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Abstract
Climate and environmental condition drive biodiversity at many levels of biologi-
cal organization, from populations to ecosystems. Combined with paleoecological 
reconstructions, palaeogenetic information on resident populations provides novel 
insights into evolutionary trajectories and genetic diversity driven by environmen-
tal variability. While temporal observations of changing genetic structure are often 
made of sexual populations, little is known about how environmental change affects 
the long-term fate of asexual lineages. Here, we provide information on obligately 
asexual, triploid Daphnia populations from three Arctic lakes in West Greenland 
through the past 200–300 years to test the impact of environmental change on the 
temporal and spatial population genetic structure. The contrasting ecological state 
of the lakes, specifically regarding salinity and habitat structure may explain the ob-
served lake-specific clonal composition over time. Palaeolimnological reconstruc-
tions show considerable regional environmental fluctuations since 1,700 (the end 
of the Little Ice Age), but the population genetic structure in two lakes was almost 
unchanged with at most two clones per time period. Their local populations were 
strongly dominated by a single clone that has persisted for 250–300 years. We dis-
cuss possible explanations for the apparent population genetic stability: (a) persis-
tent clones are general-purpose genotypes that thrive under broad environmental 
conditions, (b) clonal lineages evolved subtle genotypic differences unresolved by 
microsatellite markers, or (c) epigenetic modifications allow for clonal adaptation to 
changing environmental conditions. Our results motivate research into the mecha-
nisms of adaptation in these populations, as well as their evolutionary fate in the light 
of accelerating climate change in the polar regions.
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1  | INTRODUC TION

Climate and the environment are major drivers of biodiversity in the 
broad sense. In addition to higher levels of biological organization 
(e.g., communities and ecosystems), these environmental drivers 
affect species at the population level, including their temporal and 
spatial genetic structure and diversity (Pauls et al., 2013; Scheffers 
et al., 2016). The responses of population genetic structure and di-
versity to environmental forcing need to be considered at a range 
of temporal and spatial scales to fully evaluate how global change 
processes affect species' distributions and adaptive capacities 
(Ellegaard et al., 2020; Orsini et al., 2013). Long-term, field-based 
perspectives that span pre- and postdisturbance time periods (typi-
cally >100 years to cover preindustrial times) are required to balance 
experimental and laboratory approaches at elucidating ecological 
responses and genetic adaptation to climate change and chemical 
pollutants (Nogues-Bravo et al., 2018). Research that combines pa-
leoecological and molecular data was initiated in the late 1990s/
early 2000s (e.g., Kerfoot et al., 1999; Limburg & Weider, 2002; 
Mergeay et al., 2006) and has since developed into an established 
field to advance our understanding of past and current adaptation 
to environmental shifts (reviewed in Ellegaard et al., 2020; Napier 
et al., 2020).

Palaeolimnological approaches have a long history of providing 
detailed reconstructions of ecosystem variability at a range of tem-
poral scales (100 to 103 years) and across trophic levels (Jeppesen 
et al., 2017). Recent methodological progress combined with a bet-
ter understanding of preservational constraints and artifacts (e.g., 
seeds, eggs, cysts) has allowed the use of bulk (environmental) and 
compound-specific (organismal) DNA to address questions about 
long-term genetic trends, variability, and adaptation in aquatic eco-
systems (reviewed in Nogues-Bravo et al., 2018; Weider et al., 2018). 
The application of DNA extracted from dormant propagules can also 
be coupled with resurrection approaches (Burge et al., 2018; Weider 
et al., 2018). In optimal conditions, the palaeogenetic record allows 
the reconstruction of temporal patterns of genetic structure and 
diversity of aquatic populations and communities. These palaeoge-
netic reconstructions can be coupled with more standard paleoeco-
logical proxies (microfossils, geochemical markers, etc.) that reflect 
environmental and climatic drivers and forcing.

Genetic diversity is often reduced during times of environmental 
disturbance following strong selection and resulting population bot-
tlenecks (Banks et al., 2013). Shifts in genetic structure associated 
with rapid environmental change have also been observed in long-
term studies (Frisch et al., 2014; Lundholm et al., 2017). Likewise, 
the spatial genetic structure of populations is strongly related to en-
vironmental gradients, creating patterns of isolation by environment 
(Wang & Bradburd, 2014). Many species have undergone adaptive 
evolution to shifts in environmental conditions (Carroll et al., 2007). 
While these observations are generally made in sexual populations, 
little is known about long-term dynamics in the genetic make-up 
of asexual populations. Under an environmental change scenario, 

asexual lineages may be at a disadvantage compared with sexuals, 
who shuffle their genetic material thus creating the variation needed 
to fuel selection (Crow, 1994; Lachapelle & Bell, 2012). However, 
the potential of asexual lineages to persist during the rapid change 
currently recorded across ecosystems remains unclear.

At higher latitudes, geographical parthenogenesis is prevalent in 
various organisms, including Daphnia, and is often associated with 
polyploidy (reviewed in Tilquin & Kokko, 2016). Obligate partheno-
genesis in the Daphnia pulex species complex involves the production 
of apomictic eggs (Dufresne et al., 2011; Innes & Dufresne, 2020) 
that are deposited in an ephippium. This chitinous structure is de-
rived from maternal tissue, and each contains two dormant eggs, 
which in asexual populations are genetically identical. Ephippia with 
unhatched eggs can be extracted from the sediment and their DNA 
examined, allowing for a detailed study of temporal population ge-
netic structure of Daphnia populations (Frisch et al., 2016; Limburg 
& Weider, 2002; Lundholm et al., 2017; Mergeay et al., 2007; Orsini 
et al., 2016). Long-term studies at the scale of centuries on the fate 
of asexual Daphnia lineages do not exist. However, various asex-
ual Daphnia lineages have been recorded for 20–30 years in the 
Canadian Subarctic (Weider et al., 2010), and for over 70 years in 
an African lake (Mergeay et al., 2006). Contrasting the idea of cen-
tennial persistence of asexual lineages is the age estimate of only 
decades (Tucker et al., 2013) for asexual lineages of the North 
American Daphnia pulex-complex that arose by contagious asexual-
ity (Paland et al., 2005).

Arctic lakes in Greenland provide an ideal system to study 
long-term dynamics of asexual Daphnia populations in relation to 
climate change and environmental forcing. Many lakes are fishless 
and inhabited by populations of the keystone herbivore Daphnia, 
in particular the large-bodied Daphnia pulex-complex (Jeppesen 
et al., 2017). Arctic Daphnia populations are generally obligate asex-
uals (Decaestecker et al., 2009; Weider et al., 1996), and many of 
these lineages are triploids (Vergilino et al., 2009). In the Illulissat 
area of West Greenland, clonal richness of Daphnia pulicaria s.l. pop-
ulations was between 4 and 5 genotypes (Haileselasie, Mergeay, 
Weider, Jeppesen, et al., 2016; Haileselasie, Mergeay, Weider, 
Sommaruga, et al., 2016). The lakes along Kangerlussuaq in SW 
Greenland are particularly well studied in relationship to recent cli-
mate change, with evidence for a dramatic increase in environmental 
forcing of these sensitive habitats (Saros et al., 2019). In the context 
of the present study, the Kangerlussuaq area is a natural experimen-
tal site, in that direct anthropogenic impacts are limited or absent. 
But there have been substantial environmental changes reflecting 
climate (temperature, precipitation, and altered seasonality) as well 
as related landscape changes including soil erosion, dust defla-
tion, lake shrinkage, and terrestrial vegetation changes (Anderson 
et al., 2017). Kangerlussuaq, in contrast to most Arctic regions, was 
cooling throughout much of the 20th century. However, since 1996 
the area has undergone pronounced climate change, including rapid 
warming (>2°C) over the last 15 years, partly in relation to changes 
in the Greenland Blocking Index (Saros et al., 2019).
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In order to advance our understanding of the fate of asexual pop-
ulations in the light of current environmental change at high latitudes, 
there is a need for empirical data, especially on decadal to centen-
nial timescales. Here, we examine genetic diversity in polymorphic 
microsatellite DNA, and spatio-temporal genetic structure of three 
Daphnia lake populations in West Greenland near Kangerlussuaq 
and their relationship with the known regional environmental his-
tory. We address the question if rapid environmental change over 
the last 200–300 years has affected temporal and spatial population 
genetic structure of asexual Daphnia populations at the individual 
lake and landscape scale.

2  | MATERIAL AND METHODS

2.1 | Study area

The Kangerlussuaq area of SW Greenland is a major lake district 
with thousands of lakes, with a reasonably well understood re-
gional limnology (Whiteford et al., 2016). This, coupled with pre-
liminary zooplankton surveys and the fact that a number of the 
lakes have been the subject of palaeolimnological analyses (e.g., 
Law et al., 2015; McGowan et al., 2008) meant that sites could 
be chosen to optimize ephippia recovery, namely deep season-
ally anoxic basins. Braya Sø (SS4) was also known to have high 
concentrations of sediment biomarkers (D'Andrea et al., 2006). 
The area around the head of the fjord (Figure 1) has low effec-
tive precipitation and is characterized by limited hydrological 
connectivity resulting in a number of closed-basin oligosaline 
lakes (conductivity range 1,000–4,000 μS/cm). In general, the 
Kangerlussuaq freshwater lakes at the head of the fjord have con-
ductivities around 200–500 μS/cm and DOC concentrations ca. 
30–50 mg/L; DOC in the oligosaline lakes can be much higher 
(80–100 mg/L (Anderson & Stedmon, 2007); nutrient and major 
ion water chemistry is given in Table S1). The study lakes are lo-
cated within a few km of each other (Figure 1). SS1381 and SS1590 

are small scour basins (21.5 and 24.6 ha, respectively) with maxi-
mum depths around 18 m. Both lakes stratify strongly with an-
oxic hypolimnia. Braya Sø is a larger, meromictic oligosaline lake 
(73 ha). The ice-free period is from late-May/ early-June to late 
September. The lakes can be considered pristine in comparison 
with temperate systems in North America and NW Europe and 
have no direct cultural impact apart from low levels of atmos-
pheric pollution (Bindler et al., 2001). The catchment vegetation 
of all lakes is dwarf shrub tundra.

The study lakes are presently fishless, which is regarded as 
a requirement for populations of the large-bodied Daphnia spe-
ciesto persist (Lauridsen et al., 2001), although reports of co-oc-
currence exist (Haileselasie, Mergeay, Weider, Sommaruga, 
et al., 2016). All the lakes have variable water levels both at in-
terannual and decadal timescales, resulting from their sensitiv-
ity to the seasonality of precipitation, the extent of the spring 
melt input and intense evaporation during the summer (Anderson 
et al., 2001). Although the lakes are isolated basins today, SS4 was 
once part of a group of lakes that formed a large palaeolake in the 
early Holocene (Aebly & Fritz, 2009); SS1590 would have drained 
into this larger lake for a brief period. SS1381 is located 6 km to 
the west of SS1590 and above the level of the highest shoreline 
of the palaeolake.

West Greenland has undergone considerable environmental 
change (over different timescales) since deglaciation. Research has 
focussed on a range of biophysical aspects of the ice-land-water 
continuum, including glacier mass balance, terrestrial vegetation 
and herbivore dynamics, and aquatic biogeochemistry (Anderson 
et al., 2017). Lake sediment records have provided details of ecolog-
ical response to climate and landscape change over centennial and 
millennial timescales, including diatom, pigment, and palaeoclimatic 
reconstructions (Law et al., 2015; McGowan et al., 2003, 2008; 
Presthus Heggen et al., 2010). Because ephippia recovery was great-
est at SS4 and this lake has a well-defined environmental history, 
discussion of microsatellite variability and environmental history is 
restricted to this site.

F I G U R E  1   Overview of the study area. 
Insert shows location of the study lakes 
SS4 (Braya Sø), SS1590, and SS1381
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2.2 | Sediment sampling and analysis

Short sediment cores (4 replicates per lake) were taken in July 2015 
with a 9.5 cm diameter Hon-Kajak sediment corer from the deepest 
part of each lake. Replicate cores were taken at one location in the 
basin, approximately within a 30-m radius. The boat was moved after 
each core was taken to avoid unnecessary sediment disturbance. 
Recovery was around 25-cm at each lake and at all sites included an 
intact sediment water interface (Figure S1). Cores were sectioned on 
shore at 1-cm intervals and samples were placed in individual plastic 
bags. Although sedimentation rates are low in many of these lakes 
(~0.03 cm/yr; Anderson et al., 2019), a 1-cm interval was used to maxi-
mize recovery of ephippia; finer interval sampling would have provided 
too few ephippia. Samples were kept refrigerated after return from the 
field until further analysis. A subsample of each core slice was analyzed 
for dry weight and organic matter content using standard methods 
(loss-on-ignition at 550°C). The cores used in this study were not dated 
radiometrically but previous cores have been dated using 210Pb and 14C 
(D'Andrea et al., 2011; McGowan et al., 2003). Organic matter profiles 
are distinctive at each lake (Figure S2), allowing among-core correlation 
and thus chronologies to be transferred from the dated cores to those 
used in this study. This method is illustrated for SS4 where 4 replicate 
cores were taken in 2015; core OM profiles are clearly repeatable 
(Figure S2). Samples used for microsatellite analysis cover the most 
recent 200–300 years for SS4 and SS1381. The higher sedimenta-
tion rate at SS1590 meant that recovery of ephippia with eggs suitable 
for microsatellite analysis was confined to the most recent ~30 years 
based on 210Pb analysis (NJ Anderson unpublished).

Previously, the changing abundance of purple sulfur bacteria (PSB) 
at Braya Sø has been inferred from the variable concentration of the 
carotenoid okenone in the lake sediment (see McGowan et al., 2008). 
Unfortunately, pigments were not measured on the sediment cores 
used in this study but we have shown a good agreement between 
sediment porewater fluorescence of the cores sampled in 2015 and 
okenone abundance from a 2001 core (Osburn & Anderson unpub-
lished). Therefore, in this study, we used the second component (C2) 
of a PARAFAC model based on the fluorescence excitation-emission 
matrices (EEMs) of porewater chromophoric dissolved organic matter 
(CDOM) as a proxy for changing PSB abundance. Component 2 exhib-
its a clear peak centered on 280 nm and is a protein-like fluorescence 
marker associated with bacteria. Porewater CDOM fluorescence was 
measured on separate Varian Eclipse spectrofluorometers and fluores-
cence intensity was calibrated into Raman units.

The organic C flux was calculated as in previous studies 
(Anderson et al., 2019), and at SS4 the ephippia accumulation rate 
was estimated as the total number of ephippia in a 1-cm sediment 
slice divided by the linear sediment accumulation rate (years/cm).

2.3 | Molecular analysis

The studied species was identified as Daphnia pulicaria sensu lato 
(in the following: Daphnia pulicaria), and clustered with lineages of 

the Polar Daphnia pulicaria clade based on the mitochondrial ND5 
(Colbourne et al., 1998, D. Frisch, unpublished data).

Ephippia were removed from 1-cm-sections of sediment and 
enumerated for each sediment section as described in Frisch 
et al. (2014). Preference was given to sampling ephippia from a sin-
gle core. However, due to limited numbers of intact eggs suitable for 
genetic analysis, we had to supplement ephippia from replicate cores 
in several cases. For details on the replicate cores used see Table S3. 
Eggs were removed from the ephippia and used for DNA extraction 
(using one egg per ephippium). DNA was isolated from individual 
eggs with the QIAamp Microkit (Qiagen Inc) following the protocol 
for DNA extraction from tissue specified in the manufacturer's man-
ual. To facilitate DNA extraction, eggs were perforated with a sterile 
micropipette tip, breaking the membrane and exposing egg contents 
to the extraction buffers. The total number of DNA isolates was 92 
from three lakes (n = 57 (SS4), n = 12 (SS1590), n = 23 (SS1381)).

Microsatellite loci were amplified in single, 12.5 µl multiplex 
reactions (Type-it PCR kit, Qiagen Inc), using an Eppendorf Nexus 
Thermal Cycler with thermal cycle conditions recommended in the 
Type-it PCR kit manual. Ten microsatellite primers (Table S2) rep-
resenting genome-wide loci were used for genotyping; details in 
Colbourne et al. (2004) and Frisch et al. (2014). Two primers (Dp90, 
Dp377) failed to amplify in a consistent manner and were therefore 
excluded from further analysis. Amplified microsatellites were geno-
typed on an Applied Biosystems 3730 genetic analyser. We used the 
microsatellite plugin for Geneious 7.0.6 (https://www.genei ous.com) 
for peak calling and binning. Called peaks were visually inspected 
and manually adjusted when necessary.

All analyses were run in R version 3.6.2 (R CoreTeam, 2017) using 
the R package poppr 2.8.3 (Kamvar et al., 2014). For the population 
genetic analyses, we excluded all isolates with >5% missing infor-
mation, yielding a set of 59 isolates (SS4: 28 isolates; SS1381: 10 
isolates; SS1590: 21 isolates, Table S3). Analyses included the esti-
mation of allelic diversity for each locus, and the population genetic 
parameters of estimated multilocus genotypes (eMLG) by rarefac-
tion to the smallest population size of 10 in SS1590.

Population genetic structure was visualized by a Multiple 
Spanning Network computed with the R package poppr 2.8.3 
(Kamvar et al., 2014). The MSN was constructed in poppr using 
Bruvo's distance that takes into account stepwise mutational pro-
cesses (Bruvo et al., 2004).

3  | RESULTS

3.1 | Environmental variability and ephippial 
dynamics

Regional climate in South West Greenland was variable from the 
end of the Little Ice Age (LIA) with alternating warm and cold pe-
riods, and the most recent warm period beginning at the end of 
the 20th century (Figure 2a). As example for the in-lake tempo-
ral variability in the last centuries, we focus on reconstruction of 

https://www.geneious.com
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environmental conditions in SS4. Here, both the OC accumulation 
rate and the abundance of PSB (as fluorescence PARAFAC compo-
nent C2) varied over the last 300 years suggesting variable lake pro-
duction (Figure 2b). Daphnia pulicaria ephippia flux varied from ca. 2 
to 1,800 ephippia m2 yr−1 from 1600 AD to post 2000 AD, peaking 
around 1900 AD (Figure 2c), indicative of considerable fluctuations 
in population size.

3.2 | Population genetic parameters

Genetic diversity and population structure of Daphnia populations 
were studied in three lakes near Kangerlussuaq, SW Greenland 
(SS4, SS1381, SS1590, Figure 1), using dormant eggs deposited in 
the sediment. The covered time period differed between lakes and 
was 200–300 years in SS4 and SS1381, and ~30 years in SS1590. 
All Daphnia clones were putatively triploid, based on the criterion 
of three different alleles at a minimum of one locus in each multilo-
cus genotype (MLG). None of the MLGs included a locus with more 
than three alleles. Of the eight loci used for genotyping, six (Dp162, 
Dp291, Dp369, Dp401, Dp437, Dp461) had three different alleles in 

at least one individual, while two (Dp43, Dp173) had a maximum of 
two alleles.

Clonal diversity differed between the three lakes (Table 1): of 28 
eggs examined in SS4, we found a total of three MLGs (maximum of 
2 per time period, Figure 3a) of which one was dominant throughout 
three centuries (MLG1). Only a single clone (MLG10) was detected in 
the 21 isolates from SS1381, which persisted over several centuries, 
as did MLG1 in SS4. In contrast, the Daphnia population in SS1590 
was more diverse than the former two lakes with seven MLGs in a 
total of 10 isolates, of which only one MLG was found during two 
(nonadjacent) time periods. These differences in clonal diversity 
and dominance structure are also reflected in the rarefied estimate 
of clonal diversity (eMLG, Table 1), which in SS1590 was about 3.5 
and 6 times higher than in SS4 and SS1381, respectively. Changes 
in clonal composition over time were not discernible in either of the 
two lakes from which long-term records across centuries could be 
obtained (Figure 3a, SS4 and SS1381).

A Minimum Spanning Network shows the relationship between 
the Daphnia lineages of the three lake populations (Figure 3b). Here, 
the main genotype of SS4 (MLG1) was the most distant within the 
network. It linked directly to the other two genotypes found in this 

F I G U R E  2   Environmental history 
at SS4 (Braya Sø) and the response 
ofDaphniagenotypes. (a) Climate 
variability: reconstructed summer lake 
water temperatures based on alkenones 
at Braya Sø and Lake E (see (D'Andrea 
et al., 2011) for details) and the mean 
annual air temperature recorded at Nuuk. 
(b) Aquatic production indices for the 
lake: organic C burial reflects total in-lake 
production and abundance of purple 
sulfur bacteria inferred from porewater 
fluorescence (as Parafac Component C2). 
(c) The stability of the dominant genotype 
(MLG1) over time period covered by the 
sediment analyses is indicated by the solid 
red line; two secondary, minor genotypes 
(GT) are indicated (solid orange (MLG2) 
and dotted red lines (MLG3)
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location, suggesting MLG1 as the ancestral genotype in SS4. The 
SS1590 genotypes formed two subnetworks, one of which was 
linked directly with the only genotype detected in SS1381 (MLG10).

4  | DISCUSSION

The results of this study indicated lake-specific genotypic composi-
tion of the three Daphnia populations among the lakes (Figure 3b), 
and despite considerable in-lake and regional environmental change 
since ~1700 AD (discussed below), the clonal structure of Daphnia 
populations in two of three lakes (SS4 and SS1381) was remarkably 
stable. Importantly, we found strong dominance of a single, lake-
specific asexual clone throughout the past two to three centuries in 
each of these two lakes.

4.1 | Spatial patterns

The analysis of population genetic structure revealed a larger ge-
netic distance between the population of SS4 and the other two 
lake populations (Figure 3b), a spatial pattern that may reflect the 
primary environmental differences among the lakes as well as the 
historic connectivity between these lakes: SS4 is oligosaline and 
thus differs strongly from SS1381 and SS1590. The latter two 
are quite similar to each other in terms of their water chemistry 
(Table S1) and typical of many of the freshwater lakes around the 
head of the fjord (Whiteford et al., 2016). Clearly, ionic composi-
tion and inorganic C chemistry is an important driver of genotypic 
variability as much as it determines regional biodiversity and com-
munity structure (diatoms, chrysophytes (Pla & Anderson, 2005; 
Ryves et al., 2002)). Conductivity is the dominant control on algal 
composition in this area and is highly correlated with both DOC 
concentration and CDOM quality (Anderson & Stedmon, 2007). 
Conductivity was also identified as one of the major factors driv-
ing clonal composition of Daphnia populations in an area about 
250 km north of Kangerlussuaq (Haileselasie, Mergeay, Weider, 
Sommaruga, et al., 2016). Lakes SS1381 and SS1590 have never 
been connected hydrologically, since SS1381 lies outside the 
boundary of the large palaeolake that included SS4 in the period 

immediately after deglaciation (Aebly & Fritz, 2009). The lack of 
shared clones between lakes suggests local adaptation to the en-
vironmental conditions of each resident lake, in particular given 
the geographic proximity between all three study lakes (less than 
10 km) and the lack of evidence for dispersal limitation in other 
populations of West Greenland Daphnia (Haileselasie, Mergeay, 
Weider, Jeppesen, et al., 2016). However, because sample size was 
limited, it is possible that future sampling will detect additional, less 
abundant genotypes that may be shared between locations.

The overall greater clonal diversity of the SS1590 Daphnia popu-
lation compared with that of SS4 and SS1381 may reflect the greater 
diversity of habitats in this lake—its two sub-basins are quite dif-
ferent in terms of their morphometry and substrate variability, in-
cluding the dominant macrophytes (Anderson, unpublished field 
observations). Not only are littoral and benthic habitats more di-
verse in SS1590, but the lake also has a more dynamic response to 
evaporative driven lake level changes than many of the lakes in the 
area. These short-term lake level changes also exacerbate habitat 
heterogeneity more at this site than others, due to its morphometry. 
SS1381 has a simpler morphometry, essentially with one deep basin. 
SS4, the largest of the lakes can be considered a pelagic system and 
while lake levels are variable here as well, the contribution of the 
littoral zone to whole lake production and diversity is probably more 
limited.

4.2 | Regional environmental change

Lakes in the Kangerlussuaq area are tightly coupled to regional 
climate change which influences both terrestrial landscape and 
in-lake aquatic processes, such as hydrological runoff, terrestrial 
productivity, lake levels, conductivity, and DOC concentration 
(Osburn et al., 2019). The period covered by the genetic analyses 
in two lakes, ~200–300 years, includes the end of the Little Ice 
Age (LIA); a period of considerable change in regional climate, with 
aridity and fluctuating temperatures. Lake levels would have been 
lower than present (Aebly & Fritz, 2009; McGowan et al., 2003) 
and aridity affects dust deflation from the sandurs immediately 
north and to the east of the study area. As the lakes are strongly 
P-limited (Brutemark et al., 2006), dust is a possible important nutri-
ent source. Atmospheric reactive N deposition has increased across 
the Arctic (Wolfe et al., 2013) and Greenland is no exception. The 
changing nutrient balance associated with these varying sources 
will have impacted primary production and thus secondary produc-
ers (i.e., Daphnia). But as well as these broader, regional responses 
which can be traced across lakes, each individual lake has its own 
ecological trajectory in environmental space (see for example Law 
et al., 2015). Long-term air temperature records show considerable 
variability during the 20th century, including a period of pronounced 
cooling. Rapid warming characterizes the start of the 21st century. 
Lake temperatures track air temperatures tightly in this area (Kettle 
et al., 2004) and so epilimnetic temperatures would have varied 
similarly.

TA B L E  1   Genetic diversity of the Daphnia pulicaria population 
in three lakes of West Greenland integrated over several sediment 
depths

Pop N MLG eMLG SE

SS4 28 3 1.7 0.7

SS1590 10 6 6.0 0.0

SS1381 21 1 1.0 0.0

Total 59 10 3.9 1.1

Abbreviations: eMLG, number of expected MLG at the smallest sample 
size based on rarefaction; MLG, Multilocus genotypes; N, number of 
genotyped isolates; SE, Standard Error based on eMLG.
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As an example for local environmental variability since LIA, 
SS4 showed pronounced variation of okenone, a pigment which 
can be used as a proxy for purple sulfur bacteria (PSB) abundance 
(McGowan et al., 2008). In SS4, in conjunction with indicators of 
primary production, variation of ephippial densities provides ev-
idence of historic changes in trophic interactions. Ephippial pro-
duction serves as a rough estimate of Daphnia population size 
(Jankowski & Straile, 2003; Nykänen et al., 2009). There is some 
suggestion that over the last ~800 years the Daphnia population in 
SS4 has been tracking purple sulfur bacteria (Frisch & Osburn un-
published), which Daphnia may exploit as a direct or indirect food 
source, as observed in other studies (Jürgens et al., 1996; Massana 
et al., 1994).

4.3 | Long-term persistence of dominant clones

Despite these profound environmental changes, there is limited gen-
otypic variability over time. We did not find evidence for environ-
mental dynamics to drive patterns of population genetic structure 
or genetic diversity over the past several centuries: Our data sug-
gest the presence of a single clone in two of the study lakes, in SS4 
(MLG1) and SS1381 (MLG10), across all sample depths, over the past 
200–300 years. In SS4, two other clones were detected in two dif-
ferent time periods, both with very low abundance. In contrast, the 
third lake (SS1590) had a much shorter temporal record but a higher 
number of clones. While it is obvious that clonal diversity in this lake 
overall was much higher, the temporal pattern of genetic structure 

F I G U R E  3   Spatial and temporal 
population genetic structure of 
theDaphniapopulations in three lakes. 
To avoid an artificial increase of identical 
genotypes, only one egg per ephippium 
was used for microsatellite analysis. (a) 
Abundance of multilocus genotypes 
(MLG1 to MLG10) with information on 
lake and sediment age from which eggs 
were isolated. Each row represents a 
lake: SS4 (4 time periods), SS1381 (4 
time periods), and SS1590 (three time 
periods). (b) Minimum Spanning Network 
(MSN) of MLGs identified in the three 
lakes and time periods. Thicker, darker 
edges correspond to more closely related 
genotypes. Numbering of MLGs is the 
same as in (a)
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and diversity cannot be identified with certainty due to the low num-
bers of isolates; overall ephippial density in this lake was much lower 
(personal observation) with a smaller amount of well-preserved eggs 
suitable for genetic analyses.

There are several tenable explanations for the apparent domi-
nance and persistence of single clones in two lakes

(i)  The persistent clone may be a general-purpose genotype that suc-
cessfully exploits a variety of historic environments that are not (yet) 
within a harmful range

The invasion and dominance of a single, asexual Daphnia clone 
have been observed in several lakes throughout a wide geographic 
range. For example, an asexual Daphnia pulex clone invaded the 
population in Lake Naivasha, Kenia in the 1920s, and then displaced 
the local sexual, genetically diverse Daphnia population (Mergeay 
et al., 2006). Successful invasion of the same clone was observed 
throughout Africa in a wide range of aquatic habitats and environ-
mental conditions, testifying to the exceptional niche breadth of 
this asexual clone. Similar observations have been made in Japan 
(So et al., 2015), where four asexual Daphnia clones invaded a large 
number of aquatic habitats across a wide geographical range and 
ecological conditions. In contrast, Jose and Dufresne (2010) did not 
observe a higher tolerance of asexual, polyploid clones compared 
with diploid clones within the environmental range tested.

In two of our studied Arctic populations, the persistence of 
Daphnia clones despite major temperature changes over the last 
centuries in the study area may reflect the considerable in-lake tem-
perature gradient that Daphnia experience on a regular basis. At SS4, 
daily vertical migration to graze directly or indirectly on PSB and 
POC (DOC) in the metalimnion at SS4 (a distance of some 8–12 m) 
would expose animals to a temperature change of >10°C, consider-
ably more than the temperature change during the recent millennia. 
Moreover, the annual temperature range in the epilimnion is also in 
the order of 10°C (D'Andrea et al., 2011). Although only SS4 has a 
metalimnetic PSB plate, all three study lakes have substantial gradi-
ents in DOC and POC, suggesting that they are utilizing a microbial 
loop in the lakes. The three study lakes are seasonally anoxic with 
hypolimnetic reductions in O2 during both summer and winter. It is 
possible that these seasonal environmental changes and the vertical 
O2 gradients exert greater physiological stress in Daphnia than the 
stress associated with regional warming. Of course, this genetic sta-
sis may not continue should environmental change in SW Greenland 
stay at a similar rate (Saros et al., 2019). 

(ii)  Undetected by the applied genetic resolution, a single MLG may com-
prise several distinct clonal lineages, each adapted to a specific his-
toric environment

The possibility of cryptic genetic variation must be considered 
due to the limited resolution offered by microsatellite markers which 
cannot fully account for possibly existing genome-wide variation. 
For example, using 12 microsatellite loci, So et al. (2015) detected 

only four MLGs in asexual Daphnia pulex that had invaded Japanese 
lakes and ponds. Interestingly, these MLGs comprised 21 mitochon-
drial haplotypes, indicating a higher genotype diversity than that re-
solved by the microsatellite loci (So et al., 2015), a finding that was 
later confirmed using whole-genome sequencing (Tian et al., 2019). 
In particular, these authors concluded that the observed divergent 
traits in these closely related asexual genotypes evolved without 
recombination from an ancestral clone by a limited number of func-
tionally significant mutations (Tian et al., 2019). 

(iii)  Epigenetic modifications explain clonal adaptation and allow clones 
to persist

There is increasing evidence that epigenetic mechanisms con-
tribute to evolution (Asselman et al., 2016; Becker et al., 2011) and 
to adaptive responses related to climate and environmental change 
(Alakärppä et al., 2018; Metzger & Schulte, 2018; Münzbergová 
et al., 2019). In the absence of genomic variation, it is becoming in-
creasingly evident that changes in epigenetic profiles could allow 
for rapid, heritable adaptations to environmental cues that pre-
cede the more slowly evolving changes in DNA sequences (Deakin 
et al., 2014), that is, the classical Darwinian mutation accumula-
tion and selection concept. Epigenetic modifications would allow 
persistence of asexual clones in the absence of recombination and 
generation of genetic variation, because transgenerational inheri-
tance of DNA methylation is highly likely in Daphnia, whose gam-
etes are derived from almost fully matured tissue (Wojewodzic & 
Beaton, 2017).

5  | SYNTHESIS

Our study examined the possible impact of environmental change 
on the centuries-long persistence of asexual clones in two Daphnia 
populations. While the interpretation of our results is limited by 
sample size and genetic resolution, they are, to our best knowledge, 
the first to report the population genetic structure of asexual, poly-
ploid Daphnia populations of the circumpolar Daphnia pulex-complex 
across century timescales. In order to test the ecological implications 
of these findings, laboratory experiments are needed in future stud-
ies. In particular, representatives of the current populations can be 
used to test whether the dominant clones exhibit phenotypic plas-
ticity with a wide tolerance toward local conditions (temperature, 
food, and salinity), or whether local (and temporal) adaptation to 
different conditions can be observed. If possible, hatchlings of eggs 
from older sediments should be included to compare phenotypic and 
transcriptomic responses of ancient and contemporary isolates. In 
addition, the role of epigenetic modifications should be considered 
in further studies (Frisch et al., 2014, 2020).

Other factors in addition to environmental change, includ-
ing predators, parasites, or pathogens could be additional drivers 
of clonal composition and stability. Future, more intensive sam-
pling should be performed to reveal additional clonal lineages and 
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potential interaction with the biotic environment; however, the ob-
served dominance patterns and persistence of individual clonal lin-
eages are unlikely to change. Our results stimulate several questions 
relating to the mechanisms of adaptation in these populations, as 
well as their evolutionary fate during the next decades and beyond, 
on the assumption that climate change in Greenland and other Arctic 
regions proceeds on the predicted trajectory with severe ecological 
consequences.
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