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Abstract

As the death toll of Coronavirus disease 19 (COVID-19) continues to rise worldwide,
it is imperative to explore novel molecular mechanisms for targeting SARS-CoV-2.
Rather than looking for drugs that directly interact with key viral proteins inhibiting
its replication, an alternative and possibly add-on approach is to dismantle the host
cell machinery that enables the virus to infect the host cell and spread from one cell to
another. Excellent examples of such machinery are host cell proteases whose role in
viral pathogenesis has been demonstrated in numerous coronaviruses. In this review,
we propose two therapeutic modalities to tackle SARS-CoV-2 infections; the first is to
transcriptionally modulate the expression of cellular proteases and their endogenous
inhibitors and the second is to directly inhibit their enzymatic activity. We present
a nonexhaustive collection of clinically investigated drugs that act by one of these
mechanisms and thus represent promising candidates for preclinical in vitro testing

and hopefully clinical testing in COVID-19 patients.

Email: m.a.hadi@bham.ac.uk
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1 | INTRODUCTION

Coronavirus disease 19 (COVID-19) pandemic is one of the major
challenges that is currently facing human societies throughout
the globe. At the time of writing this review, the number of con-
firmed cases according to the World Health Organization (WHO)
is approaching 55 million and the death toll is exceeding 1.3 million
worldwide.! COVID-19 is caused by severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2) infection in the respiratory tract.

Many susceptible patients progress to a severe form of the disease

adjunctive therapy, clinical trial, COVID-19, proteases, SARS-CoV-2

that is characterized by an acute respiratory distress syndrome
(ARDS),? which severely compromises their respiratory function and
often causes organ failure and death. Understanding the mechanism
by which the virus infects its host cells in the respiratory tract and
spreads through the lung tissue causing its damage is of extreme
importance to find an effective treatment. The key viral protein that
enables members of the coronavirus family including SARS-CoV-2 to
infect their host cells is the spike (S) protein. It is the largest struc-
tural protein existing in the virus particles with an overall length

ranging between 1200 and 1400 amino acids and is organized into

Abbreviations: ARDS, acute respiratory distress syndrome; COVID-19, Coronavirus disease 19; SARS-CoV-2, syndrome coronavirus-2; WHO, World Health Organization.
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homotrimers that are integrated into the viral envelope giving rise to
its characteristic corona-shaped structure.® It possesses a large ect-
odomain, a small transmembrane domain, and a short endodomain.
Like all class | viral fusion proteins, the S protein ectodomain is di-
vided into two functional domains: S1 domain which binds to host
cell receptors and S2 domain which mediates the fusion between
the viral envelope and the host cell membrane. In order for the fu-
sion machinery of the S2 domain to be active, the S protein has to
undergo proteolytic processing by a variety of host cell protease
enzymes that are able to cleave its ectodomain at a number of spe-
cific sites (Figure 1B). Two of these cleavage sites have been well
characterized in SARS-CoV-1, namely the S1/S2 site at the boundary

S1 (Attachment) S2 (Fusion)
S1/S2 S2
v v
SARS-S: 662 - TVSLL----R STS - 670 793 - KPTKR SFI - 800
SARS-2-S 676 - TQTNSPRRAR SVA - 688 811 - KPSKR SFI - 818
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X-X-X-hydrophobic-Arg-Arg 1 X-X-X-X
X-X-X-aromatic-Arg-Arg J X-X-X-X
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FIGURE 1 Anillustration of the two cleavage sites of the
Spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 and the host
cell proteases that can possibly cleave them. (A) Schematic
representation of SARS-CoV-1 S protein with its functional
domains (RBD, receptor binding domain; RBM, receptor binding
motif; TD, transmembrane domain) and its two proteolytic
cleavage sites (S1/52, S2'). Amino acid sequences around the two
protease recognition sites (red) are indicated for both S proteins
of SARS-CoV-1 and SARS-CoV-2 (asterisks indicate conserved
residues). Arrowheads indicate the cleavage site. (copied with
permission from Figure 1A by Hoffmann and colleagues®). (B)

A table listing host cell proteases that are reported to cleave S
proteins of coronaviruses together with their subcellular locations,
classification according to the Nomenclature Committee of

the International Union of Biochemistry and Molecular Biology
(NC-IUBMB) and their common recognition sequences with the
cleavage site indicated by a downward arrow. Amino acid residues
on the N-terminal end of the cleavage site are designated P1, P2,
P3,...etc, while those on the C-terminal end are designated P1’,
P2’ P3’,...etc “X” denotes any amino acid residue, “hydrophobic”
denotes Ala, Val, Leu, lle, Phe, Trp or Tyr, “aromatic” denotes Phe,
Trp, His or Tyr and “positive” denotes Lys, Arg or His’

between these two domains and the S2' site which exists within the
52 domain itself* (Figure 1A). Likewise, a multibasic cleavage site at
the S1/S2 boundary has been characterized in the SARS-CoV-2 S
protein.® It is worth to mention that these protease-catalyzed cleav-
age events can take place on the cell surface before viral entry into
its host cell, inside endosomes during viral entry and in the cytosol
during viral protein synthesis by the infected cell. This is why host
cell proteases are believed to play a pivotal role in the pathogenesis
of many human coronaviruses as well as other pneumotropic viruses

such as influenza.

2 | HOST CELL PROTEASES AS
POTENTIAL DRUG TARGETS

Here, the focus is on protease enzymes that have been impli-
cated in the proteolytic activation of SARS-CoV-1 and 2 S pro-
teins since both strains were shown to be very similar in terms
of genomic sequence homology, infection mechanism and ensuing
pathology.® These enzymes include trypsin, elastase, thermolysin,
cathepsin B, cathepsin L, transmembrane serine proteases
(TMPRSS), plasmin, and factor Xa. All of these proteases were re-
ported to cleave the S protein in vitro at the $1/52 or S2’ sites
or both.? Of particular importance is TMPRSS2 which was shown
to associate with ACE2, a host cell receptor for SARS-CoV-1, and
form complexes that improve viral entry at the cell surface.*®
Recently, SARS-CoV-2 was also shown to utilize the same ACE2
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FIGURE 2 A diagramillustrating the different drug candidates,
their targets and mechanisms of action. Host cell proteases
depicted here are reported to proteolytically cleave the S protein
of coronaviruses which is an essential step to initiate the fusion
process between viral and epithelial cell membranes. Three
categories of drugs are described; drugs that downregulate the
expression of protease enzymes, drugs that directly inhibit their
enzymatic activity, and drugs that upregulate the expression

of endogenous protease inhibitors. All elements used in this
illustration come from the Reactome icon library (https://reactome.
org/icon-lib). Protein structures of host cell proteases and protease
inhibitors were obtained from UniProt knowledgebase (https://
www.uniprot.org/) and Protein Data Bank (https://www.rcsb.org/).
Abbreviations: TMPRSS, transmembrane serine protease; HDAC,
histone deacetylase; HAI-1, hepatocyte growth factor activator
inhibitor type 1
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receptor for entry and TMPRSS2 protease activity to prime its S
protein® (Figure 2). In addition, the host cell protease furin was
shown to cleave the SARS-CoV-2 S protein at the S1/52 site which
is an essential event for spike-driven viral entry into lung cells.®
Moreover, the endosomal cysteine proteases cathepsin B and L
were found to participate in processing SARS-CoV-1 and 2 S pro-
teins enabling them to be primed even in the absence of TMPRSS2
activity.>!! Beside proteases, host cells are equipped with a col-
lection of natural protease inhibitors that control the activity of
many of the above-mentioned proteolytic enzymes such as alphal
antitrypsin (AAT) which inhibits trypsin and elastase and hepato-
cyte growth factor activator inhibitor type 1 (HAI-1) and type 2
(HAI-2) which regulate activities of transmembrane serine pro-
teases including TMPRSS2.%2 Interestingly, HAI-2 was reported to
inhibit influenza virus HIN1 infection in cell culture, and its ad-
ministration showed protective effects in a mouse model of influ-
enza.’® This has been attributed to its effective inhibition of the
proteolytic cleavage of influenza virus hemagglutinin (HA) which
is another class | viral fusion protein that shares many common
features with the coronavirus S protein. Similar to the S protein,
HA is synthesized as an intact precursor that gets cleaved by host
cell proteases giving rise to two functional subunits HA1 and HA2.
HA1 resembles the S1 domain of S protein where it binds to sialic
acid receptors on the host cell surface, while HA2—just as the S2
domain—contains a fusion peptide that gets exposed upon cleav-
age initiating the fusion process between viral and host cell mem-
branes.” Beside HAI-1 and HAI-2, the serine protease inhibitor,
plasminogen activator inhibitor 1 (PAI-1) was likewise shown to
inhibit HA cleavage and prevent HIN1 influenza virus replication
both ex vivo and in vivo.'

In light of what is known so far about proteases and their in-
hibitors, two treatment approaches are proposed to control SARS-
CoV-2 infections. The first approach is to use transcriptional
suppressors that downregulate the expression of protease enzymes
on the gene level or alternatively transcriptional activators that en-
hance the expression of the naturally occurring protease inhibitors.
The second approach is to target host cell proteases directly through
the use of small-molecule compounds or proteins that are known to
inhibit their enzymatic activity. In this review, we discuss these two
approaches and present a number of drug candidates that act by one
or more of these mechanisms, and as such have a great potential for
clinical use to limit viral infectivity and spread.

One obvious limitation of these targeting approaches is the fact
that host cells are equipped with a wide range of proteolytic en-
zymes—as discussed above—that were found to cleave coronavirus
S protein. Targeting one specific enzyme with an inhibiting molecule
may not be sufficient to stop viral spread due to the abundance of
other proteases. Despite this drawback, it is obvious at least from a
number of in vitro and in vivo studies that cleavage of S protein by
specific proteases appears to be more important for viral pathoge-
nicity than by others and that inhibiting one of these enzymes can
significantly block viral entry into its host cells. One particular exam-
ple is TMPRSS2 where its inhibition in human lung cell lines clearly
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blocked their infection with SARS-CoV-2 in vitro.® The same concept
applies to other kinds of viruses that possess class | viral fusion pro-
teins as influenza A where inhibition of trypsin-like serine proteases
using the naturally occurring protease inhibitors HAI-2 and PAI-1
displayed antiviral activity both in vitro and in vivo.*>** Furthermore,
combination antiprotease therapy targeting more than one protease
enzyme simultaneously is another possibility to enhance the antivi-
ral activity of such drugs. Some drug combinations with acceptable

safety profiles are discussed below to serve this purpose.

3 | DRUGS AFFECTING
TRANSCRIPTIONAL REGULATION OF
HOST CELL PROTEASES OR PROTEASE
INHIBITORS

3.1 | Drugs targeting androgen and estrogen
receptors

TMPRSS2 gene expression is known to be activated by the andro-
gen receptor.15'17 For this reason, drugs that block this receptor
are believed to interfere with TMPRSS2 expression resulting in its
downregulation. In line with this, enzalutamide (an androgen recep-
tor antagonist), estradiol, and the phytoestrogen genistein were
recently reported to downregulate the expression of TMPRSS2
using RNA sequencing data derived from human prostate, breast,
and endometrial cancer cell lines.*® On the other hand, testosterone
and metribolone (a synthetic androgen) were shown to significantly
increase its expression in human prostate cancer cells. Consistent
with these findings, treatment of prostate cancer cell lines with
enzalutamide again resulted in reduced TMPRSS2 mRNA expres-
sion measured by real-time quantitative polymerase chain reaction
(gPCR).Y? Moreover, fulvestrant (an estrogen receptor antagonist)
was found to upregulate TMPRSS2 expression in a breast cancer cell
line using single-cell RNA sequencing data.'® Notably, the authors
demonstrated that genes that were highly correlated with TMPRSS2
expression in RNA sequencing data obtained from human lung tis-
sues were significantly enriched for androgen and estrogen re-
sponse hallmark genes. This provides sound evidence that androgen
and estrogen receptors are important transcriptional regulators of
TMPRSS2 gene in human lung cells. It is worth mentioning here that
estrogen receptor signaling played a protective role in female mice
infected with SARS-CoV-1 where ovariectomy or treating the mice
with an estrogen receptor antagonist led to increased mortality.?°
Moreover, there is a growing body of evidence suggesting that male
sex is a predisposing factor to COVID-19. One possible mechanism
that could contribute to this predisposition is the increased expres-
sion of transmembrane serine proteases, particularly TMPRSS2, in
response to male sex hormones.?%?2

Regarding their clinical utility, both enzalutamide and estradiol
have a well-established clinical profile making them suitable for
trial in COVID-19 patients. Enzalutamide is clinically approved for
treatment of patients with castration-resistant prostate cancer and
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metastatic castration-sensitive prostate cancer.?® The most com-
mon adverse effects associated with its use are peripheral edema,
hyperglycemia, hyponatremia, hypermagnesemia, upper respiratory
tract infection, asthenia, back pain, disturbed bowel movement, and
arthralgia.?® On the other hand, oral administration of estrogen and
its synthetic derivatives has long been used for contraception and
treatment of menopause-related conditions such as vaginal atrophy
and osteoporosis.?* Adverse effects of systemic estradiol include
vaginal hemorrhage, edema, headache, gastrointestinal discomfort,
mastalgia, deep vein thrombosis, and nasopharyngitis.?>2° Given
such toxicity profiles, we propose that enzalutamide can be used at
an oral daily dose of 160 mg in male patients especially those with
a compelling indication as prostate cancer. Likewise, estradiol com-
bined with a progestin can be administered at an oral daily dose of

1-2 mg to female patients.

3.2 | 5-alphareductase inhibitors

5-alpha reductase inhibitors are another class of drugs that in-
fluence intracellular androgen signaling and are clinically used to
treat conditions with excessive androgen production such as be-
nign prostatic hyperplasia and male pattern hair loss.?” By inhibit-
ing 5-alpha reductase enzyme, these drugs prevent the conversion
of testosterone to the more active dihydrotestosterone and hence
attenuate androgen-mediated cellular responses.?’ This in turn
can lead to a reduction in the expression of androgen-regulated
genes including TMPRSS2. Indeed, treatment with the clinically
approved inhibitor dutasteride was found to reduce TMPRSS2
expression in microdissected prostate epithelial tumor tissues
as measured by both gene expression microarrays and real-time
PCR.%® This drug also significantly decreased TMPRSS2 staining
in the neoplastic prostate epithelium. With regard to its safety,
dutasteride is generally well tolerated and causes no serious ad-
verse effects. Its use is associated with decreased libido, ejacula-
tion disorder, and erectile dysfunction, however, these effects are
usually mild and decrease over time.?? In terms of applicability to
COVID-19 patients, we propose this drug can be used at an oral
daily dose of 0.5 mg. However, it is important to mention that it is
contraindicated in pregnant women or women who may become

pregnant due to potential risk to a male fetus.°

3.3 | Histone deacetylase (HDAC) inhibitors

HDAC inhibitors are compounds that inhibit histone deacetylase
enzyme which catalyzes the removal of acetyl groups from both
histone and nonhistone proteins including transcription factors.
Inhibition of these deacetylation reactions alters the compactness
of the chromatin structure and the transcriptional regulation of
many genes that control the cell cycle, proliferation, and apopto-
sis.3! For this reason, HDAC inhibitors have been used as antican-
cer drugs. Among the genes whose expression is altered by HDAC

inhibition are those encoding the serine protease inhibitors HAI-1
and HAI-2. By querying the connectivity map (CMAP) drug pertur-
bation signatures,32 we found that the classical HDAC inhibitors
apicidin and trichostatin A increased the expression of SPINT1
and SPINT2 genes which encode HAI-1 and HAI-2, respectively, in
human lung cancer cell lines as measured by L1000 gene expres-
sion assay. Similarly, a number of second-generation HDAC inhibi-
tors (vorinostat, panobinostat, and mocetinostat) were found to
increase the expression of one of these two genes or both in the
same cell lines.

In the matter of clinical relevance, vorinostat and panobinostat
are both clinically approved for treatment of T-cell lymphoma and
multiple myeloma, respectively. In terms of safety, the most common
adverse effects associated with vorinostat are fatigue, nausea, di-
arrhea, thrombocytopenia, anorexia, and dysgeusia. Pulmonary em-
bolism, anemia, and squamous cell carcinoma of the skin are more
severe toxicities that were reported in less than 5% of patients.>34
Similarly, panobinostat use is linked to asthenia, fatigue, and diar-
rhea, however, it is also associated with pneumonia, peripheral neu-
ropathy and the more serious myelosuppression which manifests
as thrombocytopenia, neutropenia, and Iymphopenia.35 Given the
blood toxicity profiles of these drugs, we give them less priority for
clinical investigation in COVID-19 despite their seemingly desirable
effects on host cell proteases as we believe their risk-benefit ratio
does not favor their use.

3.4 | Cardiac glycosides
Long known for their positive inotropic effect, cardiac glycosides
have been used for managing patients with cardiac muscle fail-
ure for a very long time. However, because of their narrow thera-
peutic index and relatively high risk of toxicity associated with
their prolonged use, their clinical indications are now restricted.
Interestingly, these compounds may still provide some benefits for
patients with coronavirus infections. By examining a large collection
of RNA sequencing data, Wang and colleagues showed that digitalis-
like compounds including digoxin and proscillaridin A markedly re-
duced expression of the endosomal cathepsins B and L in human
thyroid cancer cells.®” This effect can limit S protein processing and
priming in the endosomal compartments of infected host cells.
Digoxin use has long been associated with gastrointestinal ad-
verse effects, visual disturbances, and cardiovascular toxicity in-

cluding cardiac arrhythmia, tachycardia, and heart block.3®

Despite
its potential for cardiovascular toxicity, we suggest that digoxin can
be tested in COVID-19 patients at an oral daily dose of less than
0.125 mg such that its serum concentration is kept below 1 ng/mL.
At such low concentration, digoxin is not only associated with min-
imal adverse effects, but also exerts beneficial hemodynamic, neu-
rohormonal, and clinical effects in patients with congestive heart
failure and other cardiovascular diseases.*’ Accordingly, we encour-
age testing digoxin in COVID-19 patients with preexisting cardiovas-
cular conditions such as heart failure.
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4 | DRUGS THAT DIRECTLY INHIBIT HOST
CELL PROTEASE ACTIVITY

4.1 | Human neutrophil elastase (HNE) inhibitors
Elastase and other serine proteases released from neutrophils at in-
flammation sites are believed to play an important role in the patho-
genesis of chronic obstructive pulmonary disease (COPD), cystic
fibrosis (CF), pneumonia, and acute lung injury which may result
from viral infections.*>* These diseases are usually accompanied by
a local imbalance between proteases (serine proteases, cathepsins,
and metalloproteases) and antiproteases (alphal antitrypsin, a2-
macroglobulin, cystatins, and tissue inhibitors of metalloproteinases).
This increased activity of proteolytic enzymes particularly elastase
leads to the breakdown of elastin and other components of the lung
connective tissue and induce the release of pro-inflammatory cy-
tokines augmenting the destructive inflammatory response.*? In ad-
dition, elastase was shown to activate the SARS-CoV-1 S protein and
shift the viral entry to a low pH-independent route.*>** Therefore,
inhibition of elastase would serve two purposes; the first is to pre-
vent S protein cleavage and activation and the second is to amelio-
rate elastase-mediated lung damage. A vast range of HNE inhibitors
have already been developed to treat various lung inflammatory
conditions including COPD, CF, bronchiectasis, acute lung injury and
ARDS* and are now being tested in clinical trials. We believe these
candidates would be extremely beneficial in the management of pa-
tients with severe SARS-CoV-2 infection.

To date, there are no known severe toxicities that could limit
the use of the HNE inhibitor sivelestat in COVID-19 patients.
Adverse effects with the highest reported incidence in clinical
trials are hepatobiliary disorders including elevated blood biliru-
bin and liver enzymes.*> Such safety profile makes this drug of
particular interest for clinical testing in COVID-19 patients upon
hospital admission. Intravenous administration of sivelestat to
hospitalized patients at a dose of 0.2 mg/kg per hour is proposed
as a preventative treatment option to attenuate ARDS associated
with the viral infection and improve the mortality rate in patients

with advanced disease.**%

4.2 | Alphal antitrypsin (AAT)

This alpha globulin glycoprotein is one of the most widely known
members of the SERPIN superfamily of serine protease inhibitors.
It is mainly synthesized in the liver by hepatocytes and released into
the bloodstream. It is also synthesized by the pancreas, lung alveolar
cells, vascular endothelium, and intestinal epithelium.*® Genetic de-
ficiency of AAT leads to a wide range of pathologies affecting mainly
the lungs, liver, and blood vessels.*® AAT possesses anti-inflamma-
tory, immunomodulatory, and anti-infection activity. It promotes tis-
sue repair and protects tissues from damage induced by proteolytic
enzymes released from inflammatory cells.*® Equally important,
AAT inhibits the activity of trypsin and elastase which are known to
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cleave and activate the S protein of SARS-CoV-1? and possibly also
SARS-CoV-2. Similar to HNE inhibitors, these properties make AAT a
promising candidate for managing COVID-19 patients.49

Like sivelestat, the toxicity profile of AAT therapy should not limit
its use in COVID-19 patients. The most common adverse reactions
are typical of intravenous infusion of proteins and include fever, chills,
urticaria, nausea, vomiting, and fatigue.50 Dyspnea, anaphylactic reac-
tions, and exacerbation of heart failure were also reported in patients
receiving AAT therapy, however, incidence of these events was rather
low.>© Accordingly, intravenous infusion of AAT at a dose of 60 mg/kg
weekly is proposed as another preventative measure that can protect
against ARDS and reduce mortality in hospitalized COVID-19 patients.

4.3 | Inhibitors of the clotting factor Xa
The clotting protein factor Xa is a serine protease that is derived
from the hydrolysis of its precursor factor X which takes place via
two principal pathways.>! The first is the extrinsic pathway which
occurs at the surface of a damaged endothelium and macrophages
and involves activation of factor X by factor VII/Vlla in association
with a membrane-bound cofactor, tissue factor (TF). The second is
the intrinsic pathway in which factor X is activated on the platelet
surface by a membrane-bound tenase complex comprising factor
IXa, its cofactor factor Vllla, and calcium ions. Factor Xa then acti-
vates prothrombin to thrombin eventually leading to blood clotting.
In the context of SARS-CoV-1 infections, factor Xa was found to
cleave the viral S protein at the S1/S2 boundary and promote entry
into host cells.? Hence, drugs that act as inhibitors of factor Xa
are considered protective against S protein priming and viral entry.
Three factor Xa inhibitors (rivaroxaban, apixaban, and edoxaban) are
now approved as novel oral anticoagulants and can be used as a re-
placement for the vitamin K antagonist warfarin.”®

Given that COVID-19-associated coagulopathy (CAC) has been
reported in several studies,”*>° the use of factor Xa inhibitors
may offer additional benefit by preventing development of venous
thromboembolism (more common in COVID-19 patients) and arte-
rial thromboembolism (less common) especially among seriously or
critically ill patients with COVID-19.°° A recently published retro-
spective analysis involving 4389 hospitalized COVID-19 patients re-
ported a lower mortality and intubation in the anticoagulation group
compared to the control group.57 A number of clinical trials are un-
derway to investigate the effectiveness of heparin and low molec-
ular weight heparin both in prophylactic and therapeutic doses to
prevent thromboembolism in COVID-19 patients.58'64

Although the pathogenesis of hypercoagulability in COVID-
19 patients is not fully understood, it has been proposed that all
three components of Virchow's triad including endothelial injury,
stasis, and hypercoagulable state are included.’**¢ Elevated levels
of a number of prothrombin factors including von Willebrand fac-
tor (VWEF), factor VIII, D-dimer, fibrinogen, neutrophil extracellular
traps, prothrombotic microparticles, and anionic phospholipids are
believed to be responsible for CAC . We believe that Xa inhibitors


https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6441
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/thrombocyte-membrane
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/thrombocyte-membrane
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6388
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6390
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7575
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can act by a dual mechanism; by inhibiting viral entry and preventing
CAC.®

4.4 | Otherimportant candidates with serine/
cysteine protease inhibitory activity

An additional set of small molecule and protein inhibitors of serine
proteases, especially TMPRSS2, have been thoroughly reviewed.%
Of particular importance are the two TMPRSS2 inhibitors camostat
and nafamostat mesilate. Camostat has shown remarkable in vitro
antiviral activity against HIN1 influenza, SARS-CoV-1 and the
Middle East respiratory syndrome-related coronavirus (MERS-CoV)
infections in human tracheal epithelial cells, human lung cancer cells
and monkey kidney epithelial cells. 12478 Moreover, camostat exhib-
ited in vivo antiviral activity against HIN1 influenza and SARS-CoV-1
in mouse models.®””? It was also recently shown that camostat can
block SARS-CoV-2 entry into human lung cancer cells and there-
fore constitutes a potential therapeutic option."3 Interestingly, nafa-
mostat was found to be more effective than camostat in blocking
MERS-CoV entry and replication in host cells.”? Another specific
TMPRSS2 inhibitor with great potential is the mucolytic agent bro-
mhexine hydrochloride’® whose high safety profile makes it an ex-
cellent candidate for clinical testing against SARS-CoV-2. In addition,
other serine protease inhibitors showed remarkable antiviral effects
against HIN1 influenza infections both in vitro and in vivo by vir-
tue of their ability to block HA cleavage and activation, and thus are
good candidates to be tested against SARS-CoV-2 infections. These
include ovomucoid, aprotinin and 4-(2-aminomethyl) benzenesulfo-
nyl fluoride hydrochloride.” 7474 It is worth mentioning here that a
number of FDA-approved drugs are reported to inhibit the activity
of cathepsins specifically cathepsin L and these have been recently
reviewed and proposed as potential candidates for the treatment
of COVID-19.”7 Examples include the antileprotic drug clofazi-
mine,”® the antibiotic teicoplanin,’”®° the anti-HIV saquinavir,®*
the antituberculosis rifampicin,”® the antioxidant astaxanthin,®?

8384 and the antimalarial

the anti-inflammatory dexamethasone,
chloroquine.8>8 Although the latter chloroquine and its deriva-
tive hydroxychloroquine are currently used in treatment protocols
of COVID-19, it was recently reported that hydroxychloroquine did
not reduce mortality in hospitalized COVID-19 patients compared to
standard of care.®”:88

Among all aforementioned candidates, camostat and nafamostat
are currently receiving the most attention in terms of clinical test-
ing in COVID-19. Camostat administration was associated with mild
adverse effects when used in 95 patients suffering from dyspepsia
associated with nonalcoholic pancreatic disease at a dose of 200 mg
three times daily for 2 weeks. Only two of the 95 patients devel-
oped very mild side effects.? Similarly, nafamostat did not show any
serious adverse effects when administered to patients with severe
acute pancreatitis at a dose of 240 mg/day intravenously or via arte-
rial infusion.” Yet, the safety and efficacy profile of these two drugs

in COVID-19 patients is still being assessed in 11 trials with larger

sample sizes (Table 1). In addition to TMPRSS2 inhibitors, the en-
dosomal cathepsin L inhibitor teicoplanin is considered a potential
antibiotic for treating secondary bacterial infections associated with
SARS-CoV-2. The adverse effects most frequently associated with
teicoplanin treatment are local and hypersensitivity reactions, such
as itching and drug fever; anaphylactic reactions including the “red
man syndrome” are uncommon. Teicoplanin is also less likely than
vancomycin to cause nephrotoxicity, especially when administered

in combination with an aminoglycoside.%93

5 | COMBINATION PROTEASE-
TARGETING THERAPY

As discussed earlier, combinatorial protease-targeting therapy is
propounded to tackle the problem of redundancy of host cell
proteases that can process and activate coronavirus S protein.
Targeting more than one protease enzyme using a drug combi-
nation is likely to be more effective in combating viral spread
than inhibiting just a single enzyme. We propose here a number
of protease-targeting drug combinations that we believe would
provide potential therapeutic benefit for hospitalized COVID-
19 patients. Inhibitors of the membrane-bound TMPRSS2 are of
particular importance because of the key role this enzyme plays
in early S protein processing at the cell surface.® Combining
such inhibitors with drugs targeting the extracellular proteases
as trypsin and elastase or those targeting the endosomal pro-
teases as cathepsin L is a considerable option as such combina-
tions would provide an adequate coverage of host cell proteases
across the different compartments (Figure 2). A TMPRSS2 in-
hibitor as camostat or nafamostat and an elastase inhibitor as
sivelestat are recommended to be administered to all hospital-
ized patients starting on day 1 of admission. This may help limit
viral spread in the respiratory tract in the early days of admission
and at the same time protect against ARDS and viral-induced
inflammatory lung damage.*>*¢ Another alternative combina-
tion with the same rationale would be oral dutasteride (which
acts via TMPRSS2 downregulation) instead of camostat together
with IV sivelestat. When it comes to targeting androgen recep-
tor signaling and TMPRSS2 expression, the 5-alpha reductase
inhibitor dutasteride is preferred over the androgen receptor
antagonist enzalutamide because its adverse effects are gener-
ally less severe. IV AAT is also suggested for administration with
TMPRSS2 inhibitors as an alternative to sivelestat since both of
them are expected to exert similar beneficial effects in terms of

mitigating elastase-induced lung damage and inflammation.*®4?

L8384 can be

Dexamethasone (which inhibits cathepsins B and
added to these combinations once the patient develops a severe
respiratory deficit and requires oxygen support since this drug
has already been shown to reduce mortality in this particular
clinical scenario.?”” Another potential candidate to add to such
combinations is the oral secretolytic agent bromhexine hydro-

chloride which showed inhibitory activity against TMPRSS2 and


https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6432
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4262
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6570
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is generally safe to use.”® Moreover, we recommend the use of
the glycopeptide antibiotic teicoplanin in hospitalized patients
who develop pneumonia as a result of secondary bacterial infec-
tions as this antibiotic was shown to inhibit cathepsin L”*8 and
thus may help to control the viral infection as well.

The question concerning the optimal timing for adminis-
tration of antiprotease combinations is definitely pivotal. We
propose that oral TMPRSS2-targeting drugs such as camostat,
dutasteride, and bromhexine should be initiated as early as pos-
sible once a positive test of the virus is established as currently
investigated in several clinical trials of camostat in COVID-19.19%
106 \We hypothesize that the clinical outcome would be signifi-
cantly improved if the drugs are administered early. The elastase
inhibitors AAT and sivelestat should be administered only to
hospitalized patients who suffer from a progressive disease and
pronounced dyspnea. We encourage that these agents are to
be administered—as stated above—together with camostat or
dutasteride once patients are admitted to the hospital and con-
tinued throughout the hospitalization period to provide adequate
prophylaxis against COVID-19 respiratory complications partic-
ularly ARDS.4¢4747 \We also emphasize here that such antiprote-
ase treatment should always be tested as an add-on therapy to
available antiviral drugs and not as replacement since it is vital to
target the virus both directly and indirectly to achieve the best
clinical outcome possible.

It is very important to point out that several antiviral drugs
that are currently being tested against SARS-CoV-2 have not
shown significant clinical benefit in COVID-19 patients. There
are at least four published randomized controlled trials evalu-
ating the effectiveness of the RNA polymerase inhibitor remde-
sivir in treating COVID-19 patients.’®”*1° These trials reported
mixed findings with no clear mortality benefits. Wang et al in
their randomized controlled trial found that remdesivir did not
significantly improve the time to clinical improvement although
this time interval was numerically shorter in patients treated
with remdesivir within 10 days of symptom onset compared to
those treated with placebo.’®” Beigel et al in their randomized
controlled trial reported an overall shorter recovery time among
patients in the remdesivir group compared to those in the placebo
group regardless of disease severity.108 Goldman et al in their ran-
domized phase Il trial comparing a 5-day course with a 10-day
standard course of remdesivir reported no significant differences
in both groups after adjustment of imbalances in baseline clinical
status.’®’ Spinner et al also examined the effectiveness of a 5-day
and a 10-day remdesivir course, compared with standard care at
day 11 after treatment initiation in a randomized phase Il trial
involving hospitalized patients with moderate COVID-19.11° The
authors found that patients who received remdesivir for 5 days
had significantly higher odds of better clinical status distribu-
tion compared to those who received standard care. Although
the FDA has approved remdesivir for COVID-19 treatment, the
current evidence is insufficient to support its use as a first-line
therapy against COVID-19. Regarding the safety and efficacy
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of the viral protease inhibitors lopinavir-ritonavir in COVID-19
patients, there are at least six published randomized controlled
trials.?*¥116 Most of the trials are of small sample size and show
either no benefit or only a mild reduction in time to symptoms
resolution with low certainty.?'” A recent large-sized trial showed
that lopinavir-ritonavir combination has no significant effect on
the 28-day mortality, duration of hospital stay, risk of progression
to invasive mechanical ventilation or death.*'® Consequently, the
evidence available so far does not support the use of lopinavir-ri-
tonavir combination for treating hospitalized COVID-19 patients.
Taken together, the results of all these clinical trials of antiviral
drugs clearly emphasize the need for alternative approaches to
treat SARS-CoV-2 infections. One such approach discussed ex-
tensively in this review is targeting host cell protease enzymes,

which we believe is worth exploring.

6 | CONCLUSION AND OUTLOOK

In summary, we emphasize the importance of host cell proteases
as potential drug targets for the treatment of SARS-CoV-2 infec-
tion and highlight therapeutic mechanisms that have not been suf-
ficiently exploited to impair the virus capacity to spread through its
host cells. We present a collection of clinically approved drugs as
well as drugs under investigation that either suppress the transcrip-
tion of proteases or increase the expression of their natural protease
inhibitors. We also include drugs that are reported to possess pro-
tease inhibitory activity. These are believed to be potential candi-
dates for drug repurposing and immediate preclinical testing in cell
line models to verify their efficacy. As many of these candidates have
been in clinical use for several years and their safety profiles are well
established, we encourage their rapid clinical testing in patients with
COVID-19 in combination with antiviral drugs. This would constitute
a two-hit approach where not only viral proteins/enzymes neces-
sary for viral replication are targeted but also the host cell machinery
that the virus takes advantage of to facilitate its propagation in its
infected host.

7 | Nomenclature of Targets and Ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY,™® and are permanently archived in the Concise
Guide to PHARMACOLOGY 2019/20.1%
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