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Abstract: In recent decades, investigators have strived to describe and quantify the orientation of the
cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are,
however, striking differences between the investigations from both a technical and methodological
standpoint, thus limiting their comparability and impeding the drawing of appropriate physiological
conclusions from the structural assessments. This review aims to elucidate these differences, and to
propose guidance to establish methodological consensus in the field. The review outlines the theory
behind myocyte orientation analysis, and importantly has identified pronounced differences in the
definitions of otherwise widely accepted concepts of myocytic orientation. Based on the findings,
recommendations are made for the future design of studies in the field of myocardial morphology.
It is emphasised that projection of myocyte orientations, before quantification of their angulation,
introduces considerable bias, and that angles should be assessed relative to the epicardial curvature.
The transmural orientation of the cardiomyocytes should also not be neglected, as it is an important
determinant of cardiac function. Finally, there is considerable disagreement in the literature as to
how the orientation of myocardial aggregates should be assessed, but to do so in a mathematically
meaningful way, the normal vector of the aggregate plane should be utilised.

Keywords: review; diffusion tensor imaging; micro computed tomography; heart; methodology;
myocyte orientation; myocardial aggregation

1. Background

Myocardial architecture and cardiac function are closely linked [1–7]. Hence, the anatomy of the
heart and the cellular construction of the myocardium has been the focus of research for centuries [8].
Traditionally, histology has been the method of choice [9–11], but owing to its two-dimensional nature,
this technique fails to visualise the myocardial mass in its entirety. It has long been recognised that
the myocardium is a highly complex three-dimensional syncytium [12,13], thus it is preferable to
investigate its architecture using tools capable of representing this three-dimensionality. Such tools have
been provided in the shape of diffusion tensor imaging [14,15], computed tomography [16–18], confocal
microscopy [19] and ultrasound [20], with diffusion tensor imaging and computed tomography being
the most prevalent and valid methods for quantifying myocardial architecture in three dimensions.

Since the beginning of the 1990s, diffusion tensor magnetic resonance imaging has been extensively
used in the experimental setting to characterise myocardial architecture in both autopsied [21] and
beating hearts [22]. Even though several independent groups have used this imaging technique for more
than 20 years, there is still no consensus on the appearance of the myocardial microstructure, the way
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in which we quantify the orientation of the cells, nor on interpretations relative to physiology and
pathology [7]. The main principle behind quantification of myocardial architecture is the measurement
of cardiomyocyte orientation. The cardiomyocytes are elongated cells measuring approximately 100
by 20 by 20 microns, and the overall goal is to assess the orientation of their long axis, as this is
the main direction of force transmission. Diffusion tensor imaging achieves this by quantifying the
direction and magnitude of Brownian motion of water molecules, that is the spontaneous diffusion
occurring in both viable and fixed tissues [15]. In short, the result is presented as a three-dimensional
mathematical construct called a tensor, the dimensions of which reflect the likely pattern of diffusion,
itself a validated surrogate of the myocyte orientation (Figure 1). Likewise, computed tomography
describes the myocardial morphology by the use of a tensor, but in this case the tensor is calculated by
variations in x-ray attenuation within the tissue, where the direction of least difference is deemed to
represent the longitudinal course of the myocyte chains. Consequently, this is referred to as a “structure
tensor” rather than a “diffusion tensor” [18,23].

In general, a tensor is described using its three orthogonal axes. These are called eigenvectors,
which are designated as being primary (e1), secondary (e2), and tertiary (e3). A complete mathematical
description of a tensor is beyond the scope of this paper, but the interested reader is advised to consult
specific literature dedicated to this matter [24]. To avoid confusion, it is important to note that owing
to the underlying mathematical principles of tensor calculation, the long axis of the cardiomyocytes
corresponds with the primary eigenvector in the diffusion tensor. Whilst in the structure tensor,
the tertiary eigenvector aligns with the cardiomyocytes’ long axes [25,26]. The subsequent mathematical
determination of myocyte orientation is identical for the two techniques. It has been rightfully argued
that the main drawback of diffusion tensor imaging is its inability to assess the anatomy directly,
instead using the spontaneous diffusion of water as a surrogate measure of the myocyte orientation [27].
Conversely, computed tomography, together with high-resolution conventional magnetic resonance
imaging, provides the opportunity to evaluate the myocardial architecture based on tracking of actual
anatomical features or “structures” [17,18]. This is an obvious advantage of computed tomography,
but diffusion tensor imaging also holds important advantages. First of all, it is the only technique that
currently holds potential as a clinical tool [28], and secondly it is the only validated and widely used
methodology for assessing the orientation of the myocardial aggregates [7,17,29,30].J. Cardiovasc. Dev. Dis. 2020, 7, x 3 of 17 

  

 
Figure 1. The shape of the diffusion tensor in different tissue environments. (A) Showing that all 
eigenvectors have equal magnitude in non-fibrous tissue resulting in a spherical shaped diffusion 
tensor. (B) Showing how, in fibrous tissue, the diffusion tensor takes on an ellipsoid shape when the 
magnitude of the primary eigenvector (e1) increases relative to the secondary eigenvector (e2) and 
tertiary eigenvector (e3). (C) In ordered tissue, the diffusion tensor can take on a flattened ellipsoid 
shape whereby the secondary eigenvector (e2) has a larger magnitude than the tertiary eigenvector 
(e3). 

To understand why this is the case, we need to dig a little deeper into the concepts of tissue 
diffusion. In an environment without cell membranes and other diffusion boundaries, the water 
molecules are equally likely to diffuse in all directions, thus the diffusion tensor assumes the shape 
of a sphere (Figure 1A). In biological tissues, whether within a cell or in the surrounding extracellular 
matrix, diffusion will be hindered mainly by the hydrophobic cell membranes. In tissues consisting 
of non-isotropic cells, such as in the brain or in muscles, the water diffuses most easily along the long 
axis of the cells. If the cells are grouped in common directional alignment, the tensor becomes an 
ellipsoid, with its long axis in the same direction as the common cellular long axis (Figure 1B). This 
configuration is typified by skeletal muscle, and by the long axonal tracts of the nervous system, 
particularly the spinal cord [31]. If the cells are also grouped into secondary substructures of 
reasonably regular shape, the signal from the extracellular water might cause differences in the 
magnitude of the secondary and tertiary eigenvectors. This is particularly the case when the cells are 
arranged so as to compartmentalise themselves in laminar fashion. As the myocytes in the laminar 
structure are aggregated tightly together, the water molecules are more likely to diffuse across this 
structure than through it. Thus, the secondary eigenvector will align with the plane of the laminar 
substructure, as this is the direction of greatest diffusion magnitude orthogonal to the primary 
eigenvector. Consequently, the diffusion tensor will assume a more flattened ellipsoid shape (Figure 
1C). It is now well established that, in the myocardium, the primary eigenvector of the diffusion 
tensor follows the orientation of the chains of cardiomyocytes [21,32–35]. It has then been suggested 
that the secondary eigenvector follows the surface of the flattened groupings of cardiomyocytes, often 
described as myocardial sheets [32], laminae [9], sheetlets [36], lamellae [37], lamellar units [7,38] or 
aggregated units of cardiomyocytes [30]. This disagreement in nomenclature can be attributed to the 
current lack of a suitable three-dimensional anatomical description of these sub-structures. It is 
inherently difficult to assign a suitable name to a structure whose anatomical extent is unknown. 
Given our knowledge of their structural heterogeneity in size and thickness, we believe “myocardial 
aggregates”, as a name, currently provides the most suitable denomination. It was LeGrice and co-
workers [39] who originally posited the existence of myocardial aggregates using electron 
microscopy. Computed tomography [8], confocal microscopy [19], ultrasound [40], and even 
photographically based methods [41], have also been used to evaluate the micro-anatomical features 
of the myocardial aggregates. None of these methods, however, can assess the aggregate normal 

Figure 1. The shape of the diffusion tensor in different tissue environments. (A) Showing that all
eigenvectors have equal magnitude in non-fibrous tissue resulting in a spherical shaped diffusion
tensor. (B) Showing how, in fibrous tissue, the diffusion tensor takes on an ellipsoid shape when the
magnitude of the primary eigenvector (e1) increases relative to the secondary eigenvector (e2) and
tertiary eigenvector (e3). (C) In ordered tissue, the diffusion tensor can take on a flattened ellipsoid
shape whereby the secondary eigenvector (e2) has a larger magnitude than the tertiary eigenvector (e3).



J. Cardiovasc. Dev. Dis. 2020, 7, 47 3 of 17

To understand why this is the case, we need to dig a little deeper into the concepts of tissue
diffusion. In an environment without cell membranes and other diffusion boundaries, the water
molecules are equally likely to diffuse in all directions, thus the diffusion tensor assumes the shape of
a sphere (Figure 1A). In biological tissues, whether within a cell or in the surrounding extracellular
matrix, diffusion will be hindered mainly by the hydrophobic cell membranes. In tissues consisting
of non-isotropic cells, such as in the brain or in muscles, the water diffuses most easily along the
long axis of the cells. If the cells are grouped in common directional alignment, the tensor becomes
an ellipsoid, with its long axis in the same direction as the common cellular long axis (Figure 1B).
This configuration is typified by skeletal muscle, and by the long axonal tracts of the nervous system,
particularly the spinal cord [31]. If the cells are also grouped into secondary substructures of reasonably
regular shape, the signal from the extracellular water might cause differences in the magnitude of
the secondary and tertiary eigenvectors. This is particularly the case when the cells are arranged so
as to compartmentalise themselves in laminar fashion. As the myocytes in the laminar structure are
aggregated tightly together, the water molecules are more likely to diffuse across this structure than
through it. Thus, the secondary eigenvector will align with the plane of the laminar substructure, as this
is the direction of greatest diffusion magnitude orthogonal to the primary eigenvector. Consequently,
the diffusion tensor will assume a more flattened ellipsoid shape (Figure 1C). It is now well established
that, in the myocardium, the primary eigenvector of the diffusion tensor follows the orientation of the
chains of cardiomyocytes [21,32–35]. It has then been suggested that the secondary eigenvector follows
the surface of the flattened groupings of cardiomyocytes, often described as myocardial sheets [32],
laminae [9], sheetlets [36], lamellae [37], lamellar units [7,38] or aggregated units of cardiomyocytes [30].
This disagreement in nomenclature can be attributed to the current lack of a suitable three-dimensional
anatomical description of these sub-structures. It is inherently difficult to assign a suitable name to a
structure whose anatomical extent is unknown. Given our knowledge of their structural heterogeneity
in size and thickness, we believe “myocardial aggregates”, as a name, currently provides the most
suitable denomination. It was LeGrice and co-workers [39] who originally posited the existence of
myocardial aggregates using electron microscopy. Computed tomography [8], confocal microscopy [19],
ultrasound [40], and even photographically based methods [41], have also been used to evaluate the
micro-anatomical features of the myocardial aggregates. None of these methods, however, can assess
the aggregate normal vector, which we believe is key to calculating the precise orientation of the
myocardial aggregates. To date, the normal of the myocardial aggregations has been assessed using
diffusion tensor imaging [4], structure tensor calculation [42] and conventional histology [11]. Despite
this, the most prominent approach is to assess myocardial aggregate orientation using the in-plane
secondary eigenvector, which we claim is not founded in mathematical theory.

Many investigators are now exploring the remodelling of myocyte orientation in disease,
with results now emerging characterising changes in hypertrophic and dilatated cardiomyopathies,
and congenital malformations [16,26,43–45]. This has led to the desire to explore the prognostic and
diagnostic potential of myocyte orientation analysis [28], thus knowledge of its technical limitations
and methodological inconsistencies is paramount. This review will discuss the variability and validity
of current practices in the field and propose guidance to establish methodological consensus in the field.

2. Assessing Myocardial Architecture

2.1. Establishing Reference Points

In order to describe the orientation of the chains of cardiomyocytes, it is agreed that unique points
of reference are needed. There is general agreement in the published literature that, in the first instance,
the global orientation of the heart itself should be described using the left ventricular long axis. This is
usually achieved by placing a line between the apex and the fibrous continuity between the leaflets of
the aortic and mitral valves [39,45–47]. An alternative approach is to interpolate a line between the
centres of the ventricular cavity in a series of short axis images [25,48–51]. The left ventricular long axis,
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along with two orthogonal radial vectors (eR1 and eR2), then provides the global geometric coordinate
system for defining the position of the heart (Figure 2A). In some studies, these are the only points
of reference used when assessing myocytic orientation [51–53]. Systolic mural thickening, however,
which is the main rearrangement of the myocardium through the cardiac cycle, predominantly occurs
relative to a radial axis at right angles to the epicardium [54]. Hence, it makes sense physiologically
that angles be assessed relative to the epicardial tangential plane (Figure 3), as this provides the most
relevant information concerning cardiodynamics [17,25]. Therefore, once the orientation of the left
ventricle is established using the left ventricular long axis (eax), a second local coordinate system
should be introduced, which can be positioned relative to the individual region of interest in the heart
(Figure 2B). On this basis, one can propose three orthogonal vectors, which can be considered as being
longitudinal (el), circumferential (ec), and radial (er). The circumferential vector is orthogonal to the
left ventricular long axis, and tangential to the epicardium. The longitudinal vector is orthogonal to
the circumferential vector, and again tangential to the epicardium. The radial vector is orthogonal
to both the longitudinal and circumferential vectors. It is also normal to the epicardium, or more
accurately normal to the epicardial tangential plane [55] (Figure 2B). For the sake of ease of analyses,
these three vectors of the local coordinate system are translated into three planes of reference (Figure 4).
In Figure 4 the epicardial tangential plane (A) is defined by the longitudinal and the circumferential
vectors (el and ec), while the circumferential and radial vectors (ec and er) define the local horizontal
plane (C). The radial and the longitudinal vectors (er and el) define the local sagittal plane (B).
J. Cardiovasc. Dev. Dis. 2020, 7, x 5 of 17 
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Figure 3. Epicardial wall normalisation. Schematic illustration of the influence of epicardial curvature
on the quantification of myocyte orientation. The figure shows how myocyte orientation can be assessed
either relative of the left ventricular long axis (A) or the epicardial tangential plane (B). Owing to the
rounded shape of the ventricular cavities, the myocardial contractile forces work perpendicular to
the epicardial surface. Therefore, to measure myocyte orientation accurately throughout the entire
myocardium, we should quantify relative to the epicardial curvature (B). If we assess myocytes
orientation relative to the left ventricular long axis (A), we do not compensate for the epicardial
curvature, thus myocyte orientation will not correlate with wall deformation.

J. Cardiovasc. Dev. Dis. 2020, 7, x 6 of 17 

  

Figure 3. Epicardial wall normalisation. Schematic illustration of the influence of epicardial curvature 
on the quantification of myocyte orientation. The figure shows how myocyte orientation can be 
assessed either relative of the left ventricular long axis (A) or the epicardial tangential plane (B). 
Owing to the rounded shape of the ventricular cavities, the myocardial contractile forces work 
perpendicular to the epicardial surface. Therefore, to measure myocyte orientation accurately 
throughout the entire myocardium, we should quantify relative to the epicardial curvature (B). If we 
assess myocytes orientation relative to the left ventricular long axis (A), we do not compensate for the 
epicardial curvature, thus myocyte orientation will not correlate with wall deformation. 

2.2. The Helical Angle 

By using “standard” planes of reference based on “unique” reference points (Figures 2 and 4), it 
becomes possible to quantify myocyte orientation by analysing the eigenvector corresponding to the 
myocyte chain’s long axis. In order to completely describe the orientation of a vector in a three-
dimensional space, one needs to assess its orientation relative to two of the three reference planes 
discussed above [58]. It is Streeter and his colleagues who are usually credited with introducing the 
notion of the helical angle, which assesses myocyte orientation relative to the equatorial/horizontal 
plane of the ventricular cone [59,60]. However, this notion of change in myocyte angle relative to 
transmural position goes further back in time [61]. The idea that such angulation could be assessed 
relative to the horizontal plane was originally introduced by Feneis [62]. The notion was later 
endorsed by Hort [63] when the latter performed his extensive investigations of myocardial structure. 
Such helical angles are considered positive in the sub-endocardium, approximately zero in the mid-
wall, and negative in the sub-epicardium.  

 
Figure 4. Reference planes and angle definitions. (A) showing a schematic of the left ventricle with 
the local orthogonal reference planes aligned with the epicardium. Plane A is parallel to the epicardial 
tangential plane, while the orthogonal plane B is parallel to the left ventricular long axis. 
Consequently, plane C is orthogonal to both planes A and B and is often referred to as the local 
“horizontal” plane. (B) Outlines our recommended angle definitions. The helical angle α is the angle 
between the primary eigenvector (black line) and plane C. The intrusion angle β is the angle between 
the primary eigenvector and plane A. Lastly, the aggregate angle is measured using the aggregate 
plane normal (N) assessed against the epicardial tangential plane A. The unit of aggregated 
cardiomyocytes is depicted as the yellow box, which is a schematic oversimplification.  

The assessments by Streeter and his colleagues, along with those performed by his predecessors, 
were conducted manually, either by dissection, histology or both. Such methods were then used by 
others examining human [64] and animal specimens [65]. In 1992, Bovendeerd and colleagues 
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to replicate the assessments of Streeter by projecting the paths of the myocyte chains onto the 
epicardial tangential plane before measuring the helical angle (Figure 5). Apart from a few notable 

Figure 4. Reference planes and angle definitions. (A) showing a schematic of the left ventricle with the
local orthogonal reference planes aligned with the epicardium. Plane A is parallel to the epicardial
tangential plane, while the orthogonal plane B is parallel to the left ventricular long axis. Consequently,
plane C is orthogonal to both planes A and B and is often referred to as the local “horizontal” plane.
(B) Outlines our recommended angle definitions. The helical angle α is the angle between the primary
eigenvector (black line) and plane C. The intrusion angle β is the angle between the primary eigenvector
and plane A. Lastly, the aggregate angle is measured using the aggregate plane normal (N) assessed
against the epicardial tangential plane A. The unit of aggregated cardiomyocytes is depicted as the
yellow box, which is a schematic oversimplification.



J. Cardiovasc. Dev. Dis. 2020, 7, 47 6 of 17

It serves to mention that using only the left ventricular long axis as a reference point, and thus
presuming that the left ventricle can be contemplated as cylindrical in shape for analytical purposes,
will render skewed results when investigating the myocardial architecture at the base and apex of
the ventricular cone. In these areas, the epicardium is in reality far from parallel with the long axis.
Ideally, therefore, a subset of reference points is needed for each region of interest as described above.
These reference vector definitions have already been used by different groups [27,34,56,57], but are
far from universally employed. This so-called epicardial normalisation must be adopted to account
for the inherent epicardial curvature, and to provide the most physiologically meaningful estimate of
myocyte and aggregate orientation (Figure 3) [25].

2.2. The Helical Angle

By using “standard” planes of reference based on “unique” reference points (Figures 2 and 4),
it becomes possible to quantify myocyte orientation by analysing the eigenvector corresponding
to the myocyte chain’s long axis. In order to completely describe the orientation of a vector in a
three-dimensional space, one needs to assess its orientation relative to two of the three reference planes
discussed above [58]. It is Streeter and his colleagues who are usually credited with introducing the
notion of the helical angle, which assesses myocyte orientation relative to the equatorial/horizontal
plane of the ventricular cone [59,60]. However, this notion of change in myocyte angle relative to
transmural position goes further back in time [61]. The idea that such angulation could be assessed
relative to the horizontal plane was originally introduced by Feneis [62]. The notion was later endorsed
by Hort [63] when the latter performed his extensive investigations of myocardial structure. Such helical
angles are considered positive in the sub-endocardium, approximately zero in the mid-wall, and
negative in the sub-epicardium.

The assessments by Streeter and his colleagues, along with those performed by his predecessors,
were conducted manually, either by dissection, histology or both. Such methods were then used
by others examining human [64] and animal specimens [65]. In 1992, Bovendeerd and colleagues
investigated the mechanics of myocardial architecture with a Finite Element model [66]. They sought
to replicate the assessments of Streeter by projecting the paths of the myocyte chains onto the
epicardial tangential plane before measuring the helical angle (Figure 5). Apart from a few notable
exceptions [34,52,67,68], this “projection method” has become the standard approach for assessing
helical angles [28,69]. Of the alternative strategies, the one used by Geerts and co-workers is of interest,
since they assessed the helical angle as the angle between the primary eigenvector and the local
horizontal short axis plane, and thus avoided the need for projection [52] (Figure 5).

It has long been suspected that the ventricular cardiomyocytes change their orientation through
the cardiac cycle to accommodate the dynamic wall deformation required to eject blood. Streeter and
colleagues investigated this in dogs, they found no changes in the helical orientation of the myocytes
in systole versus diastole [60]. While Streeter’s assessments were based on histologic evaluation,
Dou and co-workers investigated the same phenomenon more than three decades later in humans
using diffusion tensor imaging [70]. Contrary to the findings of Streeter and colleagues, they found the
helical orientation to change through the cardiac cycle, going from a more circumferential orientation
in diastole towards a more longitudinal orientation in systole. This finding has subsequently been
confirmed in humans [36] and in rats [48,50], all using diffusion tensor imaging. In a recent and more
detailed study of the entire heart by Omann and colleagues, the helical angle was found to only change
significantly in the left ventricle and the septum, whereas no significant change was found in the right
ventricle [4]. In the midwall and endocardial third of the left ventricle, the helical angle increased 15 to
20 degrees during contraction. This is comparable to the results of Chen and associates. According to
their analyses the helical angle changes from approximately ±50 degrees in diastole to ±65 degrees
in systole [48]. Comparing these data to those obtained in humans shows good agreement in some
studies [67,71,72], while others find completely different extremes [73,74]. These inconsistencies are
likely caused by differences in resolution, differences in the definition of the angle itself, and the use
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of projected angle calculations. This is a pertinent issue in the field. Owing to a lack of consensus
regarding angle definitions and the associated quantification, many research teams would produce
varying results even when analysing the same heart.
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Figure 5. Commonly used angles in analysis of myocardial architecture. This figure illustrates the
most commonly used definitions of helical and ‘transmural’ angulations with projection (A,C) and
without projection (B,D). In this schematic illustration, the principal orientation of the cardiomyocytes,
that is the primary eigenvector (arrow in all images), is depicted within a block of myocardium with
the epicardium facing out of the page. (A) The projected helical angle is defined as the angle between
the local horizontal plane and the projection of the primary eigenvector onto the epicardial tangential
plane. (B) The helical angle is the angle between the primary eigenvector and the local horizontal
plane. (C) The transverse angle is defined as the angle between the epicardial tangential plane and
the projection of the primary eigenvector onto the local horizontal plane. (D) The intrusion angle is
defined as the angle between the primary eigenvector and the epicardial tangential plane.

2.3. Transmural Orientation

Irrespective of the precise angle definition, once the helical orientation of the cardiomyocytes is
determined relative to the local horizontal plane of the left ventricle, it also becomes necessary
to consider any change in transmural orientation relative to the epicardial tangential plane
(Figure 5). Once these two angles are defined, one has established the precise orientation of the
cardiomyocytes. Thus, it is the combination of the helical and transmural orientations that provides
the complete anatomical description of the orientation of the cardiomyocyte chains [25]. The notion
of transmural angulation (i.e., across the wall) was also investigated by Streeter and his colleagues,
and consequently named by them: the angle of imbrication [75]. This term, however, has not
survived the passage of time. A significant number of morphological studies, nonetheless, have
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explicitly denied the existence of populations of cardiomyocytes aggregated together with transmural
orientation [10,34,36,51,66–68,76–78]. Evidence now confirms that transmural angulations do indeed
exist [4,13,55,79], and it is suggested they play a key role in cardiac function [54,56,80]. The notion of
mural antagonism and its functional significance [2,80] is yet to gain field-wide acclaim; this may be
due, in part, to the historical dogma attached to the existence of transmurally arranged cardiomyocytes.

In various investigations, transmural angulation of the cardiomyocytes chains has been assessed
either as the angle of intrusion, or the transverse angle (Figure 5). These two angles differ one from
the other, with the transverse angle projected onto the local horizontal plane before it is then assessed
relative to the epicardial tangential plane, while the angle of intrusion is measured without projection.
The angle of intrusion has been used sparingly [55,56,79,81], while the transverse angle has been
more commonly assessed [32,33,48,50,52,53,71,73,82,83]. We have previously discussed the limitations
inherent to projection-based quantification [25]. Although it is argued that projected angles may be
informative in a functional context, for example, when compared with measurements of strain [56,84],
they actually act to mask the true anatomical arrangement of the myocyte chains. The concept of
projection error is discussed further in Section 2.5.

2.4. Myocardial Aggregate Orientation

Anatomists have long discussed the existence of anatomical subgroupings or aggregations of
cardiomyocytes within the myocardium [12,85,86]. The extent of such myocardial aggregations and
their role in both the compartmentalisation and deformation of the ventricular walls remain two of the
most significant controversies in cardiac morphology. These aggregations are of major importance
in the continuous rearrangement of the myocardium through the cardiac cycle [4,28]. Studies of the
supporting fibrous matrix have shown that the cardiomyocytes are packed together in functional
subunits [87]. This notion of packing led LeGrice and colleagues to propose that the ventricular
walls are organised in anatomical subunits of a laminar nature [9]. They stated that the individual
myocardial aggregates were arranged in relatively uniform fashion, with a thickness of four to six
myocytes. This notion was then endorsed by Scollan and colleagues [32]. As can be seen from
Figure 6, the arrangement of the myocardial aggregates is more of a complex heterogenous mesh of
interconnected aggregations. The sub-organisation of the myocardium into myocardial aggregates, in
our opinion, is an indisputable fact. However, the exact anatomical dimensions of the aggregations,
and their alignment within the ventricular walls, are less easily elucidated. Although this conundrum
remains unresolved, it has been speculated that the units are joined together in an infinite heterogeneous
branching continuum, with no discernible beginning or end [8,17,30,37,88]. It is hypothesised that this
so-called cardiac mesh allows the aggregations of myocytes to slide one against the other during systolic
mural thickening [6,10,39,65,89]. Evidence also suggests that the organisation into structural subunits
determines the properties of electric conduction through the myocardium [90,91]. Even though the
precise micro-anatomical organisation of such aggregations of cardiomyocytes is far from clarified,
much emphasis has been placed on their three-dimensional orientation.
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Figure 6. Micro-computed tomography of the myocardium. Contrast enhanced micro-computed
tomography images of a sample preparation taken from the posterior-basal region of a rabbit left
ventricle showcasing the aggregations of cardiomyocytes. Panel (A) shows the sample in short axis
view, panel (B) shows the corresponding four-chamber view. Scale bars represent 500 µm. The isotropic
spatial resolution is approximately 4 µm.

Before function can be attributed in a meaningful fashion to the myocardial aggregates, it is
necessary to appreciate both their extent and their orientation. The so-called “sheet angle” was
introduced allegedly to provide such information. Early studies had used histological techniques in an
attempt to characterise the orientation of the myocardial aggregates [9–11,77,92,93], even though their
extent had not been established in three dimensions. It was in 1998 that Scollan and his associates
pointed towards the non-random orientation of the secondary and tertiary eigenvectors in diffusion
tensor imaging and hypothesised that this feature may be linked to the orientation of the myocardial
aggregates [32]. There is absolutely no consensus in the literature regarding the definition of this
angle [25]. Several investigators have again made use of projection when calculating the so-called
sheet angles [32,36,50,57,70,81,94,95]; this introduces a “projection error” as described in Section 2.5.
Only the works of Chen and colleagues [48], Kung and associates [34], and the work from our
own group [4,25,43,44] have assessed the orientation of the myocardial aggregates without the use
of projections. As when assessing all other types of myocytic angulations, eigenvector projection
serves no relevant purpose in assessment of the orientation of the aggregates [25]. It is the tertiary
eigenvector, being the normal of the aggregate plane (Figure 7), which should be used when adopting
the diffusion tensor approach [25]. Conversely, when using the structure tensor approach, it is
the primary eigenvector, being the normal of the aggregate plane, which should be adopted [96].
Myocardial aggregates are of a planar nature. The only mathematically correct way of describing the
orientation of a plane in space is to use its normal vector (Figure 7). We encourage researchers in the
field of myocardial morphology to adopt this mathematical logic. In further support of this ideology,
it is a generally accepted notion that changes in the orientation of the myocardial aggregates aid in
radial thickening of the ventricular walls [39]. It is therefore reasonable to conclude that the orientation
of the aggregations should be assessed relative to the local epicardial tangential plane (Figures 3 and 4).
Thus, the most intuitive way of assessing the orientation of a myocardial aggregate, is to assess the
angle between the normal vector of the aggregate and the epicardial tangential plane itself. This angle
is depicted in Figure 4 as γ.
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Figure 7. Differences in the quantification of myocardial aggregate orientation. In the literature,
myocardial aggregate orientation is assessed using either the eigenvector situated within the aggregate
plane, in diffusion tensor imaging referred to as the secondary eigenvector (E2) i.e., the pink shaded rod,
or it is assessed using the aggregate plane normal, in diffusion tensor imaging referred to as the tertiary
eigenvector (E3) i.e., the light blue shaded rod. This schematic shows a myocardial aggregate (beige box)
made up of cardiomyocyte chains (depicted as lines running across the box). In panel (A) the aggregate
is orientated parallel to the myocardial surface, with the helical and intrusion angle at 0 degrees.
When adopting the most widely used E2-angle definition [36] this configuration results in an E2 angle
of 0 degrees, conversely when using the E3-angle definition [25] the E3 angle is 90 degrees. Assigning a
helical angle of 45 degrees to the cardiomyocyte chains, as shown in panel (B), changes neither the E2
nor the E3 angle. However, when we assign an intrusion angle to the myocyte chains, as shown in panel
(C), the aggregate now angles towards the endocardium as is the case during myocardial thickening.
This crucial reorientation is detected by the E3 angle, which changes to 45 degrees, the change is not
detected by the E2 angle, which remains 0 degrees. If we assign both a 45 degree helical and a 45 degree
intrusion angle to the cardiomyocyte chains, as shown in panel (D), despite this marked reorientation
the E2 angle increases by only 12 degrees whereas the associated E3 angle is 52 degrees. This figure
illustrates why the E3 angle more accurately measures aggregate transmurality and reorientation
during wall thickening, and emphasises why the two cannot be readily compared.



J. Cardiovasc. Dev. Dis. 2020, 7, 47 11 of 17

2.5. Consequences of Projected Angles

As we have already discussed, it is frequent to find studies where vectors have been projected
onto reference planes prior to assessing their angulations [25]. If we now accept the fact that not all
cardiomyocytes are arranged in surface parallel fashion, or in other words that myocyte chains exhibit
a transmural orientation, we must also accept that projected angles are prone to bias or anatomically
inaccurate results. Previously we assessed the consequences of projection when calculating helical,
intrusion, and aggregate angle [25]. We showed the larger the intrusion angulation, the more the
corresponding projected helical angle deviates away from its true value. The transmural orientation of
cardiomyocytes in particular is very sensitive to projection, with the larger the helical angle, the greater
the deviation of the projected transverse angle away from the non-projected intrusion angle. It was to
circumvent such issues that Lunkenheimer and co-workers elegantly used circular knives to remove
blocks of ventricular wall, thereby removing the influence of the helical angle when calculating the
intrusion angle [13]. The artefact attributed to projection, is undisputable and a phenomenon we can
easily recreate with everyday objects (Figure 8). It is surprising, therefore, that projection error has
received so little attention in the existing literature [42].
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Figure 8. Projection artefact. The leaning tower of Pisa taken as an everyday example of projection
artefact. The tower leans in a southward direction. Thus, when viewed from the north, the tower
appears to be standing straight (A). When viewed from the east, however, the tower is obviously leaning
(B). The straight appearance of the tower in panel A is an artefact brought upon by the projection of
the tower into the camera lens. It would be inappropriate to use two-dimensional photography in
an attempt to quantify the inclination of the tower. All projected angles in the setting of myocardial
morphology are subject to projection artefact. ©2018 Google, Data SIO, NOAA, U.S. Navy, NGA,
GEBCO, Landsat/Copernicus.
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The leaning tower of Pisa taken as an everyday example of projection artefact. The tower leans in
a southward direction. Thus, when viewed from the north, the tower appears to be standing straight
(A). When viewed from the east, however, the tower is obviously leaning (B). The straight appearance
of the tower in panel A is an artefact brought upon by the projection of the tower into the camera
lens. It would be inappropriate to use two-dimensional photography in an attempt to quantify the
inclination of the tower. All projected angles in the setting of myocardial morphology are subject to
projection artefact. ©2018 Google, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat/Copernicus.

3. Conclusions

This review points towards several controversies in the field of myocardial architecture.
Data obtained by high-resolution imaging can be analysed, displayed, and mathematically modified
in myriads of ways. We can learn much that is novel from studies of myocardial micro-architecture,
but currently there is little consensus in the literature as to how myocyte orientation is defined and
quantified. For as long as disagreements prevail, we will remain unable to compare studies and
draw valid anatomical, physiological, and clinical conclusions. Based on this review we suggest the
following points be considered in future studies of myocardial architecture. Firstly, as myocardial
thickening occurs perpendicular to the epicardium, its curvature should be taken into account when
assessing myocyte orientations. Second, there is no need to project myocyte orientations prior to
quantification. In fact, projection introduces considerable bias. Third, the transmural component of
myocyte orientation should be assessed, as it is a major determinant of cardiac function. Fourth and last,
the normal vector of the myocardial aggregates should be used when quantifying aggregate orientation.
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