UNIVERSITY OF BIRMINGHAM University of Birmingham Research at Birmingham

A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions

Zhou, Weiming; Chen, Bi-Yun; Sun, Wei; He, Xuezhi; Hilton, Jason; Wang, Jun

DOI: 10.1080/08912963.2020.1860033

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Peer reviewed version

Citation for published version (Harvard): Zhou, W, Chen, B-Y, Sun, W, He, X, Hilton, J & Wang, J 2020, 'A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions', Historical Biology. https://doi.org/10.1080/08912963.2020.1860033

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This is an Accepted Manuscript version of the following article, accepted for publication in Historical Biology. Wei-Ming Zhou, Bi-Yun Chen, Wei Sun, Xue-Zhi He, Jason Hilton & Jun Wang (2020) A new gigantopterid genus from the late Permian of the Daha Coalfield, Tibetan Plateau and its implication on plant-insect interactions, Historical Biology, DOI: 10.1080/08912963.2020.1860033. It is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	A new gigantopterid genus from the late Permian of the
2	Daha Coalfield, Tibetan Plateau and its implication on
3	plant-insect interactions
4	
5	Wei-ming Zhou ^a , Bi-yun Chen ^{a,b} , Wei Sun ^c , Xue-zhi He ^d , Jason Hilton ^e ,
6	Jun Wang ^{a,f,*}
7	
8	^a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of
9	Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment,
10	Chinese Academy of Sciences, Nanjing 210008, China
11	^b University of Science and Technology of China, Hefei 230026, China
12	^c Key Laboratory for Sedimentary Basin and Oil and Gas Resources, Department of
13	Natural Resources, Chengdu Center of Geological Survey, China Geological Survey,
14	Sichuan, Chengdu, 610081, China
15	^d Anhui Geological Museum, Hefei 230031, China
16	^e School of Geography, Earth and Environmental Sciences, University of Birmingham,
17	Edgbaston, Birmingham B15 2TT, UK
18	^f College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,
19	Beijing 100049, China
20	
21 22 22	CONTACT Jun Wang jun.wang@nigpas.ac.cn State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeonyironment. Chinese Academy of Sciences. Nanjing

- 23 Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing,
- 24 China

26 ABSTRACT

27	Gigantopterid plants share common traits of megaphyllous leaves with multi-ordered
28	venation and have a stratigraphic distribution restricted to the Permian Period. They
29	display a large variety of leaf morphologies which may indicate affinities from more
30	than one plant groups including ferns and pteridosperms such as the peltasperms. Here
31	we describe a new genus of gigantopterid with two species from the upper Permian
32	Nayixiong Formation in the Daha Coalfield, Qinghai Province, China. The new genus
33	Filigigantopteris is markedly different from other gigantopterid genera in having
34	fern-like leaf architecture with double-meshed venation. Filigigantopteris
35	asymmetrica gen. et sp. nov. is characterized by its asymmetric pinnules with
36	dissected lobes, while Filigigantopteris dahaia gen. et sp. nov. is characterized by its
37	once-pinnate frond. A gigantopterid leaf figured from the Lopingian of southwest
38	China that was previously incorrectly assigned to Gigantopteris nicotianaefolia may
39	represent a third species of Filigigantopteris. The new genus further emphasizes the
40	morphological diversity and obscure systematic position of the Permian
41	gigantopterids. In addition, three types of functional feeding groups, including hole
42	feeding, margin feeding and probably skeletonization, are present on laminae of
43	Filigigantopteris, suggesting frequent and diverse plant-insect interactions between
44	gigantopterid megaphylls and herbivorous insects in Cathaysia.
45	

KEYWORDS Cathaysia; gigantopterids; *Filigigantopteris* gen. nov.; Tibetan Plateau;

49 Introduction

50	Gigantopterids were important floral elements in parts of the Cathaysian and
51	Euramerican realms during the Permian Period (e.g., White 1912; Halle 1927; Mamay
52	1960; Li et al. 1983a; Booi et al. 2009; DiMichele et al. 2011; Yang 2006). They were
53	first documented from the Guadalupian of Hunan Province, China and assigned to
54	Megalopteris nicotianaefolia Schenk (Schenk 1883) but were later transferred to
55	Gigantopteris Schenk because the genus name Megalopteris Dawson had
56	nomenclatural priority. Since then numerous other gigantopterids have been reported
57	from China (e.g., Zeiller 1907; Halle 1927) as well as other countries including Japan
58	(Yabe 1904), Korea (Yabe 1908), America (White 1912) and Indonesia (Posthumus
59	1927). Early accounts placed all gigantopterids in the genus Gigantopteris, but
60	Koidzumi (1934) was first to recognize their morphological differences and
61	re-classified them into five subfamilies and eight genera (Koidzumi 1934, 1936). Up
62	to now, over 20 genera have been established within the gigantopterids (see Zhou et al.
63	2018 for recent review).
64	Although some accounts of gigantopterid plants include details of epidermal
65	(Wang 1999; Yao and Liu 2004; DiMichele et al. 2011), anatomical (e.g., Mamay et al.
66	1988; Li et al. 1996; Li and Taylor 1998, 1999) and alleged reproductive features (e.g.,
67	Li and Yao 1983b; Zhu and Zhang 1995; Wang 1999), their systematic affinity
68	remains uncertain. Current evidence suggests that gigantopterids are not a

69	monophyletic group but share convergent traits of megaphyllous leaves with
70	multi-ordered net venation (Glasspool et al. 2004a, 2004b; DiMichele et al. 2011;
71	Zhou et al. 2018). In terms of their morphology, several distinct evolutionary
72	pathways have been proposed within gigantoperids involving a theory termed
73	"Growth Retardation" in which gigantopterid leaves were assumed to have evolved by
74	the fusion of segments of more simple leaves into larger leaves with more complex
75	venation patterns (Asama 1959; Shen et al. 1977; Booi et al. 2009). However, this
76	concept has been widely discredited (e.g., Li and Yao 1983a; Yao 1983; Yang 1987).
77	For example, recent research documenting the genus Gigantonoclea in the earliest
78	Permian Asselian Stage of North China contradicts Asama's growth retardation theory
79	in which this seemingly advanced genus occurs in the fossil record significantly
80	earlier than its suggested ancestors (Zhou et al. 2018).
80 81	earlier than its suggested ancestors (Zhou et al. 2018). Gigantopterids appeared to reach their peak of morphological diversity in Henan
81	Gigantopterids appeared to reach their peak of morphological diversity in Henan
81 82	Gigantopterids appeared to reach their peak of morphological diversity in Henan Province (central China) during the early Guadalupian to early Lopingian (Yang
81 82 83	Gigantopterids appeared to reach their peak of morphological diversity in Henan Province (central China) during the early Guadalupian to early Lopingian (Yang 2006). From that region abundant well-preserved leaves were systematically
81 82 83 84	Gigantopterids appeared to reach their peak of morphological diversity in Henan Province (central China) during the early Guadalupian to early Lopingian (Yang 2006). From that region abundant well-preserved leaves were systematically described and classified into 36 species from 12 genera based on their leaf
81 82 83 84 85	Gigantopterids appeared to reach their peak of morphological diversity in Henan Province (central China) during the early Guadalupian to early Lopingian (Yang 2006). From that region abundant well-preserved leaves were systematically described and classified into 36 species from 12 genera based on their leaf architecture and venation patterns. For instance, in the simple-meshed leaves of
81 82 83 84 85 86	Gigantopterids appeared to reach their peak of morphological diversity in Henan Province (central China) during the early Guadalupian to early Lopingian (Yang 2006). From that region abundant well-preserved leaves were systematically described and classified into 36 species from 12 genera based on their leaf architecture and venation patterns. For instance, in the simple-meshed leaves of <i>Gigantonoclea</i> (Koidzumi), those with fern-like compound architecture with apically
81 82 83 84 85 86 87	Gigantopterids appeared to reach their peak of morphological diversity in Henan Province (central China) during the early Guadalupian to early Lopingian (Yang 2006). From that region abundant well-preserved leaves were systematically described and classified into 36 species from 12 genera based on their leaf architecture and venation patterns. For instance, in the simple-meshed leaves of <i>Gigantonoclea</i> (Koidzumi), those with fern-like compound architecture with apically fused laminae which fit the original diagnosis of the genus were maintained in

2 Zhou et al. 2018). Similar categories have also been applied in the double-meshed
leaves of *Gigantopteris* where those with petiolate compound architecture and an
apical leaflet were transferred to *Pinnagigantopteris* Yang, while those with simple
leaves and axillary buds present were transferred to *Monogigantopteris* Yang (Yang
2006).

Gigantopterid leaves are frequently discovered with feeding traces preserved on 96 them. Plant-arthropod interactions were first evidenced in the fossil record during the 97 Early Devonian with coprolites containing plant spores (Edwards et al. 1995; 98 99 Habgood et al. 2004) and coprolites preserved in plant stems (Kidston and Lang 1921; Kevan et al. 1975). Interactions between plants and arthropods were more diverse and 100 abundant during the latest Mississippian and Pennsylvanian as evidenced by the 101 102 consumption of various plant tissues including stems (Labandeira and Phillips 1996), roots (Labandeira 2001), leaves (Iannuzzi and Labandeira 2007) and sporangia 103 (Labandeira 1998). Palaeogeographically, arthropod herbivory has been documented 104 105 from each of the global floral provinces during the Cisuralian including from Euramerica (Beck and Labandeira 1988; Schachat et al. 2014, 2015), Angara 106 (Zherikhin 2002), Gondwana (Gallego et al. 2014; Schachat et al. 2014) and 107 Cathaysia (Hilton et al. 2002; Feng et al. 2020). Gigantopterids were restricted to the 108 Permian of Cathaysia and parts of Euramerica and appear to have been routinely 109 targeted by animals including insects (Yao et al. 1983; Beck and Labandeira 1998; 110 Glasspool et al 2003; Labandeira and Allen 2007; Zhou et al. 2018; Liu et al. 2020). 111 Studies of foliar feeding traces on gigantopterid plants will enhance our understanding 112

113 of the ecologic complexities in Permian terrestrial ecosystems.

114	In this paper we report a new genus and two new species of gigantopterid plant
115	from the Wuchiapingian (late Permian) of the Daha Coalfield in Qinghai Province,
116	southwest China that is part of the Tibet Plateau. The new genus has fern-like leaves
117	that are distinctly different from other double-meshed gigantopterid genera. In
118	addition, the leaves were targeted by three different kinds of functional feeding groups
119	including hole feeding, margin feeding, and probably surface feeding, providing
120	additional examples of insect predation of gigantopterids and suggesting similar
121	gigantopterid-insect component communities in both Euramerica and Cathaysia.
122	
123	Materials and methods
124	Specimens were collected from mudstones of Bed 2 in the Nayixiong Formation
125	from the Daha Coalfield, Qinghai Province, China (Figure 1(b-c)). Tectonically, the
126	Daha Coalfield is within the Qiangtang Terrane and constitutes part of the central
127	Tibetan Plateau (Figure 1(a)). Biostratigraphically, the Nayixiong Formation is
128	approximately equivalent to the Longtan Formation in South China based on its
129	faunal and floral assemblages and is suggested to be Wuchiapingian (Longpingian,
130	late Permian) in age (He and Zhang 1984; Jin et al. 2000; Liao and Xu 2002).
131	
132	[Approximate position of Figure 1]
133	
134	Four specimens from the Daha Coalfield were studied in this paper. They were

135	first prepared by dégagement (Fairon-Demaret et al. 1999) to expose them from the
136	overlying sedimentary matrix. To enhance the contrast of the specimens to the matrix,
137	specimens were immersed in alcohol and photographed using a digital NIKON D-800
138	camera (Kerp and Bomfleur 2011). However, the mudstone matrix reacts and
139	becomes unconsolidated on contact with liquid, so immersion and photography were
140	undertaken quickly before allowing the specimen to air dry in a dry environment.
141	Specimens are deposited in the Nanjing Institute of Geology and Palaeontology,
142	Chinese Academy of Sciences (NIGPAS).
143	The terminology for the venation pattern mainly follows Hickey (1979), while
144	leaf morphology follows standard angiospermous leaf terminology as previously
145	applied in gigantopterid leaves by Glasspool et al. (2003), Booi et al. (2009) and
146	DiMichele et al. (2011). The central vasculature of a fused leaf is described as the
147	primary vein, whereas the central axis of once-pinnate leaf is considered to be a pinna
148	rachis and the primary vein is represented by the midrib of the lateral pinnule. The
149	difference of simple, odd-pinnate and fern-like leaves refers to Figure 4(a-c) of Zhou
150	et al. (2018).

152 **Results**

- 153 Systematic palaeobotany
- 154 Family Gigantopteridaceae Koidzumi 1936

155 Genus *Filigigantopteris* gen. nov.

156 Generic diagnosis: Fern-like pinnule or frond, deeply lobed or at least once-pinnate.

157	Venation four orders or higher, forming small meshes within large meshes.
158	Etymology: "Fili-", prefix for "filicales", "-gigantopteris" the morphological genus
159	originally applied in the gigantopterid leaves which are double-meshed. The new
160	genus is named after its most typical morphological traits of fern-like leaf architecture
161	and double-meshed venation pattern.
162	Remarks: The genus is restricted to the plant fossils of the Permian Period, in order to
163	distinguish them from modern angiospermous leaves.
164	
165	Species: Filigigantopteris asymmetrica sp. nov. (Figures 2, 3, 6 (a-b))
166	Holotype: PB23526
167	Paratype: PB23527
168	Type locality: Daha Coalfield, Qinghai Province, China
169	Stratigraphy: Bed 2 of the Nayixiong Formation
170	Age: Wuchiapingian (Lopingian, Permian)
171	Repository: Nanjing Institute of Geology and Palaeontology, Chinese Academy of
172	Sciences, Nanjing, China
173	Specific diagnosis: Fern-like pinnule. Pinnule asymmetric, with one side of lobes.
174	Venation five orders. Tertiary veins anastomose. Quaternary veins form large
175	polygonal meshes. Veinlets form small polygonal meshes with blind veins present
176	inside.
177	Etymology: The new species is named after its asymmetric pinnule.

179 **Description**

Pinnule is asymmetrically elliptic in shape. As illustrated in the holotype 180 specimen PB23526 (Figure 2(a)), the right side of the pinnule possesses partly fused 181 lobes with acute apices and entire margins, while the left margin is almost straight. 182 The enlargement of the left margin shows that its upper part possesses an undulated 183 "fracture", whereas its lower part has an obviously entire margin (Figure 2(d)). 184 Pinnule lobes encounter different degrees of dissection, with the deepest one 185 illustrated in Figure 2(a) dissected by nearly half of the lateral margin. Pinnule 186 187 laminae display five orders of venation (Figures 2(c), 3(b), 3(e)). The primary vein is 2 mm wide at the base and gradually taper towards the apex. Secondary veins are 188 generally sub-oppositely arranged, stretch out from the primary vein at angles of 30° 189 190 to 45°, and become gradually thinner when approaching the lobe apices. Secondary veins from the asymmetric side of the pinnule are much weaker and slightly denser 191 than those from the other side that with normal lobes. Tertiary veins are alternatively 192 193 to sub-oppositely arranged. They stretch out from the secondary veins at an angle of *ca.* 45°, bend upward and dissolve before reaching the pinnule margin (Figure 2 (c)), 194 or anastomose with the opposite tertiary veins in the adjacently fused area (Figure 195 3(e)). Quaternary veins are regularly arranged and form large polygonal meshes by 196 197 anastomosing with their opposite and adjacent quaternary veins (Figures 2(c), 3(b)). Irregular veinlets form small meshes (Figure 3(c)). Blind veins are well developed 198 within the small meshes and are variable in their pattern (Figure 3(c)). Subsidiary 199 veins arise directly from the primary, secondary and tertiary veins (Figures 2(d), 3(e)). 200

201	The fragmentary pinnule illustrated in Figure 3(a) represents a nearly apical
202	portion of the pinnule. In this region the secondary veins stretch out from the primary
203	vein at an angle of ca. 30°. Tertiary and quaternary veins are less regularly arranged
204	towards the apices. Meshes, blind veins and shallowly dissected lobes with acute
205	apices and entire margins (Figure 3(b-c)) are generally identical to those of the
206	holotype.
207	The lower pinnule fragment illustrated in Figure 3(d) (the reverse side of
208	specimen shown in Figure 2(a)) clearly displays five orders of veins with distinct
209	double meshes and blind veins (Figure 3(e)). The angles between the primary and
210	secondary veins suggest this fragment may represent the middle to lower portion of a
211	complete pinnule of Filigigantopteris asymmetrica.
212	
213	[Approximate positions of Figures 2, 3]
214	
215	Species: Filigigantopteris dahaia sp. nov. (Figures 3(d), 4, 5, 6 (c-d))
216	Holotype: PB23528
217	Paratypes: PB23526 (the reverse side of Figures 2(a)), PB23529
218	Type locality: Daha Coalfield, Qinghai Province, China
219	Stratigraphy: Bed 2 of the Nayixiong Formation
220	Age: Wuchiapingian (Lopingian, Permian)
221	Repository: Nanjing Institute of Geology and Palaeontology, Chinese Academy of
222	Sciences, Nanjing, China

223	Specific diagnosis: Fern-like frond, at least once-pinnate. Pinna apex coherent. Lateral
224	pinnules shallowly fused or separated. Venation four orders. Secondary veins bend
225	upward and gradually diminished when approaching margin. Tertiary veins form large
226	polygonal meshes. Veinlets form small polygonal meshes with well-developed blind
227	veins.
228	Etymology: The new species is named after its locality.
229	
230	Description
231	Fronds are at least once-pinnate (Figures 4(a), 5(a)). Pinna rachises are robust,

3.6 mm wide at the base and gradually taper towards the apex and are longitudinally

striated. Apices are coherent and obovate in form, with its basal part shallowly fused 233

234 with the first lateral pinnule (Figures 4(a), 5(b)). Lateral pinnules are non-fused,

ribbon-like with entire margins (Figures 4(b), 5(a)). The pinnule illustrated in Figure 235

4(b) is more than 8.3 cm long and 2.3 cm wide, and as the specimen is incomplete 236

237 (Figure 5(a)). Pinnule bases are decurrent with subsidiary veins arising directly from

the pinna rachis (Figures 4(b), 5(b)). Pinnule apices, although not preserved, are 238

inferred to be acute based on the morphology of the most complete preservation 239

(Figure 5(c)). 240

232

Pinnule lamina display four orders of venation. Primary veins are oppositely 241 arranged and stretch out from the pinna rachises at angles of 30° to 45°. Secondary 242 veins are prominent and extend from the primary veins at angles of 60° to 70° . They 243 bend upward at the halfway to the pinnule margin and dissolve before reaching the 244

245	pinnule margin. Tertiary veins are flexuous. They anastomose with the opposite and
246	adjacent ones forming regular, large, polygonal meshes (Figures 4(c)). Veinlets form
247	regular, small, polygonal meshes. Blind veins are well-developed within the small
248	meshes and highly variable in the pattern (Figures 4(d)).
249	The right upper frond illustrated in Figure 3(d) (the reverse side of Figure 2(a))
250	is once-pinnate and possesses ribbon-like pinnules with decurrent bases. In contrast,
251	the left upper frond is also once-pinnate but possesses shortly petiolate pinnules with
252	constricted bases. The venation is indistinct in both fronds. Nevertheless, the right
253	upper frond is perhaps assignable to Filigigantopteris dahaia on account of its
254	decurrent pinnules that are similar to those of the holotype.
255	
256	[Approximate positions of Figures 4, 5]
257	
258	Discussion

259 Comparisons and systematic implications

260 *Filigigantopteris dahaia* clearly has a once-pinnate leaf architecture. The

261 decurrently fused area between the coherent apex and first lateral pinnule (Figures

4(b), 5(b) indicates the fronds form from a fern-like dissection mode that is dissected

- from a coherent pinna. Similarly, the holotype of *F. asymmetrica* (Figures 2(a)) shows
- it to be a deeply lobed pinnule. But it could also potentially be continuously dissected
- into a once-pinnate frond as indicated by the deep dissections (Figures 2(c), cf.
- 266 Auritifolia waggoneri in Chaney et al. 2009). Nevertheless, the coherent apices of F.

267	dahaia are obovate in form and much larger (at least wider) than the lower lateral
268	pinnules (Figures 4(a), 5(b)), whereas in <i>F. asymmatica</i> the lobes are gradually
269	reduced in size towards the apex so that the apical lobe is the smallest one (Figures
270	2(a), $3(a)$). In addition, the asymmetric feature is clearly illustrated in the holotype of
271	F. asymmetrica (Figures 2(a)) but is absent in F. dahaia. Collectively these features
272	reliably distinguish the two species of Filigigantopteris.
273	Gigantopterid species can be effectively distinguished from each other based on
274	their leaf architecture and venation pattern (Yang 2006; Zhou et al. 2018). In addition
275	to the two new gigantopterid species described in this paper, other gigantopterid
276	species have double-meshed venation and include Gigantopteris nicotianaefolia, G.
277	dictyophylloides Gu et Zhi, G. cordata Yabe et Öishi emend. Tiang et Zhang, G.
278	meganetes Tian et Zhang, G. paradoxa Mo, G. shuangquanensis Yang,
279	Monogigantopteris clathroreticulatus Yang, M. densireticulatus Yang,
280	Pinnagigantopteris lanceolatus Yang et Xie and P. oblongus Chen (Yabe and Ŏishi
281	1938; Gu and Zhi 1974; Tian and Zhang 1980; Zhao et al. 1980; Xiao and Zhang
282	1985; Yang 1985, 2006). Key features of these twelve species are compared in Table 1
283	and illustrated in Figure 6 to show their differences.
284	
285	[Approximate positions of Table 1 and Figure 6]
286	
287	Monogigantopteris clathroreticulatus, M. densireticulatus, Pinnagigantopteris

lanceolatus and *P. oblongus* (Figure 6(e-h)) are double-meshed gigantopterids from

289	the Permian Yuzhou Flora of Henan Province, North China (Yang 2006). M.
290	clathroreticulatus and M. densireticulatus are characterized by large, simple leaves
291	which are broadly oval shaped and commonly incompletely preserved. In contrast, P.
292	lanceolatus and P. oblongus are odd-pinnate fronds with long elliptical "leaflets"
293	(Table 1); the holotype of <i>P. lanceolatus</i> reveals that the "leaf" is an apical leaflet on a
294	pinna rachis. Similar leaf architecture is widely present in many Gigantonoclea sensu
295	lato species, with this leading Yang (2006) to establish the genus Pinnagigantonoclea
296	to accommodate them. The two new species documented here are distinct from the
297	four gigantopterids from the Yuzhou Flora as in the latter species apical leaflets are
298	the same as these lateral leaflets rather than being a coherent lamina (Table 1).
299	Gigantopteris cordata is known from the late Permian floras of Fujian Province,
300	South China (Yabe et Ŏishi 1938) and has an elongate-reniform leaf (Figure 6(i)).
301	Although the original materials only displayed polygonal meshes and not
302	double-meshed venation (Gu and Zhi 1974), larger specimens of G. cordata from the
303	late Permian of Guizhou Province, South China (Tian and Zhang 1980) confirm the
304	presence of double-meshed venation in this species. G. cordata is remarkably
305	different from the two Monogigantopteris species and the two new Filigigantopteris
306	species described in this paper in terms of its elongate-reniform leaf shape (Table 1).
307	Gigantopteris meganetes was established based on two large leaves collected from
308	the late Permian of Guizhou Province, South China (Tian and Zhang 1980). The larger
309	leaf, although incompletely preserved, is broadly oval in shape, over 24 cm wide, with
310	a bicrenate margin (Figure 6(j)). The venation pattern including the presence of blind

311	veins and absence of accessary meshes in G. meganetes is similar to the specimens
312	described here but differs in lacking the fern-like leaf architecture that characterizes
313	the new genus established based on the material from the Nayixiong Formation (Table
314	1). Leaves of G. meganetes are more likely to be simple, and therefore may be
315	potentially transferrable to the genus Monogigantopteris (Yang 2006).
316	Gigantopteris dictyophylloides is one of the most common gigantopterid species
317	in the Cathaysian floras (Gu and Zhi 1974). This species is quite similar to
318	Filigigantopteris asymmetrica from the Nayixiong Formation in its vein
319	characteristics such as having regular doubled-meshes and blind veins but lacking
320	accessary meshes (Table 1; Figures 6(k), 7(a-d)). Leaves of G. dictyophylloides, if
321	capable of deep dissection, would be almost the same as the pinnule of
322	Filigigantopteris asymmetrica from the Nayixiong Formation. However, the holotype
323	specimen of G. dictyophylloides contains several overlapped leaves on the bedding
324	surface that are suggested to belong to the same species. One of these leaves is broad
325	in shape with crenate margin (Figure 7(b)) and this characteristic has also been
326	included in the original and emended diagnosis of this species (Gu and Zhi 1974;
327	Glasspool et al. 2004a). Moreover, this species has been widely reported from late
328	Permian strata of South China but no specimens show fern-like dissections to the leaf
329	(e.g., Li et al. 1982; Yu 2007). Therefore, Filigigantopteris asymmetrica is easily
330	distinguished from G. dictyophylloides in having fern-like leaf architecture and lobed
331	pinnule margin, while <i>F.dahai</i> a is also readily distinguished from <i>G. dictyophylloides</i>
332	in having ribbon-like decurrent pinnules with entire margin (Table 1).

334 [Approximate position of Figure 7]

336	Gigantopteris nicotianaefolia is perhaps the most typical and widely distributed
337	gigantopterid species in the Cathaysian floras (e.g., Schenk 1883; Yao 1983; Liu and
338	Yao 2009; Yang 2006). However, based on detailed examination of the type materials,
339	the precise leaf architecture of <i>G. nicotianaefolia</i> is uncertain (Glasspool et al. 2004a).
340	While some researchers believe that the leaves of G. nicotianaefolia should be simple
341	since they are commonly large in size and shortly petiolate (Gu and Zhi 1974; Yao
342	1983), Yang (2006) suggested that the "leaves" of G. nicotianaefolia could also be
343	leaflets of huge odd-pinnate fronds as their long, elliptic leaf shape (Figure 6(1)) is
344	similar to that of Pinnagigantopteris lanceolatus and P. oblongus (Table 1).
345	Nevertheless, neither of these possibilities is comparable to the fern-like leaves from
346	the Nayixiong Formation.
347	A large once-pinnate gigantopterid leaf with oppositely arranged and basally fused
348	pinnules (Figure 6(m)) identified as Gigantopteris nicotianaefolia from the Lopingian
349	of Guizhou Province, South China (Plate 15, fig. 1 in Tian and Zhang 1980) needs
350	further examination as it is distinct from other specimens of G. nicotianaefolia in
351	having a fern-like compound leaf architecture. The pinnate feature of this specimen
352	with five orders of veins distinguishes it from both of the two new species presented
353	in this paper (Table 1) but also make its assignment to G. nicotianaefolia unlikely. As
354	mentioned earlier, isolated leaves of G. nicotianaefolia are commonly petiolate,

355	indicating them to be either simple leaves or leaflets from odd-pinnate fronds.
356	Re-investigation of the specimen illustrated by Tian and Zhang (1980) is required as it
357	could more likely be a third species of $Filigigan top teris$ rather than G .
358	nicotianaefolia.
359	Gigantopteris paradoxa Mo was established based on several isolated leaves from
360	the Lopingian of Yunnan Province, South China (Zhao et al. 1980). Leaves of G .
361	paradoxa are elliptic with serrate margins and probably blunt to cordiform bases
362	(Table 1; Figure $6(n)$). They display four orders of venation with tertiary veins
363	forming indistinct large meshes, while the veinlets form small meshes. The leaf
364	architecture of G. paradoxa was suggested to be once-pinnate by (Zhao et al. 1980)
365	(in this case similar to Filigigantopteris dahaia), and the leaves are treated as
366	"pinnules" in the description. However, no specimens were illustrated to support the
367	pinnate interpretation, and such a pinnule form is more consistent with the concept of
368	Monogigantopteirs (Yang 2006). Even so, F. dahaia is readily distinguished from G.
369	paradoxa in possessing entirely margined and basally decurrent pinnules.
370	The holotype of Gigantopteris shuangquanensis Yang is a once-pinnate frond
371	from the Lopingian of Beijing, North China (Xiao and Zhang 1985; Chen 1990).
372	Pinnules of G. shuangquanensis are sub-oppositely arranged, with their basal lamina
373	entirely connected with the pinna rachis (Figure $6(0)$). In terms of the venation pattern,
374	secondary veins stretch out at a very broad angle. Tertiary veins form irregular large
375	meshes. Veinlets are sparse and form indistinct small meshes, with possible glands
376	preserved inside. G. shuangquanensis differs from the species from the Nayixiong

377	Formation by its intermediate venation pattern (i.e., less-developed double meshes)
378	between the features of the genera Gigantonoclea and Gigantopteris which is now
379	commonly placed in the genus Progigantopteris Yang (Yang 1987, 2006).
380	In summary, both species from the Nayixiong Formation possess fern-like
381	pinnules or once-pinnate fronds, whereas previous accounts of other double-meshed
382	gigantopterids are mostly simple leaves or odd-pinnate fronds. The establishment of a
383	new genus for the specimens from the Nayixiong Formation is justified by the
384	essential difference of the fern-like leaf architecture that may suggest a distant
385	relationship to the previous double-meshed gigantopterids (Table 1; Figure 6).
386	Although the exact systematic position is unclear, the establishment of the new genus
387	Filigigantopteris further highlights the morphological disparity of gigantopterids and
388	lends additional support to the gigantopterids being unlikely to constitute a
389	monophyletic group (Glasspool et al. 2004a, b; DiMichele et al. 2011).
390	
391	Leaf asymmetry of Filigigantopteris asymmetric gen. et sp. nov.
392	Specimen PB23526 of Filigigantopteris asymmetrica is unusual in showing an
393	asymmetric leaf of which the right half is broadly dissected but the left half is highly
394	restricted in vegetative growth (Figure 2(a, d)). Similar asymmetric leaves/leaflets are
395	present in some fossil taxa such as Rhus asymmetrica Tosal, Sanjuan et Martín-Closas,
396	a trifoliate leaf reported from the lower Oligocene of Spain (Tosal et al. 2019).

Different from the apical symmetric leaflet, the two lateral leaflets of R. asymmetrica 397

have different levels of asymmetry (Plate II in Tosal et al. 2019). The left leaflet in the 398

399	holotype of R . asymmetrica (Figure 2 in Tosal et al. 2019) is quite similar to the
400	asymmetric pinnule of <i>Filigigantopteris asymmetrica</i> (Figure 2(a)) in having one side
401	with an approximately straight margin. Auritifolia waggoneri Chaney, Mamay,
402	DiMichele et Kerp is a once-pinnate frond with possible affinity with the Peltasperms
403	reported from the lower Permian of Texas, USA (Chaney et al. 2009). Some
404	specimens of A. waggoneri display aberrant leaves, one of which as illustrated in the
405	Figure 8D of Chaney et al. (2009) possesses an asymmetric pinna lamina and is
406	comparable to the situation in <i>F. asymmetrica</i> (Figure 2(a)). However, we currently do
407	not have a second specimen to repeat the asymmetric nature of F. asymmetrica on
408	account of the limited collections available from the sampling locality. Therefore, the
409	causes of asymmetry of F. asymmetrica is still uncertain (e.g., developmental stages,
410	growth positions or local environmental stress).
411	
412	
413	Plant-insect interactions

In Euramerica, insect damage to gigantopterid leaves occur in *Zeilleropteris*

415 Koidzumi, *Gigantopteridium* Koidzumi and *Cathaysiopteris* Koidzumi emend. Yang

416 (Beck and Labandeira, 1988). By contrast, in Cathaysia insect damage on

417 gigantopterid leaves were previously only known in *Gigantonoclea* (Glasspool et al.

418 2003; Zhou et al. 2018) and *Gigantopteris* (Liu et al. 2020). Abundant feeding traces

419 in *Filigigantopteris* represent the third gigantopterid genus in Cathaysia to experience

420 insect damage.

421	Three different kinds of functional feeding groups are observed on the leaves of
422	Filigigantopteris, namely hole feeding, margin feeding and probably skeletonization.
423	In the largest specimen of <i>F. dahaia</i> (PB23527, Figure 5(b–d)), several holes are
424	identified as hole feeding damages on account of the unequivocal presence of
425	thickened wound reaction tissue (Figure $5(c)$). According to the classification of
426	Labandeira et al. (2007), these damage types are classified as DT 1, DT 2 and DT 5
427	based on the size and shape of the holes. In specimen PB23529 of F. asymmetrica
428	(Figure 3(a)), a marginal cut is observed near the apex of the fragmentary pinnule.
429	This excision is identified as marginal feeding trace (Figure 3(b)) on account of the
430	partially preserved dark rim that represents wound reaction tissue. The damage type is
431	classified as DT 13 according to Labandeira et al. (2007) as the excision cuts the leaf
432	apex and primary veins. In addition, there are several small ovoid to circular holes
433	present in specimen PB23529 (Figure 3(a)). They do not possess the typical wound
434	reaction tissue seen in F. dahaia (i.e., Figure 5(b-d)), instead, they have some residual
435	veins within the holes.
436	The identification of these holes is perhaps controversial. In the literature, a

437 similar hole with residual veins was reported from a pinnule of the Cathaysian

438 gigantopterid *Gigantonoclea lagrelii* and suggested to be resulted from

439 skeletonization. However, such an interpretation is not accepted by some other

440 researchers (Labandeira and Allen, 2007) because the veins which should be retained

441 in that hole have already almost gone. In contrast, a few late Palaeozoic feeding traces

442 reported from Gondwanan Glossopteridales (Adami-Rodrigues et al. 2004) and

Euamerican gigantopterids (Beck and Labandeira 1998; Labandeira and Allen 2007)
and Medullosales (Xu et al. 2018) with completely preserved parallel veins were more
readily interpreted as the result of skeletonization.

Here we note some feeding traces within a gigantopterid leaf were also reported 446 from the Douling Formation (Guadalupian) of Hunan Province, China by Yao (1983). 447 Re-illustrating the specimen here in Figure 7(e-f) shows that the feeding traces are 448 very similar to those from Euramerican gigantopterids in retaining the whole and 449 parallel vasculature, suggesting a similar gigantopterid-insect component community 450 451 in both Euramerica and Cathaysia. Moreover, in re-investigating the holotype of Gigantopteris dictyophylloides (Gu and Zhi 1974; see Figure 7(c)), a circular hole 452 with distinct wound reaction tissue is visible near its midvein. The quaternary vein 453 454 and veinlets, although still not completely reserved, were clearly retained in this hole (Figure 7(d)). Therefore, the "skeletonized" behavior, if correctly interpreted by 455 previous researchers, appears more common in species of Cathaysian gigantopterids 456 457 than currently recognized. However, we still cannot exclude the possibility that all these late Palaeozoic "skeletonizations" (in both the literature and this paper) were 458 actually surface feeding damages with one side of the epidermis decayed later before 459 preservation, resuting in an apparent "skeletonized" appearance due to taphonomy. 460 461

462 Acknowledgements

We thank Jing-jing Tang (Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences) for photographic assistance. This work is funded by

465	the Strategic Priority Research Program (B) of Chinese Academy of Sciences
466	(XDB18000000, XDB26000000), the National Natural Science Foundation of China
467	(41530101, 41702024 and 41802011), the Second Tibetan Plateau Scientific
468	Expedition and Research (2019QZKK0706), the projects of China Geological Survey
469	(DD20190116), and the State Key Laboratory of Palaeobiology and Stratigraphy
470	(NIGPAS) (20182114).

472 **References**

473 Adami-Rodrigues K, Iannuzzi R, Pinto ID. 2004. Permian plant–insect interactions

474 from a Gondwana flora of southern Brazil. Fossils Strata. 51:106–125.

- Asama K. 1959. Systematic study of so-called *Gigantopteris*. Sci Rep Tohoku Univ
 Geol Ser. 31:1–72.
- 477 Beck AL, Labandeira CC. 1998. Early Permian folivory on a gigantopterid-dominated
- 478 riparian flora from north-central Texas. Palaeogeogr Palaeoclimatol Palaeoecol.
- 479 142:139–173.
- Booi M, Waveren IV, Cittert KV. 2009. The Jambi gigantopterids and their place in
 gigantopterid classification. Bot J Linn Soc. 161:302–328.
- 482 Chaney DS, Mamay SH, DiMichele WA, Kerp H. 2009. Auritifolia gen. nov.,
- 483 probable seed plant foliage with comioid affinities from the early Permian of
- 484 Texas, U.S.A. Int J Plant Sci. 170(2):247–266.
- 485 Chen YS. 1990. Late Paleozoic flora assemblage and age of Shuangquan Formation in
- 486 Xishan, Beijing. Coal Geol China. 2(2):13–15. Chinese.

487	DiMichele WA, Looy CV, Chaney DS. 2011. A new genus of gigantopterid from the
488	middle Permian of the United States and China and its relevance to the
489	gigantopterid concept. Int J Plant Sci. 172(1):107-119.
490	Edwards D, Selden PA, Richardson JB, Axe L. 1995. Coprolites as evidence for
491	plant-animal interaction in Siluro-Devonian terrestrial ecosystems. Nature,
492	377:329–331.
493	Farion-Demaret M, Hilton J, Berry CM. 1999. Surface preparation of macrofossils
494	(dégagement). In: Jones TP, Rowe NP, editors. Fossil plants and spores: modern
495	techniques. London: Geological Society. 33-35.
496	Feng Z, Wang J, Zhou WM, Wan ML, Pšenička J. 2020. Plant-insect interactions in
497	the early Permian Wuda Tuff Flora, North China. Rev Palaeobot Palynol.
498	104269.
499	Gallego J, Cúneo R, Escapa I. 2014. Plant-arthropod interactions in gymnosperm

- leaves from the Early Permian of Patagonia, Argentina. Geobios. 47(3):101–110.
- 501 Glasspool I, Hilton J, Collinson M, Wang SJ. 2003. Foliar herbivory in Late
- 502 Palaeozoic Cathaysian gigantopterids. Rev Palaeobot Palynol. 127:125–132.
- 503 Glasspool I, Hilton J, Collinson ME, Wang SJ. 2004a. Defining the gigantopterid
- 504 concept: A reinvestigation of *Gigantopteris* (Megalopteris) nicotianaefolia
- 505 Schenck and its taxonomical implications. Palaeontology. 47(6):1339–1361.
- 506 Glasspool IJ, Hilton J, Collinson ME, Wang SJ. 2004b. Foliar physiognomy in
- 507 Cathaysian gigantopterids and the potential to track Palaeozoic climates using
- extinct plant groups. Palaeogeogr Palaeoclimatol Palaeoecol. 205:69–110.

509	Gu and Zhi (= Writing group of Institute of Geology and Palaeontology, Institute of
510	Botany, Academia Sinica). 1974. Palaeozoic plants from China. Beijing: Science
511	Press, 1–277. Chinese.
512	Habgood K, Hass H, Kerp H. 2004. Evidence for an early terrestrial food web:
513	coprolites from the Early Devonian Rhynie Chert. Trans Roy Soc Edinb Earth
514	Sci. 94:371–389.
515	Halle TG. 1927. Palaeozoic plants from Central Shansi. Palaeontol Sin. A2(1):1–316.
516	He YL, Zhang SZ. 1984. Late Permian fossil plants around Shanglaxiu District of
517	Yushu County, Qinghai Province and their geological significance. In: CGQXP
518	Editorial Committee, Ministry of Geology and Mineral Resources PRC, editor.
519	Contribution to the geology of the Qinghai–Xizang (Tibet) Plateau, vol. 14,
520	Qinghai album. Beijing: Geological Publishing House. 115–124. In Chinese with
521	English abstract.
522	Hilton J, Wang SJ, Zhu WQ, Tian B, Galtier J, Wei AH. 2002. Callospermarion
523	ovules from the Early Permian of northern China: palaeofloristic and
524	palaeogeographic significance of callistophytalean seed-ferns in the Cathaysian
525	flora. Rev Palaeobot Palynol. 120:301–314.
526	Hickey LJ. 1979. A revised classification of the architecture of dicotyledonous leaves.
527	25–37. In: Metcalfe CR, Chalk A, editors. Anatomy of the dicotyledons. Volume
528	I (2 nd Edition). Oxford: Clarendon Press.
529	Iannuzzi R, Labandeira CC. 2008. The oldest record and early history of insect
530	folivory. Ann Entomol Soc Am. 101(1):79–94.

531	Jin YG, Shang QH, Hou JP, Li L, Wang YJ, Zhu ZL, Fei SY. 2000. Stratigraphical
532	Lexicon of China: Permian. Beijing: Geological Publishing House. 1–149.
533	Chinese.
534	Kerp H, Bomfleur B. 2011. Photography of plant fossils-new techniques, old tricks.
535	Rev Palaeobot Palynol. 166:117–151.
536	Kevan PG, Chaloner WG, Savile DBO. 1975. Interrelationships of early terrestrial
537	arthropods and plants. Palaeontology. 18(2):391-417.
538	Kidston R, Lang WH, 1921. On Old Red Sandstone plants showing structure, from
539	the Rhynie Chert Bed, Aberdeenshire, Part IV. Restorations of the vascular
540	cryptogams and discussion of their bearing on the general morphology of the
541	Pteridophyta and the origin of the organization of land-plants. Trans Roy Soc
542	Edinb. 52(4):831–854.
543	Koidzumi G. 1934. Notes on Gigantopteris flora. Acta Phytotax Geobot. 3:112-114.
544	Koidzumi G. 1936. On the Gigantopteris flora. Acta Phytotax Geobot. 5:130–139.
545	Labandeira CC. 1998. Early history of arthropod and vascular plant associations.
546	Annu Rev Earth Planet Sci. 26:329–377.
547	Labandeira CC. 2001. The rise and diversification of insects. In: Briggs DEG,
548	Crowther PR, editors, Palaeobiology II. Oxorfd: Blackwell Science. 82-88.
549	Labandeira CC, Allen EG. 2007. Minimal insect herbivory for the Lower Permian
550	Coprolite Bone Bed Site of north-central Texas, USA, and comparison to other

- Late Paleozoic floras. Palaeogeogr Palaeoclimatol Palaeoecol. 247:197–219.
- Labandeira CC, Phillips TL. 1996. Insect fluid-feeding on Upper Pennsylvanian tree

553	ferns (Palaeodictyoptera, Marattiales) and the early history of the
554	piercing-and-sucking functional feeding group. Ann Entomol Soc Am.
555	89(2):157–183.
556	Labandeira CC, Wilf P, Johnson KR, Marsh F. 2007. Guide to Insect (and Other)
557	Damage Types on Compressed Plant Fossils (Version 3.0). Smithsonian
558	Institution, Washington D.C.
559	Li HQ, Taylor DW. 1998. Aculeovinea yunguiensis gen. et sp. nov.
560	(Gigantopteridales), a new taxon of gigantopterid stem from the upper Permian
561	of Guizhou Province, China. Int J Plant Sci. 159(6):1023-1033.
562	Li HQ, Taylor DW. 1999. Vessel-bearing stems of Vasovinea tianii gen. et sp. nov.
563	(Gigantopteridales) from the upper Permian of Guizhou Province, China. Am J
564	Bot. 86(11):1563–1575.
565	Li HQ, Taylor EL, Taylor DW. 1996. Permian vessel elements. Science. 271:188–189.
566	Li XX, Yao ZQ. 1983a. Current studies of gigantopterids. Palaeontol Cathayana.
567	1:319–326.
568	Li XX, Yao ZQ. 1983b. Fructifications of gigantopterids from South China.
569	Palaeontogr Abt B. 185:11–26.
570	Li XX, Yao ZQ, Deng LH. 1982. An early Late Permian flora from Toba, Qamdo
571	district, eastern Xizang. In: Nanjing Institute of Geology and Palaeontology,
572	editor. Palaeontology of Xizang, Volume 5. Beijing: Science Press. 17-44. In
573	Chinse with English abstract.
574	Liao ZT, Xu JT. 2002. Late Permian Brachiopods from the lower part of the Wuli

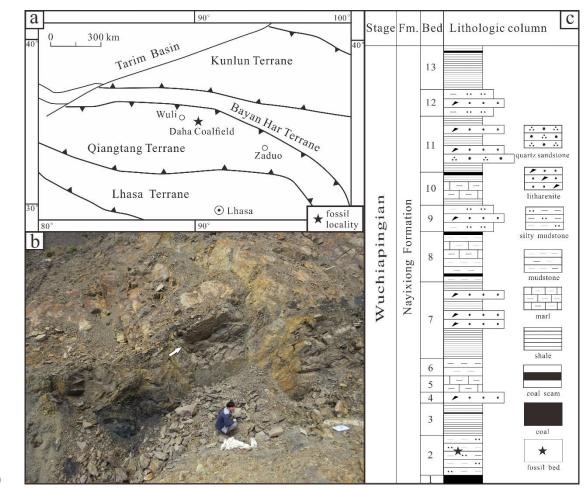
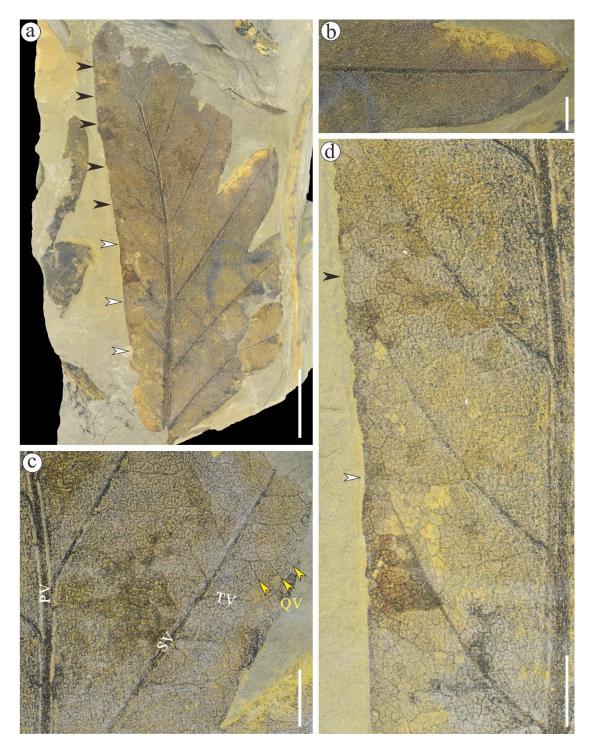
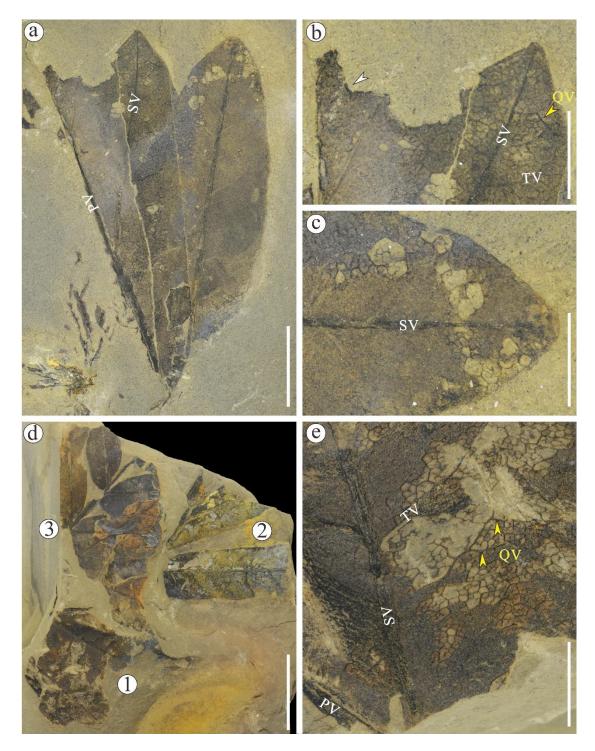
575	Group, southwestern Qinghai and the geographic distribution of Waagenites.
576	Acta Palaeontol Sin. 41(1):130–136. In Chinse with English abstract.
577	Liu HY, Wei HB, Guo Y, Zhou Y, Gou XD, Yang SL, Labandeira CC, Feng Z. 2020. A
578	latitudinal gradient of plant-insect interactions during the late Permian in
579	terrestrial ecosystems? New evidence from Southwest China. Global Planet
580	Change. 192:103248.
581	Liu LJ, Yao ZQ. 2009. Temporal and spatial distribution of Gigantopteris
582	nicotianaefolia Schenk and correlation of related formations. Acta Palaeontol Sin.
583	48(1):31–39. In Chinese and English.
584	Mamay SH. 1960. Gigantopteridaceae in Permian floras of the southwestern United
585	States. U.S. Geol Surv Prof Paper 400-B:B380.
586	Mamay SH, Miller JM, Rohr DM, Stein WE. 1988. Foliar morphology and anatomy
587	of the gigantopterid plant Delnortea abbottiae, from the lower Permian of Texas.
588	Am J Bot. 75(9):1409–1433.
589	Posthumus O. 1927. Eenige opmerkingen betreffende de palaeozoïsche Flora van
590	Diambi, Sumatra. Verh Kon Akad v Wet. 36:428–434.
591	Schenk A. 1883. Pflanzen aus der Steinkohlen-Formation. In: von Rochthofen F,
592	editor. Beiträge zur Paläontologie von China, Volume 4. Berlin: Dietrich Reimer.
593	211–244.
594	Shen GL, Li KD, Gu ZG. 1977. On the classification of gigantopterid plant in China.
595	J Lanzhou Univ. 4:103–111. Chinese.
596	Schachat SR, Labandeira CC. 2015. Evolution of a complex behavior: the origin and

597	initial diversification of foliar galling by Permian insects. Sci Nat. 102:14.
598	Schachat SR, Labandeira CC, Gordon J, Chaney DS, Levi S, Halthore MS, Alvarez J.
599	2014. Plant-insect interactions from the Early Permian (Kungurian) Colwell
600	Creek Pond, North-Central Texas: the early spread of herbivory in riparian
601	environments. Int J Plant Sci. 175(8):855-890.
602	Slater BJ, McLoughlin S, Hilton J. 2014. A high-latitude Gondwanan lagerstätte: the
603	Permian permineralised peat biota of the Prince Charles Mountains, Antarctica.
604	Gondwana Res. 27(4):1446–1473.
605	Tian BL, Zhang LW. 1980. Fossil atlas of Wangjiazhai mine region in Suicheng,
606	Guizhou. Beijing: Coal Industry Press. 1–91. Chinese.
607	Tosal A, Sanjuan J, Martín-Closas C. 2019. Foliar adaptations of <i>Rhus asymmetric</i> sp.
608	nov. from the Oligocene of Cervera (Catalonia, Spain). Palaeoclimatic
609	implications. Rev Palaeobot Palynol. 261:67-80.
610	Wang ZQ. 1999. Gigantonoclea: An enigmatic Permian plant from North China.
611	Palaeontology. 42(2):329–373.
612	White D. 1912. The characters of the fossil plant Gigantopteris Schenk and its
613	occurrence in North America. Proc US Natl Mus. 41:493–516.
614	Xiao SZ, Zhang EP. 1985. Palaeozoic plants. In: Tianjin Institute of Geology and
615	Mineral Resources, editor. Paleontological atlas of North China. I, Palaeozoic era
616	Beijing: Geological Publishing House. 530–586. Chinese.
617	Xu QQ, Jin JH, Labandeira CC. 2018. Williamson Drive: Herbivory from a

618 north-central Texas flora of latest Pennsylvanian age shows discrete component

- 619 community structure, expansion of piercing and sucking, and plant
- 620 counterdefenses. Rev Palaeobot Palynol. 251:28–72.
- 621 Yabe H. 1904. *Megalopteris nicotianaefolia*. J Geol Soc Tokyo. 11:159–160.
- 422 Yabe H. 1908. On the occurrence of the genus *Gigantopteris* in Korea. J Coll Sci Imp
- 623 Univ Tokyo. 23:1–8.
- 4 Yabe H, Öishi S. 1938. Notes on some fossil plants from Fukien Province, China.
- Tohoku Univ Sci Rep 2nd Ser (Geol). 19:221–234.
- 426 Yang GX. 1985. On the succession of plant assemblage zones of Late Palaeozoic
- 627 coal-bearing strata in Yuxian, west Henan and reinterpretation of regional
- stratigraphic units. J Wuhan Coll Geol (Earth Sci). 10:145–161. In Chinese with
- English abstract.
- 630 Yang GX. 1987. The evolution of the Permian gigantopterids in Yuxian County,
- 631 western Henan and its geological significance. Geoscience. 1:173–195. In
- 632 Chinese with English abstract.
- 433 Yang GX. 2006. The Permian Cathaysian flora in western Henan province, China.
- Beijing: Geological Publishing House. 1–361. In Chinese with English summary.
- 435 Yao ZQ. 1983. The type locality and topotypes of *Gigantopteris nicotianaefolia*
- 636 Schenk. Acta Palaeontol Sin. 22(1):1–8. In Chinese with English abstract.
- 637 Yao ZQ, Liu LJ. 2004. A new gigantopterid plant with cuticles from the Permian of
- 638 South China. Rev Palaeobot Palynol. 131:29–48.
- 639 Yu JX. 2007. Floras and the evolutionary dynamics across the Permian-Triassic
- boundary nearby the border of Guizhou and Yunnan, South China [Ph. D. thesis].

- 641 Wuhan: China University of Geosciences.
- 642 Zeiller R. 1907. Note sur quelques empreintes végétales des gites de charbon du
- 643 Yunnan méridional. Ann des Mines. 10:5–27.
- ⁶⁴⁴ Zhao XH, Mo ZG, Zhang SZ, Yao ZQ. 1980. Late Permian flora from western
- 645 Guizhou and eastern Yunnan. In: Nanjing Institute of Geology and Palaeontology,
- Academia Sinica, editor. Late Permian coal bearing strata and biota from western
- 647 Guizhou and eastern Yunnan. Beijing: Science Press. 70–122. Chinese.
- 648 Zherikhin VV. 2002. Insect trace fossils. In: Rasnitsyn AP, Quicke DLJ, editors.
- 649 History of Insects. Dordrecht: Kluwer. 303–324.
- EVALUATE: Contract State State
- from the basal Permian of the North China Block and its bearing on evolution.
- 652 Geol J. 53(2):500–509.
- 653 Zhu JN, Zhang XS. 1995. Trinerviopteris cardiophylla (Zhu et Geng) Zhu gen. et
- 654 comb. nov. and the classification of gigantopterides. Acta Bot Sin. 37(4):314–
- 655 320. In Chinese with English abstract.

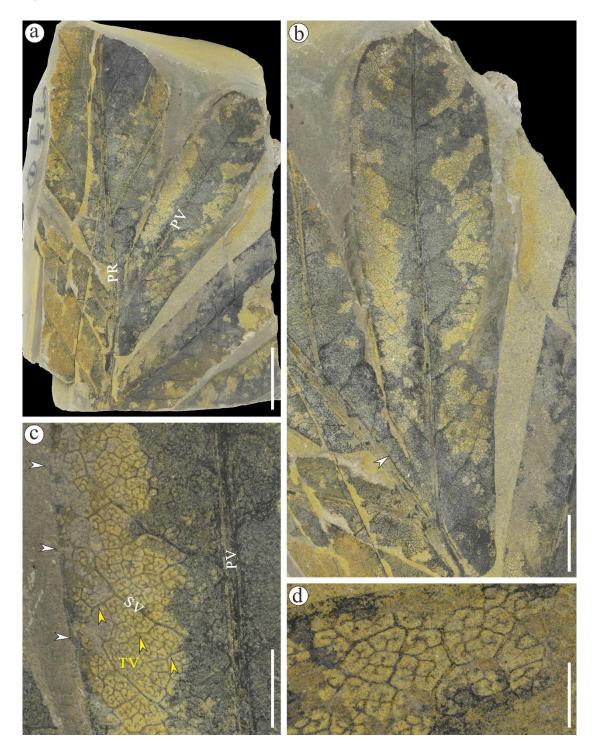
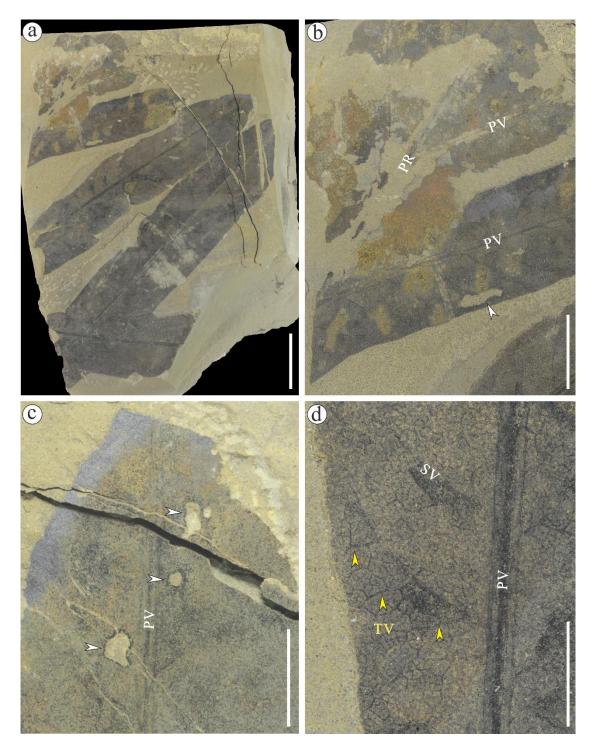
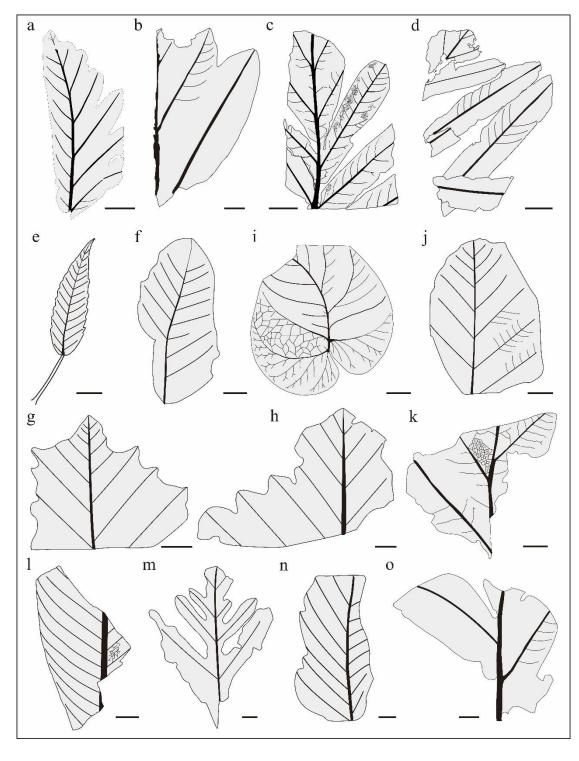


Figure 1





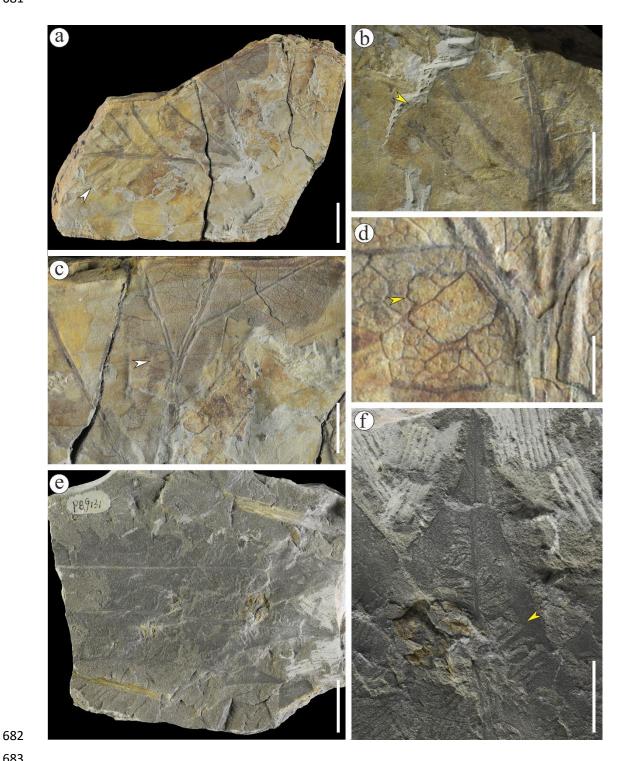


Table 1 Comparison of the leaf architecture and venation pattern between the two *Filigigantopteris* species and other double-meshed

685 gigantopterids. Conditions shared with *F. dahaia* are emphasized in boldface.

a ·	Leaf architecture				Venation Pattern				T Z (1
Species	Architecture	Foliage type	Shape	Margin	Order	Doubled-meshes	Accessary meshes	Blind veins	- Key reference
Filigigantopteris asymmetrica gen. et sp. nov.	fern-like	pinnule	elliptic	lobed	5	distinct, regular	absent	present	this paper
F. dahaia gen. et sp. nov.	fern-like	frond	ribbon-like	entire	4	distinct, regular	absent	present	this paper
Monogigantopteris clathroreticulatus Yang	simple	leaf	uncertain	serrate	5	distinct, regular	absent	absent	Yang 2006
M. densireticulatus Yang	simple	leaf	uncertain	dentate	5	distinct, regular	absent	present	Yang 2006
Pinnagigantopteris lanceolatus Yang et Xie	odd-pinnate	leaflet	lanceolate	serrate	4	distinct, regular	absent	absent	Yang 2006
P. oblongus Chen	odd-pinnate	leaflet	elliptic	serrate	5	distinct, regular	absent	absent	Yang 2006
Gigantopteris cordata Yabe et Ŏishi	simple	leaf	cordate	entire	5	indistinct, irregular	absent	absent	Yabe and Ŏishi 1938
G. meganetes Tian et Zhang	simple	leaf	broadly oval	bicrenate	5	distinct, regular	absent	present	Zhang and Tian 1980
G. dictyophylloides Gu et Zhi	simple	leaf	uncertain	crenate	5	distinct, regular	absent	present	Gu and Zhi 1974
G. nicotianaefolia (Schenk)	simple or odd-pinnate	leaf or leaflet	elliptic	entire	5	indistinct, irregular	present	present	Schenk 1883
Gigantopterid identified as G. nicotianaefolia	fern-like	frond	ribbon-like	entire	5	indistinct, irregular	present	present	Zhang and Tian 1980
G. paradoxa Mo	simple or odd-pinnate	leaf or leaflet	elliptic	serrate	4	indistinct, irregular	present	present	Zhao et al. 1980
G. shuangquanensis Yang	fern-like	frond	long elliptic	entire	4	indistinct, irregular	absent	uncertain	Xiao and Zhang 1985