to remove any effects related to con-
centration and instrumental variations using Origin 2016. To remove
noise, the spectra were smoothened using 7 point, 3rd order polynomial
-based analysis Savitzky- Golay smoothening using Wire 4.2.
Multivariate analysis (PCA) were performed using Unscrambler X 10.3
(Camo Analytics, Norway).

To determine the main Raman shifts driving the variability between
the samples, we applied a Principal Component Analysis in the nor-
malized samples, using the SciKit-Learn (Pedregosa et al., 2011)
module in Python, and we further associated the obtained Raman shifts
with characteristic biomolecules as described before (Kuhar et al.,
2018; Talari et al., 2015; Wiercigroch et al., 2017). The intensities
between samples were compared using a Mann-Whitney u test, where
the intensities of the samples were considered significantly different if

the p-value < 0.05.

2.6. Scanning electron microscopy (SEM)

M. chelonae 5-day old biofilms (t1) were formed in a 24-well plate.
10-day old pellicles were easily disrupted due to movement, thus were
not imaged. The formed biofilm was fixed overnight with a solution of
6% paraformaldehyde (Sigma Aldrich) in PBS, and imaged using a
Philips XL-30 FEG ESEM in the Centre for Electron Microscopy at the
University of Birmingham.

2.7. Confocal microscopy

eGFP-expressing M. chelonae biofilms t1 were formed as described
for SEM, and stained with a single fluorophore targeting a specific
component of the biofilm matrix. The conditions used for each fluor-
ophore are summarized in Table 1. The stained pellicles then were fixed
using paraformaldehyde 4% in PBS for 30 min, and mounted in mi-
croscope glass slides for further image acquisition. From three different
experiments, five confocal z-stacks (covering approximately 4 μm) were
acquired from each experimental sample. Images were acquired using a
Nikon A1R system equipped with Ti microscope frame and a 100x/1.4
PlanApo objective.

2.8. Image processing

The acquired images (5 images per each experiment, 3 different
experiments) were processed in Icy software (de Chaumont et al.,
2012), using a similar approach as in Pike et al., 2017. Briefly, the
acquired images were de-noised using a median filter, and for gen-
erating the region of interest, an automated threshold was calculated
using the Li method (Li and Tam, 1998). Once the region of interest
(ROI) was created, the Colocalization Studio plugin and the ROI Sta-
tistics plugins in Icy were used to calculate the Pearson’s and Mander’s
coefficients, and the volumes of the matrix components respectively.

2.9. Lipid analysis

For lipid analysis, M. chelonae biofilms and planktonic cultures were
grown as described before, but Sauton’s media was supplemented with
14[C]-acetic acid (1 μCi/mL, Perkin Elmer). Different lipid fractions
were extracted and resolved by thin layer chromatography as described
previously (Besra, 1998). Lipid species were visualised by auto-
radiography by exposing X-ray films Kodak Carestream) to the resolved
TLC plates for 48 h.

2.10. Extraction and analysis of surface exposed carbohydrates

Surface exposed materials were extracted mechanically as described
elsewhere (Grzegorzewicz and Jackson, 2013; Parish et al., 2003). The
harvested pellets from three different experiments of planktonic cul-
tures and biofilms were mixed with 4 mm glass beads and shaken gently
for 2 min, and immediately after, the pellets were resuspended in 50 mL
of miliQ water, and further centrifuged at 3000g for 15 min at 4 °C. The

Table 1
Fluorophores and conditions used for staining M. chelonae biofilms for CLSM.

Fluorophore Target Concentration Time

Nile Red Lipids 1 μM 30 min
Propidium

iodide
Nucleic acids 15 μM 15 min

Sypro Ruby Proteins As provided by the
manufacturer.

30 min

Alexa Fluor α-mannose and α-glucose in
the pyranose configuration.

100 μg/mL 30 min
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obtained supernatants were filtered through a 0.45 μm pore size filter,
and concentrated to 1/10th of the original volume using a rotary eva-
porator (Buchi). The concentrated filtrate was mixed with chloroform
and methanol to a final ratio chloroform/methanol/water 1:2:0.8 (v/v/
v). The mix was agitated for 1 h, and then centrifuged for 10 min at
3000g. The aqueous phase and the interphase were recovered in se-
parate tubes. The interphase was re-extracted three more times with
miliQ water and the obtained supernatants were pooled with the pre-
viously recovered aqueous phase. The pooled extracts were con-
centrated to a final volume of 2 mL of miliQ water for further digestion
with Proteinase K (Promega). The protein-digested material was dia-
lyzed against MiliQ water for 48 h using a 3.5 kDa SpectralPore dialysis
membrane (Spectrum Laboratories Inc.), and 10 μL of the obtained
materials were hydrolysed with trifluoroacetic acid (Sigma-Aldrich) to
obtain monosaccharides for further derivatization of alditol acetates for
gas chromatography analysis as described previously (Grzegorzewicz
and Jackson, 2013).

3. Results

3.1. Scanning electron microscopy (SEM) reveals the presence of a potential
extracellular matrix (ECM) in M. Chelonae biofilms.

To visualise the detailed ultrastructure of M. chelonae biofilms, we
first imaged a 5-day old biofilm (Biofilm t1) by SEM. The micrographs
revealed the presence of a thick material covering mycobacterial
growth, likely an extracellular matrix (ECM), with no clear outlines of
individual bacterial cells within the pellicle (Fig. 1B–D). SEMs of
planktonic cultures, on the other hand revealed individual myco-
bacterial cells (Fig. 1A), lacking any discernible extracellular material.
The M. chelonae biofilm also revealed the presence of pores inter-
mingled with cords of M. chelonae, suggesting a similar architecture to
biofilms of other mycobacterial species (Fig. 1C–D) (Bardouniotis et al.,
2001; Marsollier et al., 2007; Sambandan et al., 2013; Trivedi et al.,

2016). Thus, the one remarkable characteristic revealed by SEM was
the presence of a substantial ECM in the M. chelonae biofilm. The pores
observed in the biofilm were likely conduits for nutrients to inner parts
of the biofilm.

3.2. Raman spectroscopy reveals differing spectra for M. chelonae biofilms
and planktonic cells

To further outline the biomolecular constituents of M. chelonae
biofilms, we next queried whether biofilms had distinct biomolecule
composition compared to planktonic cultures. We initiated these stu-
dies using Raman Spectroscopy (RS). We chose RS as it is a rapid ap-
proach to study the overall biochemical composition between biofilms
and planktonic bacteria to outline differences between samples. Unlike
other vibrational spectroscopic techniques, such as infrared spectro-
scopy, water does not cause interference, an attribute that makes
Raman spectroscopy an attractive tool for studying intact biofilms with
minimal processing requirements (Kelestemur et al., 2018). RS has been
widely used to study bacterial biofilms (Kelestemur et al., 2018). It has
also been used to study the biology of mycobacteria (Buijtels et al.,
2008; Kumar et al., 2020; Perumal et al., 2018; Stöckel et al., 2017,
2015; Verma et al., 2019). Raman spectroscopy also has potential as a
diagnostic tool, as it allows the identification of mycobacteria to the
species level (Buijtels et al., 2008; Stöckel et al., 2017, 2015; Verma
et al., 2019), and even to determine the viability of the identified bacilli
(Kumar et al., 2020). We generated the Raman spectra from M. chelonae
planktonic, as well as 5 day (Biofilm t1) and 10 day old biofilms
(Biofilm t2) (Fig. 2A). While it was not possible to distinguish between
samples to easily identify Raman peaks by overlaying the spectra, we
were able to observe differences following Principal Component Ana-
lysis of the collected spectral data (File S1, supplemental materials). We
found that 62.6% of the variance from the data set could be explained
using three principal components (PC1 36.3%, PC2 23.6%, and PC3
2.7%), and we further compared the intensities of the signal of

Fig. 1. Scanning electron micrographs (SEMs) of M. chelonae cultures grown in Sauton’s media. Unlike planktonic M. chelonae where individual bacilli are clearly
visible as rods (A), SEMs of 5-day old M. chelonae pellicles show the presence of contiguous mass of what appeared to be extracellular material (ECM) coating bacilli
(B-D, decreasing magnification). The structures of the 5-day old M. chelonae pellicles showed the presence of pores (one such pore is highlighted with a white circle in
C).
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characteristics Raman shifts with high contribution to these PCs (File
S1, supplemental materials). We then associated the identified Raman
shifts with biomolecules using previously described Raman signatures
(Kuhar et al., 2018; Talari et al., 2015; Wiercigroch et al., 2017). The
analysis showed that the highest variability between M. chelonae
planktonic growth and biofilms was for lipids (1400–1500 cm−1, lipids
IV) and protein signals (1003 cm−1, phenylalanine; 1200–1300 cm−1,
amide III), with a lesser variability for nucleic acids (726 cm−1, ade-
nine; 791 cm−1, pyrimidine; 1099 cm−1, symmetric stretching of PO4

-

in DNA) and carbohydrates (941 cm−1, α(1 → 6) glycosidic linkage;
1131 cm−1, symmetric stretching in glycosidic linkage) (Fig. 2A, File

S1, supplemental materials). For proteins, we observed a decrease in
the intensity of characteristics signals in Biofilm t2 (Fig. 2B), whereas
the signals for lipids increased (Fig. 2C) in Biofilm t2.

3.3. Flourescence confocal microscopy of the M. Chelonae biofilm

To follow up on our findings of a potential ECM structure revealed
by SEM of M. chelonae biofilms, and its biomolecular composition by RS
analysis, we further studied the composition and architecture of the M.
chelonae biofilms using confocal microscopy. While 5-day old biofilms
(Biofilm t1) of eGFP-expressing M. chelonae were stained with an array

Fig. 2. Raman spectra of M. chelonae cultures. Raman
spectra was obtained from M. chelonae biofilms and
planktonic cultures (Fig. 2A), and the principal
component analysis (File S1, supplemental materials)
show differences mainly in Raman shifts associated to
proteins and lipids. A comparison of the medians of
the intensities for characteristic Raman shifts asso-
ciated with proteins (Fig. 2B; phenylalanine
1003 cm−1 and amide III 1245 cm−1) shows a uni-
form trend, where the medians of the intensity of the
signals decrease for Biofilm t2 compared to Plank-
tonic cultures or Biofilm t1; while the comparison of
the intensities of the Raman shifts in regions asso-
ciated with lipids (Fig. 2C; lipids region IV
1471 cm−1, and Lipids region VI, 864 cm1) are in-
creased in Biofilm t2 compared to Biofilm t1 and
Planktonic bacteria (C). The Raman shifts with high
contribution to the principal components associated
with nucleic acids (ring breathing of adenine,
726 cm1; phosphodiester bonds in DNA,788 cm1;
symmetric stretching of PO4 in DNA, 1099 cm−1) and
carbohydrates (glycosidic linkage, 1131 cm−1 and
941 cm−1) did not show a uniform trend (File S1,
supplemental materials), likely due to the contribu-
tion of other biomolecules at the same wavelengths.
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Fig. 3. Confocal micrographs of 5-day old M. chelonae biofilms. 5-day old eGFP-expressing M. chelonae biofilms were stained separately with fluorophores targeting
polymers from the biofilm matrix. Nile red (Fig. 3A) was used to stain lipids, Propidium Iodide (Fig. B) for eDNA, SYPRO Ruby biofilm stain (Fig. 3C) for proteins, and
Concanavalin A conjugated with AlexaFluor 647 (Fig. 3D) for carbohydrates. From left to right, 3D projections confocal z-stacks for eGFP, the fluorophore targeting a
component from the extracellular matrix, and the overlay of both signals.
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of fluorophores to selectively label the components of the biofilm; 10-
day old biofilms (Biofilm t2) were easily disrupted with the washes
involved in staining, so imaging was not pursued. We used Nile Red
(NR, Sigma Aldrich) for staining lipids, Concanavalin A conjugated with
Alexa Fluor 647 (ConcA, Thermo Fisher Scientific) for staining carbo-
hydrate (polysaccharide), FilmTracer™ SYPRO® Ruby biofilm matrix
stain (SR, Thermo Fisher Scientific) for proteins, and Propidium Iodide
(PI, Sigma Aldrich) for nucleic acids. With the exception of NR, that is a
lipophilic molecule able to penetrate mycobacterial cell wall (Xu et al.,
2014; Yu et al., 2012), and thus able to stain extracellular and in-
tracellular lipids, M. chelonae is impermeable to all other dyes used for
staining. As an example, we used PI to stain eDNA, as this dye is
commonly used as a cell viability marker, because it can’t penetrate
intact cell membranes. Confocal imaging of the biofilms revealed
staining by all four fluorophores indicating the presence of lipids,
proteins, carbohydrates and DNA at an extracellular location (Fig. 3).
Remarkably, the distribution of some of these biomolecules was not
uniform in the biofilm, with some showing ‘sectoring’ with areas of high
levels, to sectors where no signal was detected. File S2, supplemental
materials, shows binarized images of a confocal stack of eGFP expres-
sing M. chelonae biofilms stained for lipids, carbohydrates, protein, and
eDNA, visualised traversing from the bottom to the top of a 20 μm
section of the biofilm. To quantify this observation, we then evaluated
colocalization between the bacilli and each of the four biopolymers.
These measurements helped us to objectively describe the biofilm ma-
trix (Schlafer and Meyer, 2017). To quantitate colocalization, we cal-
culated two sets of values for the fluorescence signals obtained: Pear-
son’s correlation coefficient and Mander’s coefficients. Pearson’s
correlation coefficient allows us to assess how well two signals linearly
correlate to each other. The higher the value of the Pearson’s correla-
tion coefficient is, the more likely the intensity of one signal will line-
arly increase, proportionally to the other signal it is being compared to.
For example, if the intensity of the fluorescence signal of one of the
biomolecules is compared to that of bacterial cell expressed GFP, and
both signals increase or decrease proportionally, there is a correlation
of the signal with GFP will be indicated by a high Pearson’s co-efficient.
However, if the intensity of the signal from a biomolecule does not
change regardless of the amount of bacteria (eGFP signal), the resultant
value of the Pearson coefficient is lower. Manders co-efficient on the
other hand is a measure of the co-occurrence of two signals, measuring
the fraction of a given signal that overlaps with a second signal. If the
fluorescence signal of a labelled biomolecule completely overlaps with
the bacterial GFP signal, the Manders co-efficient will be 1, while a
Mander’s coefficient of 0 means that none of the two signals overlap,
i.e. the biomolecule and the bacteria are in distinct, exclusive sectors.
We also calculated the relative volume of each of the assessed biopo-
lymer, using as a reference the volume of M. chelonae (eGFP) in the
biofilm. All the coefficients are summarized in Table 2. The data in-
dicated that while both eDNA and lipids showed a high level of colo-
calization with bacteria in the images (Fig. 3), lipids with their rela-
tively lower calculated Mander’s coefficients were more scattered
across the biofilm matrix than eDNA. Proteins colocalize well with the
bacteria, however, only around the 70% of the signal from proteins

overlap with the bacteria (Manders coefficient M2, Table 2), showing
that proteins form the bulk component of the biofilm matrix. Finally,
the samples stained for carbohydrates showed the lowest Pearson’s
coefficient, meaning a weak linear correlation of the intensity of the
signals, even though around 90% of the carbohydrate signal overlaps
with the signal for the bacilli. This indicated that there are zones in the
biofilm that accumulate larger amounts of carbohydrates, mostly in the
matrix, compared to the carbohydrates occurring in the close proximity
of the bacteria.

3.4. Pellicles of M. chelonae exhibit a different lipid profile compared to
planktonic cells

As mycobacteria produce a range of distinctive lipids, and given that
several genes related to lipid metabolism are known to play a key role
during mycobacterial biofilm formation, we chose to follow up on our
microscopy and RS studies, by first looking at the lipid profiles of M.
chelonae biofilms. Biofilm or planktonic M. chelonae cultures, were
grown in Sauton’s media supplemented with 14C-acetic acid, and the

Table 2
Colocalization coefficients for M. chelonae biofilm components.

Component of the ECM Relative
volume

Pearson’s
correlation
coefficient

Mander’s coefficient

M1 M2

Nile Red (Lipids) 1.030 0.717 0.926 0.898
Propidium iodide (eDNA) 1.081 0.859 0.984 0.924
Concanavalin A Alexa

Fluor 647
(Carbohydrates)

0.688 0.271 0.640 0.966

SYPRO Ruby (Proteins) 1.073 0.678 0.832 0.732

Fig. 4. Lipid profile of M. chelonae cultures. Solvent extractable lipid fractions
from M. chelonae biofilms and planktonic bacteria were resolved using thin
layer chromatography, using solvent systems of different polarities. M. chleonae
biofilms (Fig. 4A) show an accumulation of free mycolic acids (FMA) compared
to planktonic cultures (Fig. 4B). The amount of trehalose dimycolate (TDM)
decreases from biofilm T1 (5 days, Fig. 4C) to biofilm T2 (10 days, Fig. 4D).
Polar lipids from M. chelonae biofilm T1 (Fig. 4E) show an accumulation of
phosphatidyl glycerol (PG) compared to its planktonic counterpart (Fig. 4F).
DAT- diacylthrealose, DPG- diphosphatidyl glycerol, PE- phosphatidyl ethano-
lamine, PI- phosphatidylinositol, AC2PIM2- diacetylated phosphatidylinositol
dimannoside, AC1PIM2- acetylated phosphatidylinositol dimannoside, PIMs-
phosphatidylinositol mannosides.

P. Vega-Dominguez, et al. The Cell Surface 6 (2020) 100043

7



extracted lipid fractions were resolved by thin layer chromatography,
and visualized by auto-radiography (Fig. 4). Free mycolic acids were
produced in excess by M. chelonae biofilms (Fig. 4A) when compared to
those from planktonic cultures (Fig. 4B). Also, trehalose dimycolate
(TDM) content decreased from biofilm t1 to biofilm t2 (Fig. 4C and 4D).
Both lipid alterations have also been seen in other mycobacterial bio-
films (Ojha et al., 2010). However, an alteration in a third class of lipids
appeared distinct to M. chelonae biofilms: the amount of phosphati-
dylglycerol (PG) seems to be increased in M. chelonae biofilms (Fig. 4E)
as compared to its planktonic counterpart (Fig. 4F), although this lipid
is known to be scarce in the mycobacterial inner membrane (Jackson
et al., 2000).

3.5. The glucose content of M. chelonae biofilms decreases as the biofilm
ages

To further study the nature of the carbohydrates detected in M.
chelonae biofilm ECM by confocal microscopy and RS analysis, we as-
sessed the composition of the polysaccharides present in the ECM. We
separated the ECM from biofilm structure, and further purified poly-
saccharides by mechanically separating the ECM with glass beads,
followed by chemical partition and protein digestion, prior dialyzing of
the obtained aqueous phase using a 3 kDa membrane to remove salts
and other small molecules (from media components). The purified ex-
tracts were hydrolysed with TFA to yield monosaccharides, which were
in turn derivatized to alditol acetates, and resolved using gas chroma-
tography (GC). The relative abundance of the principal monosaccharide
components in the ECM of M. chelonae pellicles is summarized in Fig. 5.
We found that the components of extracellular polysaccharides of M.
chelonae biofilms, both t1 and t2, and planktonic cultures are glucose,
mannose and arabinose; however, glucose stood out as being the most
abundant. Interestingly, the proportion of the glucose content in the
ECM polysaccharides decreases from biofilm t1 to biofilm t2.

3.6. M. chelonae biofilms display a distinct transcriptional profile

To outline potential molecular mechanisms driving M. chelonae
biofilm formation, we performed a transcriptomic analysis (RNA-seq) of
M. chleonae biofilm t1 and t2, and compared these to that of a plank-
tonic culture. Over all 293 genes were significantly differentially ex-
pressed (P-value < 0.01 and estimated absolute log2 fold-change >
2) in 5-day old biofilms (Biofilm t1), and 633 in 10-day old biofilms

(Biofilm t2) (Fig. 6A). Identities of the DEGs are shown in File S3,
supplemental materials. A total of 264 of these genes show significant
differential expression with same directionality (i.e. up- or down-reg-
ulation) in both stages (Fig. 6B). The change in the expression of this set
of genes could be due to the bacilli entering into the stationary phase,
or perhaps because these genes have a role in biofilm maintenance. To
depict an example, among the common genes differentially expressed
with the same directionality in both biofilm stages, we found genes
from the mce5 operon, and mce1A. In M. tuberculosis the genes from the
mce operons are upregulated during the stationary phase (Saini et al.,
2008; Singh et al., 2016). In the context of biofilm, the deletion of all six
of mce operons in M. smegmatis impairs the formation of this structure,
likely due to alterations on the cell wall composition (Klepp et al.,
2012). In this study, we found that genes of the mce5 operon
(BB28_RS04495/yrbE5A, BB28_RS04475/mce5C, BB28_RS04470/
mce5D, and BB28_RS04485/mce5A) are downregulated during both
biofilm stages, in contrast to what has been observed during the sta-
tionary phase in M. tuberculosis. We also observe an upregulation of the
mce1A gene in both biofilm stages. The mce1 operon aids M. tuberculosis
to transition better from a slow growth rate state to a fast growth rate
state (Beste et al., 2009), a trait that may result beneficial for the bacilli
residing in a biofilm. These two examples suggest that, although some
transcriptional changes occurring in the stationary phase are common
to biofilm formation (upregulation of the mce1A gene), there are spe-
cific transcriptional signatures (downregulation of the mce5 operon
genes) occurring during biofilm formation.

To further query the metabolic pathways enriched during biofilm
formation, we used a recently updated genome-scale model of
Mycobacterium tuberculosis metabolism, iEK1011 (Kavvas et al., 2018),
and looked for orthologs within the significantly differentially ex-
pressed genes from our transcriptional data. Eight metabolic pathways
showed enrichment (Benjamini-Hochberg adjusted P-value < 0.05) in
biofilm t1 (Fig. 6C), and four in biofilm t2 (Fig. 6D). The identities of
the genes from each metabolic subsystem are summarized in supple-
mental materials (File S4). Transport genes and those for mycobactin
biosynthesis are down-regulated in both biofilm t1 and t2. In addition,
during biofilm t2 genes involved in the arginine and proline metabolism
were down-regulated. Mycolic acid biosynthesis and other lipid meta-
bolism were up-regulated during biofilm t1, as well as genes from the
redox metabolism and glyoxylate pathway. Interestingly, lat
(BB28_RS18260), coding for a lysine amino transferase (Tripathi and
Ramachandran, 2006), is up-regulated in biofilm t1 and t2. In M.
smegmatis, lat is involved in persister cell formation following exposure
to norfloxacin (Li et al., 2016).

4. Discussion

Mycobacterium chelonae, like other clinically relevant NTMs, forms
biofilms both in the environment and in the host. We have character-
ized M. chelonae pellicles, an in vitro biofilm model, describing the
presence and composition of an ECM in the biofilm. We also delineated
distinct transcriptional responses with potential roles in biofilm for-
mation. The mechanisms involved in the development of mycobacterial
biofilms are orchestrated as a response of fluctuations of redox state of
the bacilli (Geier et al., 2008; Gupta et al., 2015; Koliwer-brandl et al.,
2016; Ojha and Hatfull, 2007; Trivedi et al., 2016; Weerd et al., 2016;
Wolff et al., 2015), which in turn are generated due to the micro-
environments within the biofilm. We observe an up-regulation of redox
metabolism genes during Biofilm t1, specifically of subunits of the BD
cytochrome, used in the electron transfer chain during hypoxic condi-
tions. In M. smegmatis biofilms the NADH/NAD+ ratio is three times
higher than in planktonic M. smegmatis (Anand et al., 2015), suggesting
a reductive environment in bacilli within biofilms. Mycobacteria can
use a variant of the TCA cycle that reduces oxaloacetate to succinyl CoA
to replenish the NAD+ pool (Beste et al., 2011), thus helping to
maintain the redox homeostasis in mycobacteria. During Biofilm t1, we

Fig. 5. Relative abundance of sugars from extracellular polysaccharides.
Polysaccharydes from the ECM of M. chelonae biofilms the three most abundant
monosaccharydes present in M. chelonae biofilms and planktonic extracellular
material are, in decreasing order, glucose, mannose, and arabinose. The relative
abundance of glucose drops in Biofilm t2 compared to Biofilm t1 or planktonic
bacteria.
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observe an up-regulation of the lipid, glyoxylate, and mycolic acid
metabolism. It would be interesting to measure metabolites associated
with the redox state of the bacilli during M. chelonae biofilms, and also
query the metabolic pathways active during biofilm formation/disper-
sion, to further explore potential anti-biofilm strategies.

Recently the molecular events defining the stages during pellicle
formation in Mycobacterium smegmatis have been defined (Yang et al.,
2017), and the role of lipid metabolism during biofilm formation has
been extensively addressed in several mycobacteria (Anand et al., 2015;
Nessar et al., 2011; Ojha et al., 2005, 2010, 2008; Pacheco et al., 2013;
Pang et al., 2012; Recht and Kolter, 2001; Zambrano and Kolter, 2005).
Our data shows that similar to other mycobacteria (Ojha et al., 2010,
2008), M. chelonae biofilms accumulate free mycolic acids, likely from
trehalose dimycolate (TDM), suggesting a similar mechanism as in M.
smegmatis, where a serine-hydrolase cleaves TDM to yield free mycolic
acids (Ojha et al., 2010). Interestingly, the accumulation of free mycolic
acids has also been observed in a M. tuberculosis strain lacking Mez, an
enzyme involved in the conversion of malate into pyruvate (Basu et al.,
2018). Interestingly, biofilms of M. chelonae seem to accumulate

phosphatidyl glycerol (PG), an inner membrane polar lipid species
present, but not relatively abundant, in planktonic cells.

Our confocal microscopy analysis shows that proteins, and in a
minor proportion, carbohydrates, are present in the biofilm matrix.
Previous studies have shown that the most abundant component of M.
smegmatis and M. phlei pellicles is proteins, and to a lesser degree,
carbohydrates (Lemassu et al., 1996b) suggesting similarities between
the biofilms of these mycobacterial species, and contrasts with M. tu-
berculosis (Ortalo-Magne et al., 1995) and M. avium (Lemassu et al.,
1996a) biofilms, where the major component is carbohydrates. The
composition of the extracted polysaccharide was predominantly glu-
cose suggesting a cellulose or α-glucan polymer, followed by mannose
and arabinose, likely from mannans and arabinomannans. Following
extraction of exposed polysaccharides from M. chelonae biofilms, we
noted a decrease in the glucose content from biofilm t1 to biofilm t2,
which is likely to coincide with the dispersal stage of the biofilm. Other
biofilm-forming bacteria are known to modulate polysaccharide meta-
bolism as a strategy for biofilm dispersion (McDougald et al., 2012), as
it is a crucial structural component of biofilms (Rathinam et al., 2019;

Fig. 6. Differentially expressed genes and enriched metabolic subsystems in M. chelonae biofilms. The Venn diagram for DEGs (Fig. 6A) shows that 293 genes are
significantly differentially expressed during Biofilm t1, while 633 are differentially expressed in Biofilm t2. There is a common set of 264 genes that show significant
differential expression with the same directionality, and the raw Z-scores of the 240 up-regulated genes (Fig. 6B, green), and the 24 down-regulated genes (Fig. 6B,
pink), are shown in the heatmap for biofilm T1 and T2 (Fig. 6B), suggesting a core group of genes required for the maintenance of the biofilm. The list of the enriched
metabolic pathways, and their respective fold change, during Biofilm t1 and Biofilm t2 (Fig. 6C and Fig. 6D) shows that seven metabolic pathways are enriched
during Biofilm t1, while only four are enriched during Biofilm t2. The genes that are differentially expressed on those metabolic pathways can be found in File S4 in
supplemental materials.
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Sutherland, 2001). In Pseudomonas aeruginosa, the quorum sensing
molecule, N-acylhomoserine lactone, induces a signalling cascade that
represses the pel operon and subsequently the synthesis of the Pel
polysaccharide, which is abundant in P. aeruginosa biofilms (Ueda and
Wood, 2009). Although quorum sensing molecules have not yet been
identified in mycobacteria, it is possible that other signals pertaining to
the later stages of the biofilm trigger mechanisms that lead to the re-
pression of the synthesis of biofilm components, such as poly-
saccharides.

Along with lipids, carbohydrates and proteins, extracellular DNA
(eDNA) is present in the matrix of several mycobacterial biofilms
(Ackart et al., 2014; Rose et al., 2015; Rose and Bermudez, 2016;
Trivedi et al., 2016). eDNA mediates the adhesion of bacteria to sub-
strates prior to biofilm formation, and plays a role in the structural
maintenance and protection against antimicrobials in several bacterial
pathogens (Okshevsky and Meyer, 2015). M. chelonae forms biofilms
with abundant eDNA in a keratitis murine model (Aung et al., 2017),
and in mycobacteria, eDNA degradation increases the killing effect of
some antibiotics, both in vitro and in vivo (Ackart et al., 2014; Aung
et al., 2017, 2016; Rose et al., 2015). The pellicles formed by M. che-
lonae accumulate a significant amount of eDNA, suggesting that this
type of biofilm could be used to resemble in vivo biofilms for further
studies.

A thorough understanding of clinically relevant mycobacterial bio-
films, such as M. chelonae, could contribute to a better understanding
about the key components in NTM biofilms required for colonizing
different environments within the human host, and would also con-
tribute to a more rational design of therapeutics against NTM infections
driven by biofilms. Our studies highlight the utility of Raman
Spectroscopy and fluorescence, confocal microscopy to study the ar-
chitecture and composition of M. chelonae biofilms. Additionally, the
outlining of distinct gene expression patterns in M. chelonae pellicles
enables us to conduct further studies on the mechanisms of M. chelonae
biofilm formation.
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