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Abstract
In this paper, the deformation of compliant microcapsules is studied in narrow constrictions using a hybrid particle-based 
model. The model combines the Smoothed Particle Hydrodynamic (SPH) method for modelling fluid flow and the Mass 
Spring Model (MSM) for simulating deformable membranes. The model is initially validated for the dynamics of microcap-
sules in shear flow. Then, several quantitative parameters such as the deformation index, frontal tip and rear tail curvatures 
and the passage time are introduced and their variations are studied with respect to capillary number and constriction size. 
Subsequently, a dependency analysis is performed on these quantitative parameters and some recommendations are made 
on fabrication of microfluidic devices and analysis of microcapsules for extracting their mechanical properties. It is revealed 
that the deformation index and frontal tip and rear tail curvatures are the most suitable parameters for correlating the elastic 
properties to the dynamics of microcapsules.

Keywords  Discrete Multi-Physics (DMP)model · The Smoothed Particle Hydrodynamics (SPH)method · Fluid-Solid 
Interactions (FSI) · Microcapsules · Dependency analysis

1  Introduction

Synthetic microcapsules consist of a viscous fluid covered 
by a thin polymeric membrane. They have been used in a 
broad range of applications such as protection and targeted 
release of active agents in cosmetic and pharmaceutical 
industries (Casanova and Santos 2016; Gombotz and Wee 
1998), fermentation and flavor conservation in food process-
ing units (Gharsallaoui et al. 2007), and anti-body produc-
tion in biomedical applications (Murua et al. 2008). Thus, 
it is required to accurately determine mechanical properties 
of microcapsules to efficiently increase their performance.

For calculating mechanical properties of microcapsules, 
several experimental techniques are employed such as par-
tial probing of membrane using (colloidal) Atomic Force 
Microscopy (AFM) (Fery and Weinkamer 2007; Dubreuil 
et al. 2003), suction of compliant microcapsules through 
micropipettes in Micropipette Aspiration (MA) (Hochmuth 
et al. 1982; Hochmuth 2000), and monitoring the deforma-
tion of microcapsules using optical tweezers (Helfer et al. 
2001). However, these techniques are often cumbersome and 
time consuming especially for highly deformable microcap-
sules. An alternative approach is to investigate the deforma-
tion of compliant microcapsules in microfluidic devices (e.g. 
micro-constrictions) where they deform into a range of bul-
let, slug and parachute shapes depending on their membrane 
mechanical properties. Subsequently, mechanical properties 
of microcapsules can be measured by quantitative param-
eters based on capsule dynamics and deformation under dif-
ferent flow conditions.

In the literature, there are several experimental stud-
ies such as those by Leclerc et al. (2012), Risso et al. 
(2006), Dawson et al. (2015), Lee and Fung (1969) and 
Vitkova et al. (2004), addressing the deformation of syn-
thetic microcapsules in constrictions. It was experimen-
tally observed that capsules tend to increase their axial 
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length and decrease their radial width as capillary number 
increases. In spite of presenting useful results; however, 
the main challenge is to find a proper correlation between 
mechanical properties with capsule deformation in micro-
constrictions. Alternatively, numerical studies have been 
carried out to investigate the significance of different influ-
ential parameters including capillary number (Park and 
Dimitrakopoulos 2013; Kusters et al. 2014; Luo and Bai 
2017), viscosity ratio (Park and Dimitrakopoulos 2013), 
and particle types (Kusters et al. 2014; Wang et al. 2014), 
on the deformation of microcapsules. These numerical 
studies have explained the behaviour of microcapsules 
in various simulation conditions complementing earlier 
experimental investigations. In practical circumstances, 
on the other hand, it is important to have quantitative 
metrics to correlate deformation of microcapsules to their 
mechanical properties which generally seems to be ignored 
in literature, to the best knowledge of the authors.

In this paper, we investigate the dynamics of micro-
capsules in constrictions using the Discrete Multi-Physics 
(DMP) (Alexiadis 2015), a hybrid particle-based model 
which combines the Smoothed Particle Hydrodynam-
ics (SPH) method for simulating the fluid flow and the 
Mass-Spring Model (MSM) for modeling the elastic 
membrane. It has been shown that the proposed model is 
suitable for simulation of Fluid-Solid Interactions (FSI) 
(Alexiadis 2015, 2014; Ariane et al. 2018). The proposed 
model has several advantages over other techniques such 
as the Immersed Boundary Methods for simulating fluid-
solid interactions. For instance, the fluid and solid phases 
are explicitly distinguished since they are assigned with 
phase identities i.e. particle types, and no further effort 
is required for capturing the interface due to its particle-
based nature. In addition, since the fluid phases inside and 
outside of the microcapsule are represented by a constant 
number of particles, the mass will be automatically con-
served. The proposed method is further extendable to more 
sophisticated phenomena such as membrane rupture, as it 
has been illustrated for particle under extreme shear rate 
as discussed in our previous paper (Rahmat et al. 2019), 
which are generally difficult to tackle in conventional 
techniques.

This study aims to elaborate the correlation between 
the deformation and dynamics of microcapsules and their 
mechanical properties utilizing a systematic approach by 
investigating the effect of important dimensionless param-
eters. Subsequently, several quantitative parameters are 
extracted as potential metrics and it is shown that how their 
trends vary by the effect of different influential parameter 
(e.g., capillary number and constriction size). The discus-
sion is followed by a correlation and dependency analysis to 
evaluate the importance of each of these metrics in extract-
ing the mechanical properties of microcapsules.

2 � Governing equations

2.1 � General equations

The governing equations for an incompressible Newtonian 
fluid in laminar flow can be written as

where � is the velocity vector, and � , � and p are density, 
kinematic viscosity and pressure, respectively. t is time, D

Dt
 

is the material time derivative and � is the volumetric body 
force.

As stated earlier, the present numerical approach is 
based on the Discrete Multi-Physics (DMP) model (Alex-
iadis 2015) which utilizes the SPH method for the sim-
ulation of fluid flow and the MSM model for assigning 
elasticity to membrane particle. In the following, the SPH 
method and MSM model are briefly introduced and their 
coupling is discussed.

2.2 � The SPH method

The smoothed particle hydrodynamics method was ini-
tially developed for astrophysical modelling purposes 
(Gingold and Monaghan 1977). Subsequently, the method 
was successfully extended to fluid dynamics (Monaghan 
1994; Monaghan and Lattanzio 1985), showing merits 
especially in applications with large deformations. Within 
the framework of the SPH method, the simulation domain 
is populated by freely moving particles, where the physi-
cal properties are averaged over computational particles 
using a smoothing kernel function, and the governing 
equations are discretized on these particles. Different fluid/
solid phases will be assigned to a certain group of SPH 
particles keeping the material properties such as density, 
mass, viscosity etc. This is an advantage of particle-based 
methods which automatically resolve the conservation of 
mass as well as explicit capturing of the interface between 
different material phases. SPH has been applied to a wide 
range of applications such as free surface flows (Löhner 
et al. 2006; Leroy et al. 2016; Gotoh et al. 2014), hydro-
dynamic instabilities (Rahmat et al. 2014; Shadloo and 
Yildiz 2011), multi-phase flows (Rahmat et  al. 2016; 
Szewc et al. 2013; Colagrossi and Landrini 2003), bluff 
body simulations (Shadloo et al. 2011) and Fluid-Solid 
Interactions (Rafiee and Thiagarajan 2009; Rahmat et al. 
2019; Yang et al. 2014).

(1)
D�

Dt
= −�� ⋅ �,

(2)
D�

Dt
=

−�p

�
+

1

�
(� ⋅ ���) + �,



Microfluidics and Nanofluidics            (2021) 25:1 	

1 3

Page 3 of 17      1 

In this study, Eqs. 1 and 2 are solved over spatially dis-
tributed particles in the solution domain through a smooth-
ing kernel function, W(�ij, h) or in its concise form, Wij . The 
kernel function relates particle i with its surrounding neigh-
bor particles j (Monaghan and Kocharyan 1995; Monaghan 
and Lattanzio 1985), based on the relative distance between 
these particles �ij = |�i − �j| , and the smoothing length, h. 
There are several kernel functions available in the literature; 
the Lucy kernel function (Lucy 1977) is used here. The Lucy 
kernel function is suitable for parallel simulations, so it has 
been shown in our previous studies showing accurate results 
for different fluid-solid interactions problems (Rahmat et al. 
2019a, b; Alexiadis et al. 2017).

In SPH, any arbitrary variable f can be defined as a sum-
mation over discrete particles as

where mj is the mass of the discrete neighboring particles, 
and Ji is the number of neighboring particles for particle i. 
Applying the SPH framework to the continuity and momen-
tum equations, Eqs. 1 and 2 may be written in their discre-
tized form as

In Eq. 5, the first term is the pressure gradient and the sec-
ond one is the dissipation term known as the laminar viscos-
ity model (Morris et al. 1997). In SPH, there are two distinct 
approaches to evaluate pressure: (1) the Incompressible SPH 
(ISPH) method which requires solving a pressure Poisson 
equation (Rahmat and Yildiz 2018; Tofighi et al. 2015; Mor-
ris 2000); and (2) the Weakly Compressible SPH (WCSPH) 
method (Ozbulut et al. 2018; Monaghan and Kocharyan 
1995; Fatehi et al. 2019). In the latter approach, the pres-
sure is coupled to the density variations through an Equation 
Of State (EOS). We use this approach and the so-called Tait 
EOS (Monaghan and Kos 1999; Ozbulut et al. 2018):

where c0 is a reference speed of sound and set at least one 
order of magnitude larger than the maximum velocity in the 

(3)fi ≃

Ji∑

j=1

mj

�j
fjWij,

(4)𝜌̇i = −
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mj�ij
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,
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]
.

domain, which ensures keeping the density variations below 
1 % . �0 is the reference density set equal to 1000 kgm−3 and 
� is a coefficient taken equal to (Monaghan 1994; Shadloo 
et al. 2013).

2.3 � The MSM

The Mass Spring Model (MSM) or Lattice Spring Model 
(LSM) (Kilimnik et  al. 2011), also sometimes defined 
Coarse Grained Molecular Dynamics (CGMD) (Alexiadis 
2015) in DMP, is herein utilized to simulate deformable 
solid objects. Within the MSM framework (Lloyd et al. 
2007), these objects are discretized into computational par-
ticles and a network of harmonic bonds connecting these 
particles allows them to move, deform and stretch accord-
ing to the Newtonian equations of motion under the effect 
of external forces. In this study, the Mass Spring Model is 
used to simulate the deformable membrane of the capsule. 
The harmonic bond potential is used to account for Hookean 
elasticity between solid particles as

where kb is the Hookean bond coefficient and r0 is the equi-
librium distance. In this study, we focused on the discre-
tization and implementation of the model, and for the sake 
of simplicity, we utilized the linear Hookean model. Other 
non-linear models can be implemented by changing the 
inter-particle potential, but the link between the non-linear 
elastic continuum models and non-linear discrete bonds is 
not as straight-forward as for Hookean elasticity. In the next 
section, it is shown how the membrane is discretized into 
computational particles and Eq. 7 is used to model their 
interactions.

2.4 � Coupling of SPH and MSM

The interaction between the solid (MSM particles) and the 
fluid (SPH particles) is defined by boundary conditions 
which relate the behaviour of two adjacent materials at the 
common interface. There are three types of boundary condi-
tions that must be taken into consideration (Esmon 2009), 
no-penetration, no-slip and continuity of stresses. In con-
tinuum mechanics, these conditions are often, respectively, 
represented as

and

(7)�i,bond = kb
(
�ij − �0

)

(8)
(
�

�t
�f − �s

)
⋅ � = 0,

(9)
(
�

�t
�f − �s

)
× � = 0,
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where � is the unit vector normal to the boundary, �s and 
�f  are the displacement of the solid and the velocity of the 
fluid, respectively; the stress is represented by �s and �f  for 
the solid and fluid, respectively. Within the DMP numerical 
framework, ghost SPH particles are assigned to MSM parti-
cles at the fluid-solid interface to interact with SPH particles 
of the fluid. In this way, they are at the same time MSM and 
SPH particles.

2.5 � Numerical algorithm

The time integration is employed using the Velocity Verlet 
(VV) algorithm with a first-order Euler approach and varia-
ble timestep according to the stability condition, Δt = �h2∕� , 
where � is the dynamic viscosity equal to � = �∕� and � is 
taken to be equal to 0.125 (Alexiadis 2015). Using the VV 
algorithm, particles velocities are calculated at the interme-
diate stage:

Here, the superscript (∗) represents an intermediate value 
and the superscript (n) denotes values at the n-th time step. 
Then, the density of the particles is updated according to

where the density variations 𝜌̇ is calculated according to 
Eq. 4. In Eq. 4, the density should be updated based on the 
velocity difference between particles �ij . To prevent poor 
conservation of total mass due to the lag of the velocity in 
the VV algorithm, an extrapolated velocity is introduced 
here as

where the velocity difference is now calculated based on 
�ij = (�i − �j) . The next step is to move particle to their new 
positions by means of

At this stage, 𝜌̇(n+1)
i

 , and � (n+1)
i

 are calculated for the new time 
step using Eqs. 4 and 5, respectively. Finally, the true veloc-
ity and density are calculated, respectively, as

and,

(10)�s� = �f (−�),

(11)�
∗
i
= �

(n)

i
+

Δt

2mi

�
(n)

i
.

(12)𝜌∗
i
= 𝜌

(n)

i
+

Δt

2
𝜌̇
(n)

i
,

(13)�i = �
(n)

i
+

Δt

mi

�
(n)

i
,

(14)�
(n+1)

i
= �

(n)

i
+ Δt�∗

i
.

(15)�
(n+1)

i
= �

∗
i
+

Δt

2mi

�
(n+1)

i
,

3 � Problem setup

A schematic of the test case considered in this study is 
shown in Fig. 1a. The computational domain is a cube with 
height, width, and depth of H = 7d , W = 2d and D = 2d , 
respectively, where d is the diameter of the deformable cap-
sule. The domain consists of two square channels which are 
connected via a constriction with the length and thickness 
of lc = 2d and tc , respectively. No-slip boundary conditions 
are applied to the top, bottom, front, rear and constriction 
walls denoted with solid lines (not shown for front and rear 
boundaries) while periodic boundary conditions are imple-
mented on the side boundaries, demarcated with dashed 
lines in Fig. 1a. The capsule is initially located at the center 
of the left section which has the length of three times of 
the capsule diameter and fluid particles are arranged on a 
uniformly-spaced Cartesian grid.

The membrane of the deformable microcapsule is con-
structed from two concentric spheres with a separation dis-
tance of ht . A representation of one of these spheres is shown 
in Fig. 1b. The spheres are formed by triangles and the com-
putational particles are located on the vertices of these tri-
angles. In order to model the membrane, these particles are 
connected to their neighboring particles on the same sphere 
and the adjacent particle on the other sphere with harmonic 
bonds of constant kb , and to the neighboring particles of the 
adjacent particle on the other sphere with harmonic bonds 
of constant 2∕3kb . In total, the compliant microcapsule 
consists of 5124 particles and 25,602 harmonic bonds. Fig-
ure 1c illustrates a 3D representation of the entire simulation 
domain. In total, there are 4 different types of particles in 
this model: (1) boundary particles (red color), (2) membrane 
particles (blue color), (3) inner fluid particles (white color), 
and (4) the outer fluid particles (green color).

4 � Results

Considering the dynamics of a compliant microcapsule in 
a constriction, the inertial force is much smaller than the 
viscous force, thus the main influential parameter is the 
capillary number Ca = �Ur∕Gs where r is the radius of the 
capsule, U is the maximum axial velocity in the constric-
tion and Gs is the surface shear elastic modulus equal to 
Gs = (0.5E∕(1 + �))ht . It has been shown (Kilimnik et al. 
2011; Buxton et al. 2001) that spring network described in 
previous section can produce an elastic membrane with a 
Young modulus and Poisson ratio of E = 5kb∕

√
3�ave and 

(16)𝜌
(n+1)

i
= 𝜌∗

i
+

Δt

2
𝜌̇
(n+1)

i
.
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� = 1∕4 , respectively, where �ave is the average length of 
bonds on the membrane. In addition to capillary number, 
normalized constriction width, � = tc∕d , is utilized to 
describe the confinement of the constriction.

As it has been mentioned earlier, this study provides 
quantitative measurable parameters for the deformation of 
microcapsules in constrictions which can be used to identify 
their mechanical properties in experiments. One quantitative 
parameter is the deformation index D∞,Λ , where subscript 
Λ stands for x, y, and z coordinates defined as the maximum 
elongation of microcapsule in its respective coordinate direc-
tion (x, y, and z) normalized by its initial diameter. Other 
quantitative parameter are frontal tip and rear tail curvatures 
of microcapsule normalized by the initial radius, Cf = r∕Rf 
and Cr = r∕Rr , on the xy-plane passing through the center 
of the channel (see Fig. 2). It should be noted that curva-
ture is assumed to be positive for convex (i.e. frontal side 
of the capsule in Fig. 2 where the curvature points inwards 

with respect to the microcapsule) and negative for concave 
capsule curvatures (i.e. rear side of the microcapsule in 
Fig. 2 where the curvature point outwards with respect to 
the microcapsule). After extracting these parameters, they 
will be analysed for dependency analysis against Ca number. 
This will determine the sensitivity of these parameters with 
linear variations of elastic properties of microcapsules. The 
Pearson R correlation formula (McGraw and Wong 1996) is 
used here for checking the independency analysis.

In this study, the simulations are carried out on a 
dimensionless basis and dimensional parameters are 
normalized using characteristic length d, time d/U, and 
velocity U, respectively. For the sake of completeness, 
however, the dimensional properties are also provided 
here. The density and viscosity of the outer fluid are set 
equal to � = 1000 kgm−3 and � = 0.001 Pa s, respectively, 
and the capsule diameter is set to 0.1 mm. Fluid particles 
are accelerated in the x-direction to maintain a constant 

Fig. 1   a A 2d schematic of the computational domain; b the structure 
of the membrane of the capsule; and c 3-D representation of entire 
domain. Different colors represent different particle types: red, blue, 

green and white colors illustrate boundary, membrane, outer and 
inner fluid particles, respectively (color figure online)



	 Microfluidics and Nanofluidics            (2021) 25:1 

1 3

    1   Page 6 of 17

fluid velocity in the constriction. The properties of inner 
and outer fluids such as density and viscosity are set iden-
tical, unless stated otherwise.

4.1 � Validation and particle resolution study

The present numerical approach has been extensively tested 
and validated for a variety of FSI problems such as for mod-
elling cardiovascular systems and deformable materials 
(Ariane et al. 2017a, b, 2018). For the sake of completeness, 
however, the numerical method is herein validated against 
available data in literature. The simple shear flow prob-
lem is used for validating the numerical model in a cubic 
domain with the height of Hs = 5d , width of Ws = 4d and 
depth of Ds = 4d . A constant shear rate is provided by set-
ting x-velocity in opposite directions to the top and bottom 
boundaries while other domain boundaries abide periodic 
conditions. The rest of simulation conditions are identical 
with those specified earlier for the present study. Interested 
readers can refer to our recent publication (Rahmat et al. 
2019) for more information about the test-case and further 
validations.

The deformation of capsules in simple shear flow is quan-
tified using the Taylor deformation Dxy = (H −D)∕(H +D) 
where H and D are the major and minor axes of the deformed 
capsule, and the inclination angle �∕� defined as the normal-
ized angle between the capsule major axis and the direction 
of the flow. Here, numerical results are compared with those 
of Skalak model with the area-dilatation coefficient equal 
to unity (C = 1) from Lac et al. (2004) which is known to 
be equivalent to the Hookean model (Barthes-Biesel et al. 

Fig. 2   Schematic of the frontal tip and rear tail normalized curvatures 
of deformed capsule
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Fig. 3   Validation of present numerical results in simple shear flow 
against numerical results of Skalak model (C = 1) from (Lac et  al. 
2004); a steady-state deformation index ( Dxy ) of capsule as a func-
tion of capillary number, b inclination angle ( �∕� ) of the capsule 

as a function of capillary number, and c–f the steady-state deforma-
tion of capsule (solid blue lines) compared with those in (Lac et al. 
2004) (dashed red lines) at various capillary numbers; c Ca = 0.075 , 
d Ca = 0.15 , e Ca = 0.30 and f Ca = 0.60 (color figure online)
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2002). Figure 3 represents the steady-state Taylor deforma-
tion and inclination angle for different capillary numbers 
(Fig. 3a and b respectively) and the steady-state deformation 
of capsules at four different capillary numbers. It is observed 
that both steady-state Taylor deformation index and incli-
nation angle are in good agreement with those from Lac 
et al. (2004). The comparison of capsule morphology further 
validates the present numerical results for a wide range of 
capillary numbers.

Once the numerical model has been validated, a parti-
cle resolution study is carried out to check the dependency 
of the results with respect to the particle resolution for the 
present study (the deformation of a microcapsule in con-
striction). Thus, four particle resolutions of � -1 = 40Π , � -2 
= 48Π , � -3 = 56Π and � -4 = 64Π are considered where Π 
represents the number of particles per unit diameter of the 
capsule. Figure 4 shows the variations of deformation index 
along the x axis ( D∞,x ) as a function of capsule center of 
mass ( xc ) for respective cases with simulation conditions 
of Ca = 0.25 and � = 0.5 . It is observed from Fig. 4 that 
low resolution cases ( � -1 and �-2) over-estimate the defor-
mation index in the constriction. The results converge by 
increasing the resolution where no significant improvement 
is observed beyond � -3 which is taken as the optimum res-
olution throughout this study. It should be noted that the 
same resolution is used for validating the numerical model 
discussed earlier for the deformation of capsules in simple 
shear flow in Fig. 3.

4.2 � Effect of capillary number

In this section, the effect of capillary number is investigated 
for the dynamics of microcapsules in the constriction. In 
order to isolate the effect of capillary number, the constric-
tion size is taken equal to � = 0.5 and capillary number is 

varied between 0.005 ≤ Ca ≤ 2.5 . Figure 5 illustrates the 
variations of deformation index (a) along the x axis i.e. the 
direction of the flow ( D∞,x ), (b) along the y axis i.e. the 
constricted transverse direction ( D∞,y ) and (c) along the z 
axis D∞,z for different capillary numbers as a function of its 
center of mass ( xc ). It is observed that the capsule blocks 
the constriction for small capillary numbers, i.e. Ca = 0.005 
and Ca = 0.01 . The blockage is due to the stiffness of the 
membrane that prevents the capsule from being squeezed 
by the constriction walls. By further increase of the capil-
lary number, hydrodynamic drag at the wake of the capsule 
and pressure drop push the capsule in the constriction. D∞,x 
remains almost constant inside the constriction except when 
the capsule is at the inlet or exit regions. Towards the exit 
region, D∞,x drops significantly reaching its minimum posi-
tion at xc ≈ 5.5 , then it increases approaching unity. This 
behaviour is due to the elastic properties of the microcap-
sule trying to balance the hydrodynamic forces at the exit 
region. Further increasing the capillary number results in 
a drastic increase of D∞,x at the inlet and larger decrease 
towards the exit, since high deformability of microcapsule 
allows the membrane to stretch more in transverse direc-
tion as a response to hydrodynamic forces. In Fig. 5b, it is 
observed that D∞,y decreases as the capsule approaches the 
constriction, remains almost constant during the passage, 
and increases when microcapsule reaches the constriction 
exit at xc ≈ 4.6 . Figure 5c also illustrates the expansion of 
microcapsules along the z axis inside the constriction as a 
result of available non-confined space representing a similar 
pattern for all capillary numbers.

Figure 6 represents microcapsules with four different cap-
illary numbers at arbitrary times passing through the con-
striction ( � = 0.5 ). Except for the smallest capillary number 
in Fig. 6a ( Ca = 0.025 ) which blocks the channel due to high 
membrane stiffness, all test-cases are squeezed between the 
constriction walls showing a limiting index of D∞,y = 0.42 
as also represented in Fig. 5b. The microcapsule rear tail 
curvature shifts from a convex shape for Ca = 0.25 into a 
concave one for Ca = 2.5 as a response to the hydrodynamic 
drag and pressure drop at the wake of the microcapsule com-
peting against its elastic properties. This is further followed 
by the microcapsule expansion in the transverse direction at 
the downstream section, forming an oblate shape.

Figure 7 represents variations of normalized frontal tip 
and rear tail curvatures of microcapsules passing through the 
constriction with � = 0.5 for different capillary numbers as a 
function of its center of mass ( xc ). Despite having different 
magnitudes, the frontal curvature has almost a constant trend 
at the first half of the constriction ( xc < 4 ) except for the 
largest capillary. The frontal tip curvature drops significantly 
in the second half of the constriction ( xc > 4 ) reaching unity. 
In contrast, the rear tail curvature has larger magnitudes for 
smaller Capillaries and the rear curvature drops to negative 
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Fig. 4   Variations of deformation index along the x axis ( D∞,x ) as 
a function of the center of mass ( xc ) of a microcapsule passing 
through the constriction with simulation conditions equal to � = 0.5 
at Ca = 0.25 for four different particle resolutions; � -1 = 40Π , � -2 
= 48Π , � -3 = 56Π and � -4 = 64Π where Π represents the number of 
particles per unit diameter of the capsule
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Fig. 5   Variation of deformation 
index a along the x axis in the 
direction of the flow ( D∞,x ), b 
along the y axis in the transverse 
constricted direction ( D∞,y ), 
and c along the z axis ( D∞,z ) 
as a function of the center of 
mass of a capsule ( xc ) through 
a constriction with � = 0.5 for 
different capillary numbers
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Fig. 6   Two-dimensional illustration of capsules at arbitrary moments 
on xy-plane (passing at the center of the channel), in a constriction 
with � = 0.5 for different capillary numbers (Different colors are just 

used for visual purposes and have no other physical or numerical 
meanings) (color figure online)
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values for large capillary numbers, reaching a minimum 
value of Cr ≈ −5 for the largest capillary number at xc = 5 . 
This indicates the shift from convex to concave curvatures 
as also illustrated in Fig. 6d.

Figure 8 represents three-dimensional illustration of cap-
sule passing through constriction for two different simula-
tion conditions at different simulation times. When capsule 
approaches the constriction, it expands in the direction of the 
flow (x-direction) and transverse to the constriction confine-
ment (z-direction) while it is confined by the constriction 
walls in y direction. Subsequently, the capsule occupies a 
larger area inside the constriction. The maximum capsule 
expansion is quantified by comparing the area occupied on 
the xz-plane with respect to its initial area on the same plane, 
indicating an increase of 76.5% for Ca = 0.25 , 79.5% for 
Ca = 0.5 , 84% forCa = 1.0 , and 100% for  Ca = 2.5 . Thus, 
the larger capillary case has a shorter passage time through 
the constriction, experiencing a higher drag of flow in its 
wake. Another reason for a faster passage of capsules at 

larger capillary numbers is the faster deformation of cap-
sules at the entrance of the constriction due to its highly 
deformable membrane.

4.3 � Effect of channel width

Here, the effect of constriction width is investigated for 
three different values of � = 0.5, 0.75 , and 1. The con-
striction sizes are chosen such that the dynamics of 
microcapsules are fully observed by providing sufficient 
deformation to the microcapsules, which will be used 
for correlating to the mechanical properties as will be 
explained in Sect. 5. Figure 9 represents the variations of 
deformation index along the three major axis (a) D∞,x , (b) 
D∞,y and (c) D∞,z for nine different cases with three capil-
lary numbers and three constriction widths as a function of 
its center of mass ( xc ). For the smallest capillary number 
( Ca = 0.025 ), the microcapsule blocks the constriction for 
� = 0.5 , but it passes through wider constrictions showing 
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Fig. 7   Variation of normalized a frontal tip ( Cf ) and b rear tail ( Cr ) curvatures of microcapsules passing through a constriction with � = 0.5 for 
different capillary numbers as a function of its center of mass ( xc)
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minimum deformation along the x-axis. The deformation 
index along the y axis ( D∞,y ) indicates that the microcap-
sule is confined by the constriction walls for small capil-
lary numbers at all constriction sizes. For larger capil-
lary numbers, D∞,x is larger at narrower constrictions due 
to the reduction of pressure drop inside the constriction 
and confinement effects. This also affects the transverse 
deformation leading to larger D∞,y at wider constrictions. 
The deformation index along the z axis ( D∞,z ) is highly 
influenced by the size of the constriction which induces 

a large deformation on the microcapsules leading to their 
expansion along the z direction.

Figure 10 represents a cross section of the channel on the 
xy-plane passing through the center of the channel showing 
two-dimensional profiles of four cases passing through the 
constriction at arbitrary locations. In Fig. 10a–c, the con-
striction width is equal to the capsule diameter but Fig. 10d 
has a narrower constriction size ( � = 0.75 ). Figure 10a 
shows the microcapsule passing through the constriction 
with minimum deformation due to the membrane stiffness. 

Fig. 8   Three-dimensional representation of capsule passage through constriction for simulation conditions a Ca = 0.25 - � = 0.5 and b Ca = 2.5 
- � = 0.5 at six different simulation times
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At higher capillary numbers, the microcapsule transforms 
into parachute and bullet shapes as a result of the reduc-
tion in elastic modulus of the membrane. It is also observed 

that at smaller capillary numbers and at the downstream of 
the constriction, capsule regain its spherical shape since the 
hydrodynamic effects are not strong enough to compete with 

Fig. 9   Variation of deformation 
index a along the x axis in the 
direction of the flow ( D∞,x ), b 
along the y axis in the transverse 
(constriction) direction ( D∞,y ), 
and c along the z axis ( D∞,z ) as 
a function of the center of mass 
of the microcapsule ( xc ) for dif-
ferent constriction size ( � ) and 
capillary numbers
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Fig. 10   Two-dimensional illustration of capsules at arbitrary 
moments on xy-plane (at the center of the channel), in a constric-
tion with different widths and capillary numbers (Different colors are 

just used for visual purposes and have no other physical or numerical 
meanings) (color figure online)
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the elastic properties. The hydrodynamic forces at the wake 
of the capsule result in a backward indentation at the rear 
side at larger capillary numbers. By comparing Fig. 10c and 
d, it is revealed that the effect of constriction size is more 
dominant on the deformation of the capsule. This will be 
further discussed in the next section.

Figure 11 represents the variations of normalized frontal 
and rear curvatures at different capillary numbers for dif-
ferent positions inside two different constrictions ( � = 0.75 
and � = 1.0 ). The frontal curvature shows a monotonically 
increasing trend at xc = 3.5 and xc = 4.0 in both constric-
tion cases as the capillary number increases. Comparing the 
magnitudes, higher positive curvatures are obtained at the 
constriction width of � = 0.75 represented by black color 
in Fig. 11a. Towards the exit region ( xc = 4.5 ), the mono-
tonic increasing trend turns into a decreasing one when the 
capillary number exceeds Ca = 0.5 which shows that the 
elastic properties of the membrane is not strong enough to 
resist against hydrodynamic forces. Considering the rear tail 
curvature, it is observed that all cases represent a decreas-
ing trend except at the inlet of the narrower constriction 

( xc = 3.5 ). It should also be noted that the rear tail curvature 
remains positive at the entrance of the constriction but as 
the capsule moves inside the constriction, the hydrodynamic 
forces at the wake of the capsule push the membrane and 
reduce its curvature. This results in a shift in the direction 
of the rear tail curvature (convex to concave) and membrane 
inward indentation as depicted in Figs. 6 and 10.

Another important parameter to investigate is the time 
of passage inside the constriction. Figure 12 represents 
the inverse of the passage time for the capsules. Here, the 
inverse of the time is utilized since the passage time for very 
small capillary cases which block the constriction is infinity, 
making it difficult to illustrate. The figure represents a mono-
tonically increasing trend as the capillary number increases. 
It means that more deformable capsules pass through the 
constriction in a shorter time. There is a clear distinction 
between passage time of microcapsules in different channel 
widths showing that the constriction width has more domi-
nant effect on the passage time compared to the capillary 
number.
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Fig. 11   Variation of normalized a frontal tip ( Cf ) and b rear tail ( Cr ) curvatures of microcapsules passing through a constriction at different cap-
illary numbers for different positions inside the constriction
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There are two main challenges in comparing numerical 
and experimental results: (1) the effect of initial conditions 
in numerical cases and (2) the experimental noise especially 
in microfluidic applications. Here, they are tested in a sin-
gle case where two off-center microcapsules are initially 

positioned with the distance of � = 0.5 and � = 1 ( � is the 
asymmetry parameter measured from channel center-line 
and normalized with capsule diameter) with the simula-
tion conditions of Ca = 0.25 and � = 1.0 . The off-centered 
feature in taken into account for the experimental noise in 

Fig. 12   Inverse of the passage 
time of capsules through the 
constriction for different capil-
lary numbers and constriction 
sizes
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Fig. 13   Comparison of the data for two off-centered capsules placed 
0.5 and 1.0 diameter away from the center-line ( � = 0.5 and � = 1.0 ), 
respectively, with a centered one at Ca = 0.25 and � = 1.0 ; a the 
deformation index in the x direction ( D∞,x ), b and c the shape of cap-

sules at different arbitrary locations for two passes (black color for the 
first pass and blue color for the second pass) and the centered case 
represented by magenta color (color figure online)
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which the flowing microcapsule might not travel exactly at 
the center of the channel. In order to remove the effect of 
numerical initial conditions, the off-center cases are passed 
twice from the constriction. Figure 13 represents (a) the 
deformation index along the x axis ( D∞,x ) and (b) and (c) the 
microcapsule profiles for � = 0.5 and � = 1 , respectively. In 
addition, a respective centered case is also provided for bet-
ter comparison (magenta line in Fig. 12). It is observed that 
the first pass shows a slightly different behaviour, especially 
for the one with higher asymmetry parameter ( � = 1.0 ), but 
the second pass data is almost the same as that of the cen-
tered one (the magenta color). This shows that the effects of 
numerical initial conditions are relatively small (by com-
paring the deformation of the first and second passes) and 
experimental off-centered noise can be avoided if the con-
striction is repeated.

5 � Correlation and dependency analysis

In the previous section, several quantitative parameters e.g. 
(the inverse of) the passage time of capsules in constriction, 
the deformation index of capsules in three directions ( D∞,x

—along the direction of the flow, D∞,y—in the direction of 
the constriction, and D∞,z—normal to the direction of the 
flow and constriction), and the frontal tip and rear tail cur-
vatures of microcapsules are introduced and their variations 
with respect to two effective parameters ( Ca and � ) are ana-
lysed. Here, a dependency analysis is provided to check how 
these parameters are correlated and whether they can be used 
to extract mechanical properties of microcapsules. Since the 
mechanical properties are related to the shear elastic modu-
lus, the dependency analysis is performed against capillary 
number. Subsequently, the Pearson r correlation (McGraw 
and Wong 1996) is used here

where rxy is the correlation parameter varying between 
−1 ≤ rxy ≤ 1 , x and y parameters denote the measured quan-
titative parameter (deformation index, curvatures and etc.) 
and capillary number, respectively, for pth data. The value 
of rxy defines the level of correlation between two sets of 
data (x and y) such that rxy = ±1 indicates they are linearly 
correlated and rxy = 0 represents no correlation. Thus, pref-
erable quantitative parameters are those which their Pearson 
r correlation factor is close to ±1.

To investigate the linear dependency of results with capil-
lary number, the Pearson r correlation is provided in Table 1 
for inverse of passage time, deformation index in three dif-
ferent directions at the middle of the constriction ( xc = 4 ), 

(17)rxy =
n
∑

xpyp −
∑

xp
∑

yp
�

n
∑

xp
2 −

�∑
xp
�2�

n
∑

yp
2 −

�∑
yp
�2

and frontal tip and rear tail curvatures at three different 
locations ( xc = 3.5, 4 and 4.5) for three different constric-
tion width cases (i.e., � = 0.5, 0.75 and 1). To emphasise 
on the significance of data, the Pearson r correlation factor 
is highlighted based on the level of correlation: (1) italics 
represents high level of linear dependency 

(
|rxy| > 0.9

)
 , (2) 

bold indicates mediocre dependency level 
(
0.7 < |rxy| ≤ 0.9

)
 

and (3) boldItalics illustrates low level of dependency in data (
|rxy| ≤ 0.7

)
.

Considering the data in Table 1, it can be concluded that 
the the passage time (t) and the deformation index in the z 
direction 

(
D∞,z

)
 are not suitable parameters for extracting 

microcapsule mechanical properties. In contrast, the defor-
mation index in the direction of the flow 

(
D∞,x

)
 is the most 

effective parameter to extract such correlations. The frontal 
tip and rear tail curvatures are also effective especially at the 
inlet region 

(
xc = 3.5

)
 . This suggests the use of short-length 

constrictions where the inlet region is the most suitable 
location to extract curvatures. Considering the curvatures 
towards the end of the constriction 

(
xc = 4.5

)
 , it is observed 

that the curvature at the frontal tip does not represent a good 
correlation while the rear curvature illustrates high level of 
dependency. Another interesting finding is that the depend-
ency is further promoted by reducing the size of the constric-
tion as it indicates that almost all parameters represent better 
correlation in � = 0.5 compared to larger constrictions.

Although the above correlation analysis is useful in fil-
tering some of the unfavorable parameters, the fabrication 
and magnitude analysis considerations should also be taken 
into account. For instance, the deformation index in the y 
direction 

(
D∞,y

)
 represents a relatively good correlation 

but the variation of D∞,y does not change considerably. For 
instance, D∞,y varies only between 

(
0.42 < D∞,y < 0.44

)
 and (

0.52 < D∞,y < 0.70
)
 for � = 0.5 and � = 0.75 , respectively, 

Table 1   Pearson r correlation factor for different measurable param-
eters; the italics represents perfect linear correlation 

(
|rxy| > 0.9

)
 , 

while bold 
(
0.7 < |rxy| ≤ 0.9

)
 and boldItalics 

(
|rxy| ≤ 0.7

)
 represents 

less correlated relationship

Quantitative 
parameter

Location rxy

� = 0.5 � = 0.75 � = 1.0

t−1 — 0.69 0.63 0.62
D∞,x xc = 4.0 0.97 0.99 0.99
D∞,y xc = 4.0 − 0.93 − 0.90 − 0.84
D∞,z xc = 4.0 −0.43 0.53 0.60
Cf xc = 3.5 0.99 0.91 0.88

xc = 4.0 0.92 0.86 0.84
xc = 4.5 0.72 0.46 0.68

Cr xc = 3.5 −0.94 0.95 − 0.83
xc = 4.0 − 0.93 − 0.85 − 0.74
xc = 4.5 − 1.00 − 0.97 − 0.87
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for a wide range of capillary number 0.005 < Ca < 2.5 . This 
is particularly important since in many applications, the 
length scale is in the limit of micrometers and current tech-
nology might not be able to accurately measure the values 
of these parameters. Another consideration which should 
be taken into account is the width of the constrictions. 
Despite showing a better dependency for � = 0.5 compared 
to � = 0.75 and 1, some technical problems might appear 
in practice, e.g. microcapsules with larger elastic proper-
ties (less deformable ones) might block the constriction as 
shown earlier.

Considering the above correlation and dependency analy-
sis, one may suggest some manufacturing recommendations 
for the design and fabrication of microfluidic constrictions 
to evaluate microcapsule mechanical properties:

•	 Since some quantitative parameters such as the frontal 
and rear curvatures are more dynamic (showing more 
dependency) at the inlet and exit of the constriction, 
short-length constrictions are recommended.

•	 The size of the constriction should be selected appropri-
ately since quantitative parameters represent better corre-
lations at smaller constrictions while some microcapsules 
may block those small constrictions. So, a constriction 
size in the range of 75

•	 Considering the magnitude and dependency analysis, 
D∞,x , frontal tip and rear tail curvatures of the microcap-
sules are the most linearly correlated parameters which 
represent considerable variations. These parameters are 
mostly helpful at the inlet and towards the exit of the 
constriction.

6 � Conclusion

In this paper, the deformation of microcapsules are stud-
ies using a hybrid particle-based numerical model using the 
Smoothed Particle Hydrodynamics (SPH) method and the 
Mas Spring Model (MSM). The model is validated against 
available data in literature for the deformation of capsules 
in shear flow. Then, it is used to simulate the dynamics of 
microcapsules in micro-constrictions for a wide range of 
capillary numbers and constriction sizes. The aim of this 
paper is to provide some quantitative parameters for the 
dynamics of microcapsules in micro-constrictions corre-
lated with their elastic properties for extracting mechanical 
properties of microcapsules in experiments.

The dynamics of microcapsules is herein quantified by 
several parameters such as the deformation index, passage 
time and the membrane curvature at the frontal tip and rear 
tail of the microcapsule. It is observed that microcapsules 
deform easier and pass through the micro-constriction 

faster at larger capillary numbers, showing more elonga-
tion in the direction of the flow. At wider constrictions, 
capsule elongation is smaller in the direction of the flow 
for constant capillary cases but they pass through the 
micro-constriction faster at wider constrictions.

Subsequently, a correlation and dependency analysis is 
performed for the variation of these quantitative parameters 
with the capillary number using the Pearson r correlation. 
Considering the dependency analysis, it is observed that the 
deformation index along the direction of the flow ( D∞,x ) and 
in the direction of the constriction ( D∞,y ), and the curvatures 
at the frontal tip ( Cf ) and rear tail ( Cr ) are suitable param-
eters representing better correlations with the capillary num-
ber especially in smaller constriction size. In order to reach 
a comprehensive conclusion, however, other considerations 
must be taken into account. For instance, the variations of 
D∞,y are very small in magnitude and it might be difficult 
to read its variations for different cases in narrow constric-
tions accurately. Despite obtaining better correlations at the 
narrowest constriction ( � = 0.5 ), microcapsules may block 
the constriction sizes in this range, thus we recommend uti-
lising slightly wider constrictions ( � = 0.75 ) so as to reduce 
the risk of blockage. Additionally, the frontal tip and rear 
tail curvatures represent better correlations at the inlet and 
exit regions of the constriction suggesting that short-length 
constrictions are more suitable for correlating the dynamic 
of microcapsules with their mechanical properties.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Alexiadis A (2014) A smoothed particle hydrodynamics and coarse-
grained molecular dynamics hybrid technique for modelling 
elastic particles and breakable capsules under various flow 
conditions. Int J Numer Meth Eng 100:713–719

Alexiadis A (2015) The discrete multi-hybrid system for the simula-
tion of solid-liquid flows. PLoS One 10:e0124678

Alexiadis A, Stamatopoulos K, Wen W, Batchelor H, Bakalis S, 
Barigou M, Simmons M (2017) Using discrete multi-physics 
for detailed exploration of hydrodynamics in an in vitro colon 
system. Comput Biol Med 81:188–198

Ariane M, Allouche MH, Bussone M, Giacosa F, Bernard F, Barigou 
M, Alexiadis A (2017b) Discrete multi-physics: a mesh-free 

http://creativecommons.org/licenses/by/4.0/


	 Microfluidics and Nanofluidics            (2021) 25:1 

1 3

    1   Page 16 of 17

model of blood flow in flexible biological valve including solid 
aggregate formation. PLoS ONE 12:e0174795

Ariane M, Vigolo D, Brill A, Nash F, Barigou M, Alexiadis A 
(2018) Using discrete multi-physics for studying the dynamics 
of emboli in flexible venous valves. Comput Fluids 166:57–63

Ariane M, Wen W, Vigolo D, Brill A, Nash F, Barigou M, Alexiadis 
A (2017a) Modelling and simulation of flow and agglomeration 
in deep veins valves using discrete multi physics. Comput Biol 
Med 89:96–103

Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive 
laws for two-dimensional membranes on flow-induced capsule 
deformation. J Fluid Mech 460:211–222

Buxton GA, Care CM, Cleaver DJ (2001) A lattice spring model of 
heterogeneous materials with plasticity. Modell Simul Mater 
Sci Eng 9:485

Casanova F, Santos L (2016) Encapsulation of cosmetic active 
ingredients for topical application—a review. J Microencapsul 
33:1–17

Colagrossi A, Landrini M (2003) Numerical simulation of interfacial 
flows by Smoothed Particle Hydrodynamics. J Comput Phys 
191:448–475

Dawson G, Häner E, Juel A (2015) Extreme deformation of capsules 
and bubbles flowing through a localised constriction. Procedia 
IUTAM 16:22–32

Dubreuil F, Elsner N, Fery A (2003) Elastic properties of polyelectro-
lyte capsules studied by atomic-force microscopy and ricm. Eur 
Phys J E 12:215–221

Esmon CT (2009) Basic mechanisms and pathogenesis of venous 
thrombosis. Blood Rev 23:225–229

Fatehi R, Rahmat A, Tofighi N, Yildiz M, Shadloo MS (2019) Density-
based smoothed particle hydrodynamics methods for incompress-
ible flows. Comput Fluids 185:22–33

Fery A, Weinkamer R (2007) Mechanical properties of micro-
and nanocapsules: Single-capsule measurements. Polymer 
48:7221–7235

Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) 
Applications of spray-drying in microencapsulation of food ingre-
dients: An overview. Food Res Int 40:1107–1121

Gingold RA, Monaghan JJ (1977) Smoothed Particle Hydrodynamics: 
theory and application to non-spherical stars. Mon Not R Astron 
Soc 181:375–389

Gombotz WR, Wee S (1998) Protein release from alginate matrices. 
Adv Drug Deliv Rev 31:267–285

Gotoh H, Khayyer A, Ikari H, Arikawa T, Shimosako K (2014) On 
enhancement of Incompressible SPH method for simulation of 
violent sloshing flows. Appl Ocean Res 46:104–115

Helfer E, Harlepp S, Bourdieu L, Robert J, MacKintosh F, Chatenay 
D (2001) Buckling of actin-coated membranes under application 
of a local force. Phys Rev Lett 87:088103

Hochmuth RM (2000) Micropipette aspiration of living cells. J Bio-
mech 33:15–22

Hochmuth R, Wiles H, Evans E, McCown J (1982) Extensional flow of 
erythrocyte membrane from cell body to elastic tether. ii. experi-
ment. Biophys J 39:83–89

Kilimnik A, Mao W, Alexeev A (2011) Inertial migration of deform-
able capsules in channel flow. Phys Fluids 23:123302

Kusters R, van der Heijden T, Kaoui B, Harting J, Storm C (2014) 
Forced transport of deformable containers through narrow con-
strictions. Phys Rev E 90:033006

Lac E, Barthes-Biesel D, Pelekasis N, Tsamopoulos J (2004) Spheri-
cal capsules in three-dimensional unbounded stokes flows: effect 
of the membrane constitutive law and onset of buckling. J Fluid 
Mech 516:303–334

Leclerc E, Kinoshita H, Fujii T, Barthès-Biesel D (2012) Transient 
flow of microcapsules through convergent-divergent microchan-
nels. Microfluid Nanofluid 12:761–770

Lee J, Fung Y (1969) Modeling experiments of a single red blood cell 
moving in a capillary blood vessel. Microvasc Res 1:221–243

Leroy A, Violeau D, Ferrand M, Fratter L, Joly A (2016) A new open 
boundary formulation for incompressible SPH. Comput Math 
Appl 72:2417–2432

Lloyd B, Székely G, Harders M (2007) Identification of spring param-
eters for deformable object simulation. IEEE Trans Visual Com-
put Graph 2007:13

Lucy LB (1977) A numerical approach to the testing of the fission 
hypothesis. Astron J 82:1013–1024

Luo ZY, Bai BF (2017) Off-center motion of a trapped elastic capsule 
in a microfluidic channel with a narrow constriction. Soft Matter 
13:8281–8292

Löhner R, Yang C, Oñate E (2006) On the simulation of flows with 
violent free surface motion. Comput Methods Appl Mech Eng 
195:5597–5620

McGraw KO, Wong SP (1996) Forming inferences about some intra-
class correlation coefficients. Psychol Methods 1:30

Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput 
Phys 110:399–406

Monaghan JJ, Kocharyan A (1995) SPH simulation of multiphase flow. 
Comput Phys Commun 87:225–235

Monaghan J, Kocharyan A (1995) SPH simulation of multi-phase flow. 
Comput Phys Commun 87:225–235

Monaghan J, Kos A (1999) Solitary waves on a cretan beach. J Water-
way Port Coast Ocean Eng 125:145–155

Monaghan JJ, Lattanzio JC (1985) A refined particle method for astro-
physical problems. Astron Astrophys 149:135–143

Morris JP (2000) Simulating surface tension with Smoothed Particle 
Hydrodynamics. Int J Numer Methods Fluids 33:333–353

Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number 
incompressible flows using sph. J Comput Phys 136:214–226

Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz 
JL (2008) Cell microencapsulation technology: towards clinical 
application. J Controlled Release 132:76–83

Ozbulut M, Tofighi N, Goren O, Yildiz M (2018) Investigation of wave 
characteristics in oscillatory motion of partially filled rectangular 
tanks. J Fluids Eng 140:041204

Park S-Y, Dimitrakopoulos P (2013) Transient dynamics of an elastic 
capsule in a microfluidic constriction. Soft Matter 9:8844–8855

Rafiee A, Thiagarajan KP (2009) An SPH projection method for sim-
ulating fluid-hypoelastic structure interaction. Comput Methods 
Appl Mech Eng 198:2785–2795

Rahmat A, Barigou M, Alexiadis A (2019) Deformation and rupture of 
compound cells under shear: a discrete multiphysics study. Phys 
Fluids 31:051903

Rahmat A, Tofighi N, Shadloo M, Yildiz M (2014) Numerical simu-
lation of wall bounded and electrically excited Rayleigh-Taylor 
Instability using incompressible Smoothed Particle Hydrodynam-
ics. Colloids Surf A 460:60–70

Rahmat A, Tofighi N, Yildiz M (2016) Numerical simulation of the 
electrohydrodynamic effects on bubble rising using the SPH 
method. Int J Heat Fluid Flow 62:313–323

Rahmat A, Yildiz M (2018) A multiphase isph method for simula-
tion of droplet coalescence and electro-coalescence. Int J Multiph 
Flow 105:32–44

Rahmat A, Barigou M, Alexiadis A (2019) Numerical simulation of 
dissolution of solid particles in fluid flow using the SPH method. 
Int J Numer Methods Heat Fluid Flow 30(1):290–307. https​://doi.
org/10.1108/HFF-05-2019-0437

Rahmat A, Nasiri H, Goodarzi M, Heidaryan E (2019) Numerical 
investigation of anguilliform locomotion by the sph method. Int J 
Numer Methods Heat Fluid Flow

Risso F, CollÉ-Paillot F, Zagzoule M (2006) Experimental investiga-
tion of a bioartificial capsule flowing in a narrow tube. J Fluid 
Mech 547:149–173

https://doi.org/10.1108/HFF-05-2019-0437
https://doi.org/10.1108/HFF-05-2019-0437


Microfluidics and Nanofluidics            (2021) 25:1 	

1 3

Page 17 of 17      1 

Shadloo M, Rahmat A, Yildiz M (2013) A Smoothed Particle Hydrody-
namics study on the electrohydrodynamic deformation of a droplet 
suspended in a neutrally buoyant Newtonian fluid. Comput Mech 
52:693–707

Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin-Helm-
holtz instability using Smoothed Particle Hydrodynamics. Int J 
Numer Meth Eng 87:988–1006

Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incom-
pressible Smoothed Particle Hydrodynamics method for simulat-
ing flow around bluff bodies. Comput Methods Appl Mech Eng 
200:1008–1020

Szewc K, Pozorski J, Minier J-P (2013) Simulations of single bubbles 
rising through viscous liquids using Smoothed Particle Hydrody-
namics. Int J Multiph Flow 50:98–105

Tofighi N, Ozbulut M, Rahmat A, Feng J, Yildiz M (2015) An incom-
pressible Smoothed Particle Hydrodynamics method for the 
motion of rigid bodies in fluids. J Comput Phys 297:207–220

Vitkova V, Mader M, Podgorski T (2004) Deformation of vesicles flow-
ing through capillaries. EPL (Europhys Lett) 68:398

Wang J, Li X, Wang X, Guan J (2014) Possible oriented transition of 
multiple-emulsion globules with asymmetric internal structures 
in a microfluidic constriction. Phys Rev E 89:052302

Yang X, Liu M, Peng S (2014) Smoothed Particle Hydrodynamics and 
element bending group modeling of flexible fibers interacting with 
viscous fluids. Phys Rev E 90:063011

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A practical approach for extracting mechanical properties of microcapsules using a hybrid numerical model
	Abstract
	1 Introduction
	2 Governing equations
	2.1 General equations
	2.2 The SPH method
	2.3 The MSM
	2.4 Coupling of SPH and MSM
	2.5 Numerical algorithm

	3 Problem setup
	4 Results
	4.1 Validation and particle resolution study
	4.2 Effect of capillary number
	4.3 Effect of channel width

	5 Correlation and dependency analysis
	6 Conclusion
	References




