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Abstract 

Antiplatelet drugs are used for long-term prevention of arterial thrombosis, yet do not 

work in all patients and have an intrinsic risk of increasing haemorrhage, limiting their 

clinical benefits. Within the past few years, increasing recognition of the role of platelets 

in inflammation-driven thrombosis, called thrombo-inflammation, has led to the 

identification of new targets that are implicated in these pathways.The platelet receptors  

GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both 

arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to 

current drugs. However, while there are potent blocking antibodies of both receptors, their 

protein nature comes with decreased bioavailability, making formulation for oral 

medication challenging. Small molecules are able to overcome these limitations, but there 

are many challenges in developing antagonists of nanomolar potency, which is necessary 

when considering the structural features that underlie the interaction of CLEC-2 and 

GPVI with their protein ligands. In this review, we describe current small molecule 

inhibitors for both receptors and strategies to overcome such limitations, including 

considerations when it comes to in silico drug design and the importance of complex 

compound library selection. 

Introduction 

The platelet glycoproteins, GPVI and CLEC-2, are receptors for collagen and podoplanin, 

respectively, and are recognised as candidates for a new class of antiplatelet agent with a 

lower risk of bleeding relative to current therapeutics.  Neither receptor is critical for 

haemostasis and both are implicated in platelet-driven thrombosis and thrombo-

inflammation [1–3]. For example, GPVI has been shown to be directly involved in 

inflammation-induced thrombus and plaque formation leading to stroke and myocardial 

infarction[1–5].  GPVI is exclusively expressed in platelets and megakaryocytes, and 
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CLEC-2 is expressed on platelets and at low level on a sub-population of  myeloid 

cells[6–9], suggesting that targeting either receptor is unlikely to induce significant off-

target effects. This is supported by the observation that genetic loss of GPVI in humans 

is well tolerated and associated only with a mild bleeding diathesis[10–13].  Further, 

although humans deficient in CLEC-2 have not been described[14], post-development 

genetic loss or antibody-induced deletion of CLEC-2 in mice has a minor or negligible 

effect on haemostasis and is also well tolerated [1]. Recent reviews[15–17], and two 

articles in this series[18, 19], provide further information on the role of the two receptors 

in arterial thrombosis and thrombo-inflammation.   

Blocking antibodies and related biologics exist for both receptors and many have 

nanomolar affinity [20–23], as the one under clinical trial, ACT-017, binding to the 

collagen binding site [24, 25], but they lack oral bioavailability and are expensive to 

produce.  The development of small molecule inhibitors for long term targeting of GPVI 

and CLEC-2 however is highly challenging [26].  In general, protein ligands occupy a 

large surface area of the receptor, whilst small molecules by their nature interact with a 

smaller area [27]. In addition, many sites of protein-protein interactions (PPI) are 

relatively flat and lack a clear binding pocket, as is the case for GPVI [28].  As a result, 

the affinity of many PPI small molecule inhibitors falls in the micromolar range, including 

those currently identified for GPVI and CLEC-2 [28].  This review aims to highlights the 

methodologies and techniques that need to be employed to bridge the gap between 

proteins and potent small molecules inhibitors of GPVI and CLEC-2. 

GPVI and CLEC-2 in haemostasis and thrombosis 

GPVI and CLEC-2 are expressed in platelets and megakaryocytes, while CLEC-2 is also 

expressed at low level on a sub-population of  myeloid cells[6–9]. Neither receptor is 

critical for haemostasis.  The genetic loss of GPVI in humans abrogates platelet activation 
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by collagen but does not abolish adhesion and is associated with a mild bleeding 

diathesis[10–13].  Patients deficient in CLEC-2 have not been described[14], and the 

constitutive or antibody-induced deletion of CLEC-2 in mice has a minor or negligible 

effect on haemostasis as determined by measurement of tail bleeding.     CLEC-2 and 

GPVI are involved in platelet-driven thrombosis and thrombo-inflammation[1–3]. GPVI 

has been shown to be directly involved in inflammation-induced thrombus and plaque 

formation leading to stroke and myocardial infarction[1–5].  

Molecular basis of platelet activation by GPVI and CLEC-2  

The clustering of GPVI and CLEC-2 drives intracellular signalling cascades that leads to 

activation of platelets.  GPVI is a single transmembrane protein belonging to the 

immunoglobulin family of receptors that , the transmembrane domain is expressed in the 

membrane with the dimeric Fc receptor (FcR) γ-chain, with each chain having an 

immunoreceptor tyrosine-based activation motif (ITAM), characterised by two conserved 

YxxL sequences[29].  In contrast, the single transmembrane, lectin-like receptor, CLEC-

2, has one YxxL sequence in its cytosolic tail, named a hemITAM (or hemi-ITAM)[30].  

Clustering of GPVI or CLEC-2 leads to phosphorylation of the conserved tyrosines in the 

hemITAM or ITAM sequence by Src and Syk tyrosine kinases, leading to binding of the 

tandem SH2 domains in Syk and initiation of a downstream signalling cascade 

orchestrated through the protein adapter LAT. This acts as a binding template for other 

proteins facilitating a phosphorylation cascade, including various adapter and effector 

proteins, leading to activation of PI 3-kinase and PLCγ2 (Figure 1). PI 3-kinase generates 

the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) which binds to 

pleckstrin homology and SH2 domains.  PLCγ2 generates the second messenger inositol 

1,4, 5-trisphosphate (IP3) and 1,2-diacylglycerol, which release Ca2+ and activate protein 

kinase C, respectively. 
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GPVI and CLEC-2 ligands 

Collagen is generally considered to be the ‘major’ endogenous ligand of GPVI. It binds 

to GPVI through multiple glycine–proline–hydroxyproline (GPO) motifs thereby causing 

receptor dimerization and higher order clustering[31–33]. Fibrin and fibrinogen have also 

been shown to activate GPVI, although it is controversial whether this is through direct 

binding as the site of interaction has not been mapped [34]. The collagen mimetic, 

collagen related peptide (CRP), composed of GPO repeats and crosslinked by C- and N-

terminal lysines or cysteines, and the snake venom toxin, convulxin, are commonly used 

to activate GPVI due to their potency and absence of binding to a second receptor for 

collagen on platelets, integrin α2β1[11, 35–37].  The binding site of convulxin on GPVI 

is distinct from that of collagen[37]. 

Podoplanin is considered to be the major endogenous ligand for CLEC-2, although heme, 

which is released from damaged red blood cells, has also been shown to activate the C-

type lectin-like receptor and this may be relevant in haemolytic disease[38]. Podoplanin 

is widely distributed on lymphatic endothelium[39], kidney podocytes[40] and various 

epithelial membranes, including in the lung and choroid plexus, and is up-regulated on 

haematopoietic cells at sites of inflammation[41].  It is also expressed on a variety of 

tumour cells[42]. The snake venom toxin rhodocytin, which is an (αβ)2-tetramer 

constituted by two α- and two β-subunits, also induces powerful activation of CLEC-2. 

Rhodocytin was used as an affinity ligand in the original identification of CLEC-2 in 

platelets[43]. The binding site for rhodocytin on CLEC-2 overlaps with that for 

podoplanin, with both ligands binding to four conserved arginine residues located as well 

as to a second, non-overlapping site[44, 45].   The binding site is located on the opposite 

side to the carbohydrate-like recognition region in CLEC-2. 
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The challenge in developing protein and small molecule inhibitors of GPVI and CLEC-2 

The clustering of GPVI and CLEC-2 is achieved either through the presence of repeat 

sequences on a single ligand (i.e. collagen) or the accumulation of individual ligands in 

the membrane (i.e. podoplanin). Inhibition of such systems is traditionally targeted 

through antibodies and related biologics: agents characterised by high affinity and slow 

off-rates, with binding further influenced by avidity due to their dimeric nature. However, 

antibodies or biologics agents are not ideal for long-term prevention for patients at risk 

of thrombosis as they are not orally available.  

The interactions between a protein ligand and a receptor can be difficult to mimic in a 

small molecule as the site of interaction may have relatively few features and cover a 

large surface area.  This is depicted in Figure 2 in which a small monomericis more app 

molecule is shown to reduce but not block binding of a ligand.  Ideally, a small molecule 

ligand should bind to a key site in the receptors with high affinity and have a slow off-

rate to counter the effects of avidity. Therefore, identifying key target residues is crucial 

to drug design and more complex molecules are likely to be more powerful inhibitors.  

As such, the use of more complex libraries during screening, such as natural compound 

libraries, is more appropriate as the ligand may interact with the receptor at more than 

one site (Figure 2).clustering Alternatively, small molecules may inhibit at an allosteric 

site, thus causing a conformational change in the ligand binding site, or prevent receptor 

clustering as shown in Figure 2.  Many proteins however undergo minimal change in 

conformation on ligand binding and have large areas that support clustering, with often 

no critical features.  These considerations also apply to small molecule irreversible 

inhibitors, although these have the advantage of countering the avidity [46]. A number of 

additional factors should also be taken into account during drug design, including protein 

half-life, binding site surface area, target residue identification, chemical group reactivity 
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and reversible ligand selection, while being backed up thoroughly by structural data, are 

required to engineer potent irreversible ligands [47]. 

 
Development of orally available RGD mimetics 

One successful example of developing small molecules that block the interaction of a 

protein ligand against its receptor is that of RGD (Arg-Gly-Asp) mimetics which block 

binding of multiple protein ligands to integrins.  Several of the ligands for integrin αIIbβ3, 

including von Willebrand factor and fibronectin, have a common tripeptide motif RGD 

that interacts with a distinct epitope in the integrin. One exception to this is fibrinogen 

which binds to the same epitope but through its terminal γC domain[48].   RGD mimetics 

can selectively block the interaction of the major platelet integrin, αIIbβ3, with many of 

its ligands. The RGD residues bind to the β-propeller in the α subunit and the A-domain 

in the β subunit and coordinate the divalent cation to elicit conformational changes of the 

receptor and subsequent activation [49, 50]. 

The RGD motif has inspired the development of RGD mimetics to contain bioisosteres 

of endogenous components of the RGD sequence, with enhanced physicochemical 

properties and re-engineered conformation. The common short peptide RGD and the 

conformational flexibility of the RGD motif determines affinity and integrin sub-type 

selectivity. The development of RGD mimetics has also benefitted from the discovery of 

RGD-containing natural peptides, which later allowed the cyclization of RGD-containing 

peptides to increase the affinity and selectivity. Sequences with slight variations in the 

RGD-motif have also been successful, such as the cyclic heptapeptide, eptifibatide, 

derived from a snake venom with a Lys-Gly-Asp (KGD) sequence[51]. Non-peptide, 

small molecule inhibitors based on the RGD motif have also been developed. Chemical 

optimization of known RGD-mimetics has led to the discovery of other structures with 
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comparable potency, such as tirofiban with tyrosine as a backbone[52]. Eptifibatide and 

tirofiban are used in the clinic for the treatment of acute thrombosis[52, 53]. Advances 

on chemical optimization has also led the design of prodrugs that are orally available. 

Lotrafiban is an orally available RGD mimetic prodrug that reached phase III of clinical 

trials, but did not proceed further due to excessive bleeding[54, 55].  Nevertheless, this 

demonstrates that it is possible to develop potent, orally available inhibitors against PPIs, 

at least when there is a major epitope in the receptor. 

GPVI structure and ligand interactions 

The crystal structure of GPVI, and more recently the structure bound to the collagen 

mimetic, CRP, has been reported (Figure 3).  This extends earlier mutational and 

molecular modelling studies and has revealed the key amino acids that affect collagen 

and/or CRP binding.  

Mutations in amino acids that affect CRP and collagen binding were reported over ten 

years ago [56, 57]. Mutational studies highlight amino acids that either bind to collagen 

and/or CRP, which cause a conformational change in the binding site. Mutational studies 

identified four amino acids (Gly30, Val34, Leu36 and Arg38) that influence the binding 

of CRP and collagen to GPVI and are potential binding site stabilizers[37].  Three of these 

are extensions of the ligand (orthosteric) binding site and Arg38 forms part of the binding 

site [37, 58] (Figure 3). A fifth amino acid, Asp72, the site of N-glycosylation, is located 

close to the binding site[59] but does not appear to play a role in ligand binding as it was 

mutated in the crystal structure of the CRP-GPVI complex.  Mutation of Lys59, Arg60 

and Arg166 decreases the affinity for binding to CRP and collagen. These three amino 

acids are located towards the GPVI ectodomain dimer interface and away from the CRP 

binding site where they form a linear orientation in the D1 domain demonstrating this is 

a site of allosteric interaction (Figure 3).  The mapping of the CRP binding site by co-
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crystallisation of GPO-3 and GPO-5 repetition peptides with the GPVI D1 and D2 

ectodomains (PDB files: 5OU8, 5OU9) has shown a direct interaction with Glu40, Arg67, 

Gln71 and Trp76, alongside Arg38 (Figure 3) and is in agreement with previous 

mutational and molecular modelling studies[59].   

In summary, many of the amino acids identified in the early mutagenesis studies are now 

recognised as distinct from the binding site for CRP suggesting that these may be targets 

for allosteric modification. The mapping of the CRP binding site reveals multiple points 

of contact with GPVI on a relatively flat surface thereby making it challenging to identify 

a small molecule inhibitor. 

 

CLEC-2 structure and ligand interactions 

The crystal structures of CLEC-2 have shown that podoplanin and rhodocytin bind to a 

common site to induce activation, constituted by four arginine residues (Arg107, Arg118, 

Arg152, Arg157), together with distinct, adjacent sites which act through polar 

interactions[44, 60] (Figure 4).  Podoplanin binds to CLEC-2 through a series of 

conserved sequences known as a platelet aggregation stimulating (PLAG) domain. Four 

PLAG domains have been identified in human podoplanin which are characterised by the 

sequence ED-(X)XX-T. The O-glycosylation site, Thr52 within the human PLAG3 

domain,  has a sialic acid residue which is critical for binding[43, 44].  In addition, 

mutagenesis of the PLAG4 domain supresses the CLEC-2-podoplanin interaction, 

demonstrating the importance of this region[44, 61] (Figure 4).  

The crystal structure of CLEC-2 in complex with its exogenous ligand rhodocytin 

revealed that the negatively charges residues Glu3, Asp4, and Asp6 in the α-subunit of 

rhodocytin form electrostatic interactions with the positively charged residues of Arg107, 
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Arg118, Arg152, Arg157 in CLEC-2[60, 62]. Carboxyl groups on the C-terminus of 

rhodocytin also interact with CLEC-2 based on polar contacts (Figure 4). 

Small molecule inhibitors of GPVI 

Several small molecule GPVI inhibitors have been reported which are shown in Figure 

5A. The most thoroughly studied of these is the angiotensin II receptor antagonist, 

losartan [63], which was found in a drug-repurposing virtual screening assay.  Several 

natural bioactive compounds, namely honokiol [64], hinokitiol [65] and caffeic acid 

phenethyl ester (CAPE) have also been identified[66] . Honokiol is the only one of the 

these for which direct binding has been studied using surface plasmon resonance [64]. As 

yet, molecular docking studies have not been reported with any of the compounds, and 

the value of these would be limited due to the low affinities of the compounds.  S002-

333[67], a pyridoindole based compound, and S007-867[68], a chiral 3-

aminomethylpiperidine analogue, have also been show to block GPVI and to have 

antithrombotic efficacy in animal models. All of the ligands (Figure 5A) display IC50 

values in the micromolar range on platelet aggregation assays, Moreover, losartan has 

been shown to inhibit other platelet receptors, notably those for thromboxane A2 and 

CLEC-2 at similar or slightly higher concentrations [69], which suggests that it may be 

having a generalised effect on membrane organisation rather than competing at the ligand 

binding site. 

Small molecule inhibitors of CLEC-2 

Cobalt-hematoporphyrin (Co-HP; Figure 5B) is a non-peptide inhibitor of CLEC-2-

podoplanin interaction identified through a high throughput screening (HTS) assay and 

by chemical optimization of the lead compound [70]. The basis of the screening assay 

was an ELISA-based assay which detects loss of ligand-receptor binding. Co-HP was 

shown to inhibit aggregation of human and mouse platelets by podoplanin-expressing 
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cells and by rhodocytin at low micromolar concentrations. It has no effect on aggregation 

induced by thrombin or collagen[70].  Molecular docking predictions and site-directed 

mutations of CLEC-2 suggest that Co-HP binds to Asn120, Asn210 and Lys211[70] 

suggesting that inhibition is mediated by an allosteric action, since these amino acids are 

distant to the podoplanin binding site (Figure 4).  Earlier, Chang et al (2015) had 

characterised 2CP[71] (Figure 5B), a small molecule able to inhibit aggregation induced 

by podoplanin at high micromolar concentrations, but which did not affect aggregation 

induced by rhodocytin, thrombin, collagen, or ADP. Surface plasmon resonance was used 

to show direct binding to CLEC-2 receptor with a Kd of 33 µM. Molecular docking 

studies suggest that 2CP binds to the same canonical binding site of podoplanin and 

rhodocytin[71], although this is not consistent with the observation that 2CP inhibits 

podoplanin-induced but not rhodocytin-induced aggregation. It is therefore more likely 

that 2CP is competing for the non-canonical binding site of podoplanin on CLEC-2 which 

does not interact with rhodocytin. The binding site of 2CP needs to be mapped to resolve 

this question.  CoHP has been shown to prolong occlusion in a FeCl3 injury model[70] 

but the low affinity, lack of oral availability and toxicity of both compounds means that 

it is not a candidate for clinical development. 

It may be possible to design small molecules based on the binding site of antibodies to 

CLEC-2.  The only current monoclonal antibody to human CLEC-2, AYP1, has been 

shown to compete with rhodocytin and podoplanin for binding to the receptor, suggesting 

that it binds at the ligand binding site but, as yet, the site of interaction has not been 

mapped [23]. The crystallisation of AYP1 with CLEC-2 will provide further information 

on key residues for development of small molecule inhibitors. 
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Approaches to identify novel inhibitors against CLEC-2 and GPVI  

Computational modelling  

Molecular modelling and virtual experimentation are powerful tools that help us in 

screening and design of ligands with enhanced selectivity and physicochemical properties 

(Figure 6). The structure of a protein binding site can be obtained by x-ray 

crystallography, cryogenic electron microscopy (cryo-EM), multi-dimensional nuclear 

magnetic resonance (NMR) and molecular simulations (or homology modelling)[72]. 

Electron density mapping and quaternary structure visualization allows for exploration of 

both structural and thermodynamic properties of target receptors and are useful for 

identifying or revealing drug binding sites and exploring a drug’s mode of action. This 

can be supported by virtual screening searches of compound libraries of interest to 

identify possible drug candidates based on the protein binding sites or the pharmacophore 

being developed[73]. A pharmacophore is a group of the minimum structural or chemical 

characteristic to achieve target binding, based on knowledge of established ligands or a 

receptor cavity structure and amino acid content. de novo virtual drug design can take 

advantage of the pharmacophore to modify existing chemotypes to design small 

molecules with expected high affinity and optimised physicochemical properties[73]. 

Crystal structures for both GPVI and CLEC-2 are also available, both with and without a 

ligand, providing an opportunity for conducting virtual drug design.  

However, since neither GPVI nor CLEC-2 have a high affinity ligand, ligand-based drug 

design studies are unlikely to provide ligand and so a structure-based virtual study or high 

through put screen study is more appropriate. Molecular dynamic (MD) simulations can 

also be implemented when available, especially when receptor flexibility is high or  the 

binding site is known [74]. In the case of GPVI ,  MD simulations for mapping the binding 

of the monoclonal antibody 10B12 complex have been reported [75]. Similarly, MD 
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predictions have been used to model dimeric CLEC-2 and to suggest that its flexibility 

may contribute to the ligand binding[85]. MD simulations can also reveal protein 

conformations, allosteric and hidden binding sites[74], which may be easier to target with 

small molecules. 

High throughput screening 

HTS assays are widely used for drug development in industry, and more recently in 

academia. They are performed with tens to hundreds of thousands of compounds, thereby 

increasing the probability of identifying leads to rationalize further structural design. A 

typical screening ligand concentration is between 5 to 10 µM in view of the anticipated 

low affinity, which is 3-4 orders of magnitude above the concentration that is likely to be 

required for therapeutic application.  

A miniaturised Ca2+ mobilisation assay is a cell-based assay that is used in most screening 

platforms. However, it cannot predict whether inhibition is mediated through a protein in 

a downstream signalling pathway or by blocking the ligand-receptor interaction. 

Therefore, to identify an inhibitor for protein-protein interactions, a biochemical assay is 

required to directly monitor the ligand-receptor interaction such as an ELISA or 

AlphaScreen (Figure 6). The latter is a homogenous method based on the proximity 

between two species of beads. The protein-protein interaction will bring acceptor and 

donor beads closer than 200 nm and thereby emit a luminescent type energy[76].  Beyond 

the selection of the right biochemical assay, there are several questions that need to be 

overcome including the need to miniaturise the assay to perform a large-scale HTS.  

Nowadays, most screening laboratories have extensive experience on the development 

and miniaturisation of assays for specific and challenging targets, such as GPVI or CLEC-

2.  
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Overcoming targeting challenges 

Structural characterization 

One of the reasons for the attrition of GPVI and CLEC-2 small molecule inhibitors is the 

lack of an established, highly characterized binding site and a potent ligand. In the case 

of GPVI and CLEC-2, the binding site of their endogenous ligands have been resolved 

using x-ray crystallography. However, the ligand binding site is that for a protein core 

with a defined quaternary structure rather than a high affinity single molecule.   

An attempt to identify small molecules through a structure-based drug design using NMR 

and in silico modelling was described by Ono et al.[77]. The technique takes advantage 

of the interaction network that a peptide and small molecule develops within a binding 

site[31], in this case losartan, to map the common moieties that are responsible for 

receptor binding. However, the binding site cavity resides on the surface of the receptor, 

rather than in a deep hydrophobic pocket, and the ligand affinity is not optimal for this 

approach. Nevertheless, most of the in silico studies for the development of other small 

molecule inhibitors of GPVI (Figure 3) use the same binding site[63, 67], with an 

emphasis on including a hydrogen bond on Lys41 as a screening filter. 

The NMR approach of Ono et al.[77] relies on real-time ligand exchange that compete 

within detection limits and is thus dependent on the ligand off-rates. NMR spectroscopy 

is highly effective in disclosing interactions of low affinity complexes (KD < 10-6 M) and 

high flexibility ligands[78, 79].  This presents a limitation however when developing high 

affinity ligands. An alternative approach such as mapping the binding sites of potent 

proteic inhibitors such as antibodies by crystallography and related techniques and using 

these to develop small molecule inhibitors are likely to be more successful, albeit more 

challenging. 
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Compound library selection 

A HTS designed to target GPVI or CLEC-2 should be based on a chemical library or 

natural compound library oriented to PPI with a wider chemical space than conventional 

drug-like compounds that fulfil Lipinski’s rule of five[80]. Conventional small molecules 

libraries are built on the basis Lipinski’s ‘rule of five’, which predict bioavailability and 

security of the hit candidates.  This limits conventional chemical libraries to compounds 

with a molecular weight of less than 500 Da and low hydrophobicity (LogP < 5).  

Therefore, the hit rate of identifying potent small molecule leads of protein-protein 

interactions by screening libraries is extremely low.  Alternatively, small molecules could 

block GPVI or CLEC-2 through an allosteric action where the requirement for high 

affinity is less stringent.  Potentially, they may also bind to a hotspot segment of the 

endogenous ligand binding site, as in the case of RGD mimetics and integrin inhibition. 

Small molecule-based screening and in silico prediction of hotspots[81–83] could suggest 

areas in GPVI and CLEC-2 to target, although as yet no such areas have been identified. 

The comprehensive analysis of the physicochemical parameters of PPI inhibitors has in 

most cases identified the need for a larger size and higher hydrophobicity than 

conventional small molecule drug-like molecules. Thus more complex PPI inhibitor 

profiles have been used  to develop chemical libraries oriented to target PPI, such as the 

rule of four[84, 85]. In general, most of the inhibitors of PPI are based on derivatives of 

natural compounds, or in some case, they are macrocycles or products of cyclization of 

aliphatic chains, due to their larger size and more complex structure.  This approach 

would predict a higher rate of hit identification and would provide a more complex 

scaffold for further chemical optimization, to increase affinity and bioavailability for oral 

administration of the lead compounds.   

Conclusions 
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It is becoming clear that in order to compete with multivalent endogenous ligands such 

as collagen and podoplanin, small molecule ligands should ideally demonstrate a slow 

off-rate and nanomolar affinity. Therefore, understanding the structure of the binding 

interface between a ligand-receptor complex is crucial when selecting an appropriate 

compound library for screening. Compound libraries should include more diverse 

structures than many of the simple chemical libraries, such as natural compounds or 

macrocycles. Alternatively, these receptors could be targeted by potent proteic inhibitors, 

such as antibodies, antibody fragments and nanobodies to yield critical information on 

the binding site to aid development of high affinity compounds. Once a high affinity 

ligand has been established, research should then be focused in obtaining as much 

structural data as possible to get a deeper understanding of the nature of the binding site, 

including whether inhibition is an orthosteric or an allosteric site. This approach would 

lead to the establishment of a lead that utilizes the interaction potential and 

physicochemical properties required for targeting challenging receptor interfaces and 

offer a viable alternative to traditional screening.  Whether this will succeed for GPVI 

and CLEC-2 remains to be seen, but success will likely be critically dependent on further 

structures of binding of protein-based ligands such as antibodies and nanobodies. 
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