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 5 

ABSTRACT 6 
 7 

The gradual degradation of gas turbine components is an inevitable result of engine 8 

operation, impacting engine availability, reliability, and operating cost. Gas path analysis plays 9 

an essential role in engine fault diagnosis. Accurate and fast diagnosis of multiple simultaneously 10 

degraded components has always posed a challenge, especially when the number of available 11 

measurements is limited. This paper proposes a novel performance diagnostic method that 12 

partitions the engine diagnosis into a series of steps to remove the “smearing effect” and reduce 13 

the matrix dimensions in the iterative diagnostic algorithm. An engine performance model of a 14 

triple-shaft gas turbine has been developed and validated against commercial software, in order 15 

to assess the accuracy and computational performance of the proposed method. The advantage 16 

of the proposed method lies in its capability to detect the severity of engine component 17 

degradation, such as compressor fouling and turbine erosion, with greater accuracy and 18 

computational efficiency than other model-based methods that use the same number of 19 

measurements. The newly developed method provides an accurate diagnosis with a reduced set 20 

of measurements. The method can deal effectively with the presence of random noise in the 21 

measurements and carries a significantly lower computation burden in comparison to existing 22 

methods. The proposed method could be used as a tool for supporting condition monitoring 23 

systems for improved gas turbine reliability and energy efficiency. 24 
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Key Words: Gas Turbine Diagnostics; Gas Path Analysis; Model-Based Diagnostics; Gas Turbine 25 
Performance. 26 

 27 

Nomenclature 28 
 29 

𝐶𝑃 = Characteristic parameter of component 30 

𝑓(∙) = Nonlinear vector-value function 31 

𝐹𝐴𝑅 = Fuel-air ratio 32 

𝐹𝑃𝑇 = Free power turbine 33 

𝐻 = Enthalpy [kJ/kg] 34 

𝐻𝑃𝐶 = High-pressure compressor 35 

𝐻𝑃𝑇 = High-pressure turbine 36 

𝐿𝑃𝐶 = Low-pressure compressor 37 

𝐿𝑃𝑇 = Low-pressure turbine 38 

n = Number of operating points 39 

𝑃 = Total pressure [atm] 40 

𝑅𝐻 = Relative humidity [%] 41 

𝑅𝑀𝑆𝐸 = Root mean square error 42 

𝑆 = Entropy [kJ/(kg∙K)] 43 

𝑇 = Total temperature [K] 44 

𝑊 = Mass flow rate [kg/s] 45 

𝑊𝐴𝑅 = Water-air ratio 46 

𝑋 = Iteration variables, covers degradation factor variables 47 

𝑍 = Measurement parameter 48 

 49 

Greek Letters 50 
 51 

𝜆 = Relative error of degradation factor as a percentage 52 
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𝜌 = Density [kg/𝑚3] 53 

 54 

Subscripts 55 
 56 

ac = Actual 57 

CW = Compressor work 58 

𝐸 = Efficiency 59 

𝐹 = Flow capacity 60 

L = Number of degradation factors 61 

M = Number of measurement parameters 62 

Mea = Measurement 63 

𝑝𝑑 = Predicted 64 

𝑃𝑅 = Pressure ratio 65 

TW = Turbine work 66 

 67 

1. Introduction 68 
 69 

The pursuit of high reliability, availability, and efficiency in gas turbines has governed the evolution of engine 70 

maintenance methods [1]. Currently, the maintenance cost of the gas turbine is an important aspect of engine lifecycle 71 

expenditure. For instance, the lifecycle expenditure of the Siemens V94.3A gas turbine is expected to be 51.34 million 72 

Euros, which is 17.9 times the initial purchase cost of 2.86 million Euros, according to its 40-year life maintenance 73 

plan [2]. It is suggested that a more cost-efficient way of operating gas turbines could be achieved by enhanced engine 74 

condition monitoring and appropriate repairs [3,4]. Talebi and Tousi (2017) [5] demonstrated that gas path analysis 75 

(GPA), introduced by Urban (1969) [6], remains one of the soundest technologies for engine health monitoring and is 76 

widely used for gas turbine condition monitoring to detect, identify, and assess component degradation. This, in turn, 77 

affects the maintenance of gas turbine assets [7]. 78 

The degradation of gas turbine components has a great impact on the engine’s loss of performance from both a 79 

thermodynamic and an economic perspective [8]. Some of the most common types of gas turbine degradation are 80 
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fouling, erosion, corrosion, rubbing wear, hot section damage, seal damage, and object damage [9]. The types of 81 

deterioration fall into two classes: recoverable and unrecoverable [10]. Diagnostic methods are also classified into 82 

three categories: model-based, data-driven, and hybrid methods [11,12]. 83 

The diagnostic accuracy of model-based methods relies heavily on the gas turbine model, which requires extensive 84 

expert knowledge related to the model’s development and presents a great challenge. On the other hand, data-driven 85 

approaches such as artificial neural networks [13], and deep learning [14], have excellent accuracy, subject to an 86 

extensive training phase. The latter methods are limited by identifying new sets of data that are not used in their 87 

training phase. A family of object-oriented Artificial Intelligence methods is also gaining significant ground in the 88 

engine diagnostics arena [10,15]. The hybrid approaches can address some, but definitely not all, of the above 89 

limitations by combining two or more methods. Thus, there are trade-offs in accuracy, computational performance, 90 

and measurement noise, to name only a few considerations when selecting a diagnostic method. However, real-time 91 

diagnosis is crucial for decision-making to ensure optimum, safe, and reliable engine operation. This study will focus 92 

on model-based approaches, which present greater challenges in terms of accuracy and computational speed, 93 

especially when such solutions are to be deployed in a real-time condition monitoring system. 94 

The number of simultaneous fault components can profoundly affect the performance of the diagnosis [16,17]. 95 

When there are more than two degraded components, the complexity of nonlinear diagnostic systems is significantly 96 

increased [17]. Traditionally, the number of engine measurements should be larger than the number of health 97 

parameters to produce a unique diagnostic solution [1]. Hence, an increase in the number of engine components that 98 

can degrade will not only increase the number of health parameters but also increase the number of measurement 99 

parameters. In such a condition, two issues are raised for engine diagnosis: limited availability of engine measurements 100 

for predicting every health parameter correctly and an increase of the matrix dimensions, which reduces computational 101 

efficiency. 102 

Regarding diagnostic accuracy, it has been pointed out that monitoring more degraded components using a limited 103 

number of measurements could cause a severe “smearing effect” and lead to low precision [16]. The “smearing effect” 104 

is the result of combinations of different degradation footprints in measured parameters. Hanachi et al. (2018) [18] 105 

emphasized that accurate diagnosis of engine faults through limited measurements has always posed a challenge. 106 

However, increasing the number of engine sensors will improve the precision of the diagnosis, but life cycle cost will 107 

be increased substantially [19]. The improvement of the diagnostic accuracy of gas turbines engines with limited 108 
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measurement sets has attracted the attention of researchers in both academia and industry. Jasmani et al. (2011) [20] 109 

reported a measurement selection method for triple-shaft engine diagnostics that showed improved accuracy when 110 

compared with measurements on-site. However, the prediction error increased when there were more than three 111 

degraded components. Pinelli et al. (2012) [21] considered keeping some of the health parameters fixed by an a-priori 112 

optimized selection for engine diagnosis and used the concept of multiple operating points for addressing limited 113 

measurements on-site. Hanachi et al. (2014) [22] introduced a diagnostic technique for gas turbines, in which the 114 

degradation magnitudes are quantified by heat loss and power deficit indices, rather than the health index of each 115 

rotating component. Lu et al. (2016) [23] proposed an improved and extended Kalman filter to address the shortage 116 

of available measurements by the linear combination of the health parameters, but the diagnostic accuracy was affected 117 

by the transformation matrices. Mohammadi and Montazeri-Gh (2016) [24] developed a global optimization-based 118 

engine diagnostic method to overcome the lack of measurement instrumentation. Qingcai et al. (2016) [25] conducted 119 

a series of sensitivity analyses, in which they chose different degradation levels to quantify the measurement deviation 120 

of a triple-shaft engine. However, actual engine component degradation and ambient conditions could fall outside the 121 

range of the case studies examined. Besides, the estimation of the correct degradation level through real measurement 122 

deviation and chart of sensitivity analysis remains questionable. Sun et al. (2016) [26] proposed a GPA method to 123 

overcome the lack of measurement parameters by fusing information from other sources. Simon and Rinehart (2016) 124 

[19] suggested a sensor selection for aero-engines based on the Kalman filter and a maximum a posteriori estimator, 125 

but they assumed the faults occurred in isolation. Yang et al. (2018) [27] proposed multiple interacting models for 126 

fault detection and isolation. Then, they applied a generalized likelihood ratio approach for fault quantification. As 127 

the number of multiple models was limited, their scheme assumed that the failures did not occur simultaneously. In 128 

2019, Yang et al. [28] developed a new multiple model-based engine fault diagnosis algorithm, but the assumption of 129 

multiple models remained. Despite the recent progress in engine diagnostics, the limited set of engine measurements 130 

is still one of the most significant challenges for fault diagnosis [17]. 131 

From a computation perspective, increasing the matrix dimensions for the iterative diagnostic algorithm may lead 132 

to the dimensionality problem [29]. It is worth emphasizing that the computation will increase exponentially under 133 

these conditions [30]. Daroogheh et al. (2017) [31] pointed out that the number of required samples increases 134 

exponentially for particle filters when the dimensionality of the health parameters increases. To date, studies have 135 

investigated the demand for improving the computation speed for engine diagnostics. Tsoutsanis et al. (2014) [32] 136 
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proposed an adaptive diagnostics method for detecting compressor degradation through map tuning based on a 137 

heuristic optimization technique. However, increasing the number of degraded components may lead to local and not 138 

globally optimal solutions. Ying et al. (2016) [16] conducted fault detection before fault diagnosis, which could reduce 139 

the dimension of the fault coefficient matrix. However, the scheme is not applicable when all components degrade 140 

simultaneously. Yang et al. (2018) [33] suggested that the computation burden could be reduced by the generalized 141 

expression of the Jacobian matrix, although the dimension of the matrix remained the same. Lu et al. (2018) [34] 142 

proposed a fusion unscented Kalman filter to reduce the computation time of fault diagnosis by improving the 143 

convergence speed. However, the diagnosis only considered efficiency degradation, and the flow capacity was 144 

excluded during fault diagnosis. 145 

Overall, the above studies highlight the need for accurate diagnosis of engine degradation with a limited number 146 

of measurements and improved computational performance under the simultaneous deterioration of multiple 147 

components. In this study, a sequential diagnostic method for improving the precision and computation efficiency is 148 

proposed and applied to a triple-shaft industrial gas turbine with all five rotating components degraded simultaneously. 149 

The procedure of sequential diagnosis allows the partition of the diagnostic algorithm into several serial mechanisms 150 

to remove the smearing effect and reduce the matrix dimension in the iterative diagnostic algorithm. Furthermore, the 151 

problem of limited measurements is addressed by feeding multiple operating points into the diagnostic process. The 152 

novel contributions of this work are as follows: 153 

1) A gas turbine engine model with object-oriented and modularized architecture has been developed in the 154 

Microsoft Visual Studio C# environment [35], which is validated against GasTurb. The model’s architecture 155 

is suited to the sequential diagnostic algorithm, which is evaluated through a well-used diagnostic method. 156 

2) The new method improves diagnostic accuracy by isolating the fault components and eliminating the 157 

smearing effect via sequential analysis. 158 

3) The novel algorithm decreases the computation time by reducing both the matrix’s dimensions in the iteration 159 

algorithm and the number of calls to engine sub-models (compressor model, burner model, turbine model, 160 

etc.). 161 

4) The proposed scheme can ensure the required diagnostic accuracy, under a limited number of measurements, 162 

by multiple operating point analysis. Reducing the number of measuring sensors can potentially bring 163 

economic benefits to the engine operator and decrease sensor related problems. 164 
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5) The negative impact of measurement noise on fault diagnosis accuracy is addressed by an averaging filter for 165 

data filtration to demonstrate the suitability of the method for real-world applications.  166 

The remainder of this paper is organized as follows. Section 2 is concerned with the methodology used for this 167 

study. Section 3 demonstrates the validation of the developed engine model using commercial software. Section 4 168 

analyses the results of the fault diagnosis. The final section presents the conclusions of the research. 169 

2. Methodology 170 

2.1 Engine Performance Model 171 

The triple-shaft industrial gas turbine engine used in this study (Fig. 1) is similar to the Rolls-Royce RB211-24G 172 

operated at the China Petroleum Pipeline Langfang compressor group [36]. The power output is selected as the control 173 

variable in this study, but this could be any other control parameter, such as rotation speed, fuel flow rate, etc. The 174 

existing measurement parameters on-site are shown in Table 1 [36]. It is worth noting that the measurements at 𝐻𝑃𝑇 175 

outlet are not available due to the high gas temperature.  176 

 177 

Fig. 1 Schematic layout of the triple-shaft engine configuration, with station numbering. 178 

 179 
In general, the performance of a gas turbine engine is a function of its components’ performance [37]. Hence, the 180 

degradation factor (𝑋) of each component is defined as the ratio of the degraded state over the healthy state of each 181 

characteristic parameter (𝐶𝑃), as Eq. (1) [38]. 𝑋 equals unity means a healthy/clean state.  182 
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𝑋 =

𝐶𝑃𝑎𝑐
𝐶𝑃𝑖𝑑𝑒𝑎𝑙

 
 
(1) 

 183 

where the subscript “ac” represents the actual characteristic parameter of component, while “ideal” represents the 184 

healthy/clean characteristic parameter obtained from the component map. 185 

Table 1 Available engine gas path measurements on-site [36]. 186 

No Available Measurement Parameters Symbol 

1 Ambient pressure 𝑃1 

2 Ambient temperature 𝑇1 

3 Ambient relative humidity 𝑅𝐻1 

4 Free power turbine shaft rotational speed 𝑁𝐹𝑃𝑇 

5 Free power turbine output 𝑇𝑊𝐹𝑃𝑇  

6 Low-pressure compressor (LPC) exit pressure 𝑃3 

7 LPC exit temperature 𝑇3 

8 High-pressure compressor (HPC) exit pressure 𝑃4 

9 HPC exit temperature 𝑇4 

10 Low-pressure turbine (LPT) exit pressure 𝑃9 

11 LPT exit temperature 𝑇9 

12 Free power turbine (FPT) exit pressure  𝑃10 

13 FPT exit temperature 𝑇10 

14 LP shaft rotational speed  𝑁𝐿𝑃 

15 HP shaft rotational speed 𝑁𝐻𝑃 

16 Burner fuel flow rate 𝑊𝐹𝑢𝑒𝑙  
 187 

The engine model is crucial for model-based diagnostics in order to assess the performance state of a gas turbine 188 

engine [39]. A thermodynamic model of the engine has been developed in Microsoft Visual Studio C#. A detailed 189 

description of the model and its governing equations are presented in Appendix B. The balancing process for off-190 

design simulation of the triple-shaft industrial gas turbine is based on [40]. The assumptions that have been made for 191 

the developed model are as follows: 192 

1) It is assumed that the compressors are of fixed geometry. 193 

2) Pressure losses in the burner and duct models are accounted for by assuming that the losses are proportional 194 

to the inlet conditions. 195 

3) Isentropic expansion is assumed in the model of the exhaust nozzle. 196 
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4) The mixture model includes two inlet flows, namely the main flow and the cooling flow. The mixture's total 197 

outlet pressure is assumed to be equal to the absolute inlet pressure of the main flow. 198 

 199 

The effect of relative humidity is considered in the developed engine model. The gas property of the engine model 200 

is generated via the NASA CEA program [41], where both fuel-air ratio (𝐹𝐴𝑅) and water-to-air-ratio (𝑊𝐴𝑅) are 201 

considered to define the mixtures. When two of the gas properties and mixtures are defined/known, the remaining gas 202 

properties can be calculated. For example, when the temperature (𝑇), pressure (𝑃), 𝐹𝐴𝑅, and 𝑊𝐴𝑅 are known, the 203 

enthalpy (𝐻), entropy (𝑆), and density (𝜌) etc. could be obtained using Eq. (2).  204 

 
[𝐻, 𝑆,𝜌,… ] = 𝐺𝑎𝑠𝑃𝑟𝑜𝑝[𝑇,𝑃](𝑇,𝑃,𝐹𝐴𝑅,𝑊𝐴𝑅) 

 
(2) 

It is worth mentioning that the gas turbine of interest does not include water injection at any station of the engine. 205 

Hence, the 𝑊𝐴𝑅 is a constant throughout the engine and varies only with a change in ambient conditions. 206 

 207 

2.2 Conventional Diagnostic Method 208 

The scheme of the conventional model-based diagnostic system is shown in Fig. 2 [42–44]. Irrespective of the 209 

number of degradation components considered, the diagnostic system should run the performance simulation of the 210 

entire engine model (call all engine sub models each time). In such a condition, the algorithm will consume significant 211 

computational power and may suffer from smearing. The nonlinear gas path analysis (NLGPA) combined with 212 

multiple operating point analysis has been widely used for model-based fault diagnosis, as shown in Eq. (3) [45]: 213 

 
𝑍𝑖∙𝑚 = 𝑓(𝑋𝑙) 

 
(3) 

where 𝑓(∙) is the nonlinear vector-valued function of gas turbine performance, 𝑍 denotes the measurement parameters, 214 

∀ 𝑖 = 1,… , 𝑛, ∀ 𝑚 = 1,… ,𝑀, and ∀ 𝑙 = 1,… , 𝐿 where “𝑛”, “𝑀”, and “𝐿” denote the number of operating points, the 215 

number of measurements, and the number of degradation factors, respectively. The NLGPA solver could be of any 216 

type, but the most popular for gas turbine engines are: Newton-Raphson [46], Kalman filter [47], Particle filter [31], 217 

and Genetic Algorithms [25]. 218 

Remark 1. It is worth noting that the first five measurements in Table 1 are used to establish the engine operating 219 

condition for conventional model-based diagnostics, and as such, the gas path measurements for fault diagnosis in 220 

Eq. (3) are the remaining 11 parameters. 221 
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 222 

Fig. 2 Schematic layout of the conventional gas path analysis process [42–44]. 223 

 224 
The component health parameters considered in this study are summarized in Table 2. 225 

Table 2 Degradation factors of the individual rotating component. 226 

Component Symbols Component Health Parameters 

𝐿𝑃𝐶 𝑋𝐿𝑃𝐶  
𝑋𝐿𝑃𝐶,𝐸  LPC efficiency degradation factor 

𝑋𝐿𝑃𝐶,𝐹 LPC flow capacity degradation factor 

𝐻𝑃𝐶 𝑋𝐻𝑃𝐶  
𝑋𝐻𝑃𝐶,𝐸  HPC efficiency degradation factor 

𝑋𝐻𝑃𝐶,𝐹 HPC flow capacity degradation factor 

𝐻𝑃𝑇 𝑋𝐻𝑃𝑇  
𝑋𝐻𝑃𝑇,𝐸 HPT efficiency degradation factor 

𝑋𝐻𝑃𝑇,𝐹 HPT flow capacity degradation factor 

𝐿𝑃𝑇 𝑋𝐿𝑃𝑇  
𝑋𝐿𝑃𝑇,𝐸 LPT efficiency degradation factor 

𝑋𝐿𝑃𝑇,𝐹 LPT flow capacity degradation factor 

𝐹𝑃𝑇 𝑋𝐹𝑃𝑇  
𝑋𝐹𝑃𝑇,𝐸 FPT efficiency degradation factor 

𝑋𝐹𝑃𝑇,𝐹 FPT flow capacity degradation factor 
 227 
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The root mean square error of the measurement parameters (𝑅𝑀𝑆𝐸𝑀𝑒𝑎) is calculated using Eq. (4) to check the 228 

convergence of NLGPA iterations. When the maximum allowed iteration step (21 in this study) is achieved, then the 229 

calculation will stop without convergence. In this situation, the 𝑅𝑀𝑆𝐸𝑀𝑒𝑎  is larger than the threshold (1E-5). 230 

 

𝑅𝑀𝑆𝐸𝑀𝑒𝑎 =     
𝑍𝑖,𝑎𝑐 − 𝑍𝑖 ,𝑝𝑑

𝑍𝑖 ,𝑎𝑐
 
2𝑛∙𝑀

𝑖=1

 /(𝑛 ∙ 𝑀) 

 

(4) 

where the subscript “𝑝𝑑” and “ac” referred to the predicted and actual values, respectively. 231 

The root mean square error of the degradation factor (𝑅𝑀𝑆𝐸𝑋) is defined by Eq. (5) to evaluate the diagnosis of 232 

the degradation factor. 233 

 

𝑅𝑀𝑆𝐸𝑋 =     
𝑋𝑖,𝑎𝑐 − 𝑋𝑖 ,𝑝𝑑

𝑋𝑖,𝑎𝑐
 
2𝐿

𝑖=1

 /𝐿 

 

(5) 

Remark 2. It should be noted that the actual degradation is not available, and 𝑅𝑀𝑆𝐸𝑋 is used in this study only 234 

to assess the performance of the developed method. 235 

The relative error (𝜆𝑖) is defined by Eq. (6) and represents the percentage ratio of the absolute difference between 236 

the predicted and actual/implanted degradation factors, to the actual degradation. 237 

 

𝜆𝑖 =
 𝑋𝑖 ,𝑎𝑐 − 𝑋𝑖 ,𝑝𝑑  

𝑋𝑖 ,𝑎𝑐
× 100% 

 

(6) 

 238 

2.3 Novel Sequential Diagnostic Method 239 

2.3.1 Novel Sequential Diagnostic Method with All Available Measurements 240 

The architecture of sequential diagnosis is shown in Fig. 3, where the dotted lines and the solid lines in the graph 241 

indicate the flow of information of target parameters and to-be adapted parameters, respectively. The diagnostic 242 

scheme partitions the engine diagnosis into four sequential steps for the triple-shaft engine of interest. The 𝐹𝑃𝑇 243 

diagnostic is carried out first. The diagnosis then resumes in the 𝐿𝑃𝐶, then in the 𝐻𝑃𝐶, and finally, the 𝐻𝑃𝑇 and 𝐿𝑃𝑇 244 

conclude the diagnosis. The dotted boxes in Fig.3 indicate the available gas path measurements for each step.  245 

The subsequent sections describe the sequential procedure in more detail. 246 
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➢ Step 1: Free Power Turbine Diagnostics 247 

Step 1 in this process involves the tuning of the 𝐹𝑃𝑇 map, through the scaling factors 𝑋𝐹𝑃𝑇  (𝑋𝐹𝑃𝑇,𝐸, 𝑋𝐹𝑃𝑇,𝐹), which 248 

will eventually enable the model to match the available measurements at outlet temperature (𝑇10) and turbine power 249 

output (𝑇𝑊𝐹𝑃𝑇 ). This step involves only the turbine model during iteration, which can potentially save a lot of 250 

computation time. 251 

➢ Step 2: Low-Pressure Compressor Diagnostics 252 

Similar to the previous step, the 𝑋𝐿𝑃𝐶  (𝑋𝐿𝑃𝐶,𝐸 , 𝑋𝐿𝑃𝐶,𝐹 ) is estimated through an iterative process to scale the 253 

compressor map according to the compressor model based on the 𝐿𝑃𝐶 outlet temperature (𝑇3) and 𝑊2.  254 

➢ Step 3: High-Pressure Compressor Diagnostics 255 

At the 𝐻𝑃𝐶 stage, the 𝑋𝐻𝑃𝐶  (𝑋𝐻𝑃𝐶,𝐸 , 𝑋𝐻𝑃𝐶,𝐹) is also tuned to scale the compressor map for the simulation of the 256 

compressor model. The two measurements to be satisfied are 𝑇4 and 𝑊3, with the latter having been calculated from 257 

Step 2. By iteration, the corrected 𝑋𝐻𝑃𝐶  can be determined, and the 𝐻𝑃𝐶  diagnostic needs to utilize only the 258 

compressor model during iteration. 259 

➢ Step 4: High-pressure and Low-pressure Turbine Diagnostics 260 

The pressure ratio of 𝐻𝑃𝑇 (𝑃𝑅𝐻𝑃𝑇), 𝑋𝐻𝑃𝑇  and 𝑋𝐿𝑃𝑇  are the iteration variables for Step 4, where 𝑋𝐻𝑃𝑇  (𝑋𝐻𝑃𝑇,𝐸, 261 

𝑋𝐻𝑃𝑇,𝐹) and 𝑋𝐿𝑃𝑇  (𝑋𝐿𝑃𝑇,𝐸, 𝑋𝐿𝑃𝑇,𝐹) are tuned to scale the 𝐻𝑃𝑇 and 𝐿𝑃𝑇 maps respectively during iteration. The work 262 

compatibility of the HP and LP shafts, and 𝐿𝑃𝑇 outlet temperature (𝑇9) are available as convergence criteria to tune 263 

the iteration variables. 264 

Remark 3. There are three convergence criteria for a single operating point of the gas turbine in Step 4. Hence, 265 

the number of convergence criteria is (𝑛 × 3) for n operating points. The total iteration variables are (4 + 𝑛) for n 266 

different operating points, where the number “4” denotes the four degradation factors for 𝐻𝑃𝑇 and 𝐿𝑃𝑇, and “n” 267 

denotes the required number of 𝑃𝑅𝐻𝑃𝑇  for each operating point of the gas turbine. The 𝑛 is assigned to be three, 268 

which is the minimum number of operating points to satisfy the requirement that the number of convergence criteria 269 

(nine) should be more than the iteration variables (seven). A more detailed description of the iterative matrix 270 

computation for the proposed diagnostic method is provided in Appendix A.  271 
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Fig. 3 Sequential diagnostic scheme of gas turbine with all available measurements. 273 
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2.3.2 Novel Sequential Diagnostic Method with Reduced Number of Measurements  274 

Shaft power of aero engines is a parameter which is more challenging to obtain accurately in comparison to land-275 

based or marine engines, where it can be found through engine load. Hence, it is necessary to test the 𝐹𝑃𝑇 diagnostic 276 

without the measurement of power output (𝑇𝑊𝐹𝑃𝑇). Additionally, the gas path measurements at the 𝐿𝑃𝐶 outlet (𝑇3 277 

and 𝑃3) will be assumed unavailable. 278 

Now, the sequential diagnostic divides the entire triple-shaft engine into three diagnostic steps: 𝐹𝑃𝑇 diagnostics, 279 

𝐿𝑃𝐶  and 𝐻𝑃𝐶  diagnostics, and 𝐻𝑃𝑇  and 𝐿𝑃𝑇  diagnostics. The diagnostic scheme with reduced measurements is 280 

shown in Fig. 4, where the dotted lines and solid lines indicate the flow of information of target parameters and to-be 281 

aligned parameters, respectively. The 𝐹𝑃𝑇 diagnostic step is now modified, in comparison to the previous approach, 282 

in order to assess the suitability of this method for aero engine applications. Meanwhile, 𝐻𝑃𝐶 and 𝐿𝑃𝐶 diagnostics 283 

(Step 2-3) are also modified to reduce the number of gas path measurements further. For 𝐻𝑃𝑇 and 𝐿𝑃𝑇, the diagnosis 284 

is the same as presented in Fig. 3, and the calculation process will not be further discussed here. The dotted boxes 285 

indicate the available gas path measurements for each step.  286 

➢ Step 1: Free Power Turbine Diagnostics 287 

The 𝑋𝐹𝑃𝑇 (𝑋𝐹𝑃𝑇,𝐸, 𝑋𝐹𝑃𝑇,𝐹) is estimated through an iterative process to scale the component map for the turbine 288 

model. There is only one targeted parameter available for a single operating point (n) of the gas turbine, and that is 289 

the 𝐹𝑃𝑇 outlet temperature (𝑇10). 290 

 291 

➢ Step 2: High-pressure and Low-pressure Compressors Diagnostics 292 

In the second step of this process, the pressure ratio of 𝐿𝑃𝐶 (𝑃𝑅𝐿𝑃𝐶), 𝑋𝐿𝑃𝐶  and 𝑋𝐻𝑃𝐶  are utilized to satisfy three 293 

measurement parameters, namely 𝑊2, 𝑊3 and 𝑇4. Once again 𝑋𝐿𝑃𝐶  (𝑋𝐿𝑃𝐶,𝐸 , 𝑋𝐿𝑃𝐶,𝐹 ) and 𝑋𝐻𝑃𝐶  (𝑋𝐻𝑃𝐶,𝐸 , 𝑋𝐻𝑃𝐶,𝐹 ) are 294 

tuned to scale the 𝐿𝑃𝐶 and 𝐻𝑃𝐶 maps, respectively, during iteration. 295 

Remark 4. The number of operating points, n, is three for every step, which is the least number of operating points 296 

capable of satisfying the convergence requirements.  297 
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Fig. 4 Sequential diagnostic scheme of gas turbine with reduced measurements. 299 
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2.4 Method Overview 300 

Essentially, the proposed sequential diagnostic method partitions the engine model into several sequential steps to 301 

reduce the dimensions of the matrices and the number of calls to each engine component model during diagnosis. A 302 

detailed analysis of the computational burden of both methods is given in Appendix A. Another key feature of the 303 

sequential diagnosis method is its capability of eliminating the smearing effect by isolating components with the aid 304 

of multiple operating point analysis. The sequential diagnostic method is tested with reduced engine gas path 305 

measurements, which will not only reduce the cost to engine operators but also reduce flow disturbances caused by 306 

the installation of sensors. 307 

3. Engine Model Validation 308 

The developed engine model has been validated against the commercial gas turbine software GasTurb [44]. The 309 

engine operating conditions at the design point are shown in Table 3. The design point simulation algorithm is 310 

validated first, and the relative errors are shown in Table 4, which indicates that the maximum relative error is less 311 

than 0.31%. It follows that the developed engine performance model is satisfactory at the design point.  312 

Table 3 Engine specification. 313 

Parameters Symbols Unit Value 
Ambient Pressure 𝑃1 atm 1.000 

Ambient Temperature 𝑇1 Kelvin 288.15 
Ambient Relative Humidity 𝑅𝐻1 % 60.00 

Inlet Air Flow Rate 𝑊1 kg/s 83.40 
LPC Rotational Speed 𝑁𝐿𝑃 rpm 6611 
HPC Rotational Speed 𝑁𝐻𝑃 rpm 9305 
FPT Rotational Speed 𝑁𝐹𝑃𝑇  rpm 4800 

FPT Power Output 𝑇𝑊𝐹𝑃𝑇  MW 28.31 
 314 

The power output of the gas turbine varies with respect to the actual load demand. Hence, it is essential to check 315 

whether the developed algorithm can provide satisfactory results at steady-state off-design conditions. The same 316 

component maps are used for both the GasTurb and the developed engine model for off-design validation. Four 317 

measured parameters are shown in Fig. 5, where a comparison is made between the GasTurb and the developed model. 318 

Specifically, the 𝐻𝑃𝐶 outlet temperature (𝑇4), 𝐹𝑃𝑇 inlet pressure (𝑃9), 𝐿𝑃𝐶 rotational speed (𝑁𝐿𝑃), and fuel flow rate 319 

(𝑊𝐹𝑢𝑒𝑙) are considered at different power settings, varying from 65% to 100% with a step of 5%.  320 
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Table 4 Engine model validation at design point [44]. 321 

Parameters Units GasTurb[44] Developed Model Relative Error [%] 
𝑃3 atm 4.850 4.850 0.000 
𝑇3 Kelvin 468.70 468.79 0.019 
𝑃4 atm 20.749 20.749 0.000 
𝑇4 Kelvin 737.11 737.10 0.001 
𝑃5 atm 20.127 20.126 0.005 
𝑇5 Kelvin 1494.00 1494.20 0.013 
𝑃6 atm 20.127 20.126 0.005 
𝑇6 Kelvin 1459.49 1459.77 0.019 
𝑃7 atm 8.605 8.588 0.198 
𝑇7 Kelvin 1233.58 1234.41 0.067 
𝑃8 atm 8.605 8.588 0.198 
𝑇8 Kelvin 1216.03 1216.84 0.067 
𝑃9 atm 4.647 4.633 0.301 
𝑇9 Kelvin 1071.23 1071.84 0.057 
𝑃10 atm 1.139 1.136 0.263 
𝑇10 Kelvin 793.26 793.52 0.033 

𝑊𝐹𝑢𝑒𝑙  kg/s 1.866 1.867 0.006 
 322 

The results demonstrate that the developed model is capable of predicting the gas turbine performance at different 323 

operating conditions with a high degree of precision relative to GasTurb. The maximum relative error increases 324 

slightly as the power decreases, which is reasonable since we are moving further away from the design point, and the 325 

maximum relative error for all parameters listed in Table 4 is less than 0.71% at 65% power setting for 𝑊𝐹𝑢𝑒𝑙 , as 326 

shown in Fig. 5. Another cause for the increasing error may be attributed to the different methods of reading the 327 

component map in the calculation procedure. Although the errors increase at lower power settings, the developed 328 

model retains a good agreement with GasTurb. Therefore, the developed engine model will be implemented to 329 

quantify the level of degradation for both conventional and newly proposed staged diagnostic methods. 330 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

 

(a) Relative error of 𝑇4. 

 

(b) Relative error of 𝑃9. 

 

(c) Relative error of 𝑁𝐿𝑃. 

 

(d) Relative error of 𝑊𝐹𝑢𝑒𝑙. 

Fig. 5 Engine model validation at off-design points [44].  331 

 332 

4. Application and Analysis 333 

4.1 Case Study Description 334 

Four case studies are conducted to assess the accuracy and the computational performance of the proposed 335 

diagnostic method. Moreover, the developed method will be compared with the conventional NLGPA method [45]. 336 

The case studies are as follows: 337 

Case 1: The objective of this case study is to test the conventional diagnostic method NLGPA [45] in order to 338 

establish a benchmark against which comparisons will be made. 339 
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Case 2: The objective of this case study is to test the proposed sequential method in terms of diagnostic accuracy 340 

and computational speed. 341 

Case 3: This case study is based on the sequential method, similar to Case 2, with the only difference being the 342 

reduced number of available engine measurements. The goal is to assess the suitability of the proposed method for 343 

application to gas turbine engines that have relatively fewer measurement sensors.  344 

Case 4: The objective of this case study is to test the effectiveness of the proposed method in providing an accurate 345 

diagnosis in the presence of measurement noise.  346 

With the accumulation of running time, all components will degrade. In this paper, the typical degradation 347 

implanted into all rotating components, to represent compressor fouling and turbine erosion, of the engine model is 348 

shown in Table 5 [46]. The typical degradation is injected into the reference engine state using Eq. (1) to obtain 349 

component characteristics under deterioration. The degradation factor, 𝑋, consists of isentropic efficiency and flow 350 

capacity. 351 

Table 5 Typical degradation level for engine rotating components [46]. 352 

Component Degradation Type Parameter Degradation Level [%] 

LPC Fouling 
𝑋𝐿𝑃𝐶,𝐸  -1.0 
𝑋𝐿𝑃𝐶,𝐹 -4.0 

HPC Fouling 
𝑋𝐻𝑃𝐶,𝐸  -1.0 
𝑋𝐻𝑃𝐶,𝐹 -4.0 

HPT Erosion 
𝑋𝐻𝑃𝑇,𝐸 -1.0 
𝑋𝐻𝑃𝑇,𝐹 +2.0 

LPT Erosion 
𝑋𝐿𝑃𝑇,𝐸 -1.0 
𝑋𝐿𝑃𝑇,𝐹 +2.0 

FPT Erosion 
𝑋𝐹𝑃𝑇,𝐸  -1.0 
𝑋𝐹𝑃𝑇,𝐹 +2.0 

 353 

The case studies have been conducted in a PC with Intel® Core™ i7, 2.9 GHz, and 16 GB RAM. The software 354 

environment in which the model is developed in Visual Studio C# and the iterative algorithm used in all case studies 355 

is the Newton-Raphson [48]. The above features remain constant for all case studies in order to demonstrate and 356 

illustrate the advancement of the sequential diagnostic method.  357 

4.2 Case 1: Conventional Diagnostic 358 

Case 1 involves five simultaneously degraded components, with up to three operating points (𝑛), and it follows 359 

the process is as schematically represented in Fig. 2. In the first diagnostic attempt we use a single operating point in 360 
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the NLGPA method [45], and the calculation converges in 7 steps, shown in Fig. 6 (a), with the 𝑅𝑀𝑆𝐸𝑀𝑒𝑎 less than 361 

1E-5, see Table 6. However, when checking the 𝑅𝑀𝑆𝐸𝑋, it becomes evident that the predicted degradation factor is 362 

not identical to the implanted fault. This highlights the presence of the smearing effect, where a different combination 363 

of degradation factors could match the engine measurements. 364 

 
(a) Convergence of diagnosis. 

 
(b) Relative diagnostic error. 

Fig. 6 Convergence performance and relative diagnostic error for Case 1. 365 

 366 

Table 6 Diagnostic results of Case 1. 367 

Items Symbols Units Attempt 1  Attempt 2 Attempt 3 
Computation Time 𝐶𝑇 Second 22.659 129.682 197.368 
Measurement Error 𝑅𝑀𝑆𝐸𝑀𝑒𝑎 - 4.3E-6 2.1E-4 1.6E-4 

Degradation Factor Error 𝑅𝑀𝑆𝐸𝑋 - 2.9E-2 1.5E-2 1.2E-2 
Operating Point 𝑛 - 1 2 3 

No. of Iteration Steps 𝑁𝐼𝑆 - 7 21 21 
No. of total calls to engine sub-models 𝑁𝑂𝑀𝑜𝑑𝑒𝑙  - 94644 566775 841797 

 368 

In the second and third attempts, we consider two and three operating points, respectively. In both attempts the 369 

𝑅𝑀𝑆𝐸𝑀𝑒𝑎 condition is not satisfied, and the iterations terminate at the maximum allowed step, as shown in Table 6. 370 

Although the 𝑅𝑀𝑆𝐸𝑋 decreases as the operating points increase, it is still noticeable (Table 6). The results reveal that 371 

the multiple operating point analysis did not eliminate the smearing effect in these two attempts. The computation 372 

time increases significantly when increasing the operating points from one to two to three; 22.659, 129.682, and 373 

197.368 seconds, respectively. The comparison between implanted and predicted degradation factors is shown in Fig. 374 

6 (b), where all three cases could not achieve high diagnostic accuracy. Table 6 illustrates the computation burden of 375 

three attempts by conventional diagnosis methods with an increasing number of operating points. 376 
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4.3 Case 2: Sequential Diagnostic with All Measurements 377 

In Case 2, the sequential diagnostic method is employed, where the diagnosis is partitioned into four steps, as 378 

shown in Fig. 3. Convergence processes for these four sequential steps are demonstrated in Fig. 7 (a). It is clear from 379 

Fig. 7 (b) that the sequential diagnostic has the capability to estimate the degradation factor with greater accuracy than 380 

the conventional diagnostic method (Case 1). It is worth noting that the last step of the proposed sequential method 381 

requires three operating points to determine the degradation factor and eliminate the smearing effect, something that 382 

the conventional diagnostic could not do.  383 

 
(a) Convergence of diagnosis. 

 
(b) Relative diagnostic error. 

Fig. 7 Convergence performance and relative diagnostic error for Case 2. 384 

 385 

The four sequential diagnostic steps converge in 0.014, 0.011, 0.013, and 0.032 seconds, respectively, as shown 386 

in Table 7. The proposed diagnostic process converges in 0.070 seconds (sum of all four sequential steps) for the 387 

simultaneous deterioration of all five rotational components. The reason for this fast convergence lies in the reduction 388 

of matrix dimensions in the iteration algorithm and the reduced total number of calls to the engine sub-models (Table 389 

7). Comparing the total number of calls to engine sub-models in Table 6 and Table 7 illustrates that the sequential 390 

diagnostic requires less computation than the conventional diagnosis. Moreover, it is evident that the novel sequential 391 

diagnostic process is also superior to the traditional diagnostic method in terms of accuracy, as shown in Fig. 6 (b) 392 

and Fig. 7 (b). It should be pointed out that the level of diagnostic accuracy achieved by this method remains the same, 393 

even for smaller levels of engine component deterioration. 394 
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Table 7 Diagnostic results of Case 2. 397 

Items Symbols Units Step 1 Step 2 Step 3 Step 4 
Computation Time 𝐶𝑇 Second 0.014 0.011 0.013 0.032 
Measurement Error 𝑅𝑀𝑆𝐸𝑀𝑒𝑎 - 2.4E-6 7.6E-6 7.6E-6 3.6E-6 

Degradation Factor Error 𝑅𝑀𝑆𝐸𝑋 - 5.2E-6 3.0E-6 3.4E-6 5.7E-6 
Operating Point 𝑛 - 1 1 1 3 

No. of Iteration Steps 𝑁𝐼𝑆 - 6 6 6 6 
No. of total calls to engine sub-models 𝑁𝑂𝑀𝑜𝑑𝑒𝑙  - 18 18 18 438 

 398 

4.4 Case 3: Sequential Diagnostic with Reduced Number of Measurements 399 

For aero engines, the indirect measurement of turbine power output may not be possible or lead to poor precision. 400 

Hence, it is worth testing the sequential diagnostic method, without the power output measurement of the last turbine, 401 

in order to assess the suitability of the proposed approach for aero engine applications. It follows that the 𝐹𝑃𝑇 fault 402 

diagnosis step, shown in Fig. 3, will be adapted so that it does not require the shaft power of the 𝐹𝑃𝑇, shown in Fig. 403 

4.  404 

As can be seen in Table 1, there is no measurement available at the outlet of the 𝐻𝑃𝑇  due to the high gas 405 

temperature. Moreover, the sequential diagnosis with multiple operating points can estimate the correct degradation 406 

factor for 𝐻𝑃𝑇 and 𝐿𝑃𝑇 in Case 2. Hence, it is worth testing the possibility of eliminating the measurements 𝑇3 and 407 

𝑃3 at the 𝐿𝑃𝐶 outlet. 408 

 
(a) Convergence of diagnosis. 

 
(b) Relative diagnostic error. 

Fig. 8 Convergence performance and relative diagnostic error for Case 3. 409 
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In Case 3, the NLGPA includes three sequential steps, as shown in Fig. 4. The convergence performance of the 411 

three steps is shown in Fig. 8 (a). It is clear from Fig. 8 (b) that the sequential diagnostic with reduced number of 412 

measurements could still predict the degradation factor with excellent precision. 413 

The degradation diagnosis for the three steps converges in 0.012, 0.065, and 0.031 seconds, respectively, as shown 414 

in Table 8. In total, the sequential diagnostic takes 0.108 seconds for the simultaneous deterioration of all five 415 

rotational components. Although the computation time has increased by 54.29% when compared with Case 2 (0.070 416 

seconds) due to increased matrix dimensions and computation burden attributed to the multiple operating point 417 

analysis (Table 8), the measurement of power output and sensors at 𝐿𝑃𝐶 exit can be removed in this situation. It is 418 

noted that all three steps of the proposed sequential method require three operating points to determine the degradation 419 

factor and eliminate the smearing effect under the reduced measurement condition.  420 

Table 8 Diagnostic results of Case 3. 421 

Items Symbol
s Units Step 1 Step 2 Step 3 

Computation Time 𝐶𝑇 Second 0.012 0.065 0.031 
Measurement Error 𝑅𝑀𝑆𝐸𝑀𝑒𝑎 - 1.0E-6 3.7E-6 3.6E-6 

Degradation Factor Error 𝑅𝑀𝑆𝐸𝑋 - 5.5E-6 8.8E-6 8.5E-5 
Operating point 𝑛 - 3 3 3 

No. of Iteration Steps 𝑁𝐼𝑆 - 6 9 6 
No. of total calls to engine sub-models 𝑁𝑂𝑀𝑜𝑑𝑒𝑙  - 54 432 438 

 422 

Comparison of the total number of calls to the engine sub-models as shown in Table 6 and Table 8, highlights that 423 

sequential diagnosis with a reduced number of measurements requires less computation than the conventional method 424 

[45]. Additionally, it is clear that the novel sequential diagnosis with reduced number of measurements still has a 425 

precision advantage over the traditional diagnostic method [45], as shown in Fig. 6 (b) and Fig. 8 (b). Furthermore, 426 

the 𝑅𝑀𝑆𝐸𝑋 of the 𝐻𝑃𝑇 and 𝐿𝑃𝑇 diagnoses in Case 3 is increased by an order of magnitude in comparison with Case 427 

2. Nevertheless, the 𝑅𝑀𝑆𝐸𝑋 is still quite small and less than 1E-4. Despite a slight sacrifice in computation efficiency 428 

and diagnostic precision, reducing the number of sensors can reduce both the initial and operating cost of the gas 429 

turbine, but a compromise is always necessary between diagnostic accuracy and number of sensors installed. 430 

The relative error of 10 degradation factors defined in Eq. (6) for Cases 1-3 are summarized in Fig. 9 in order to 431 

demonstrate the merits of the proposed sequential diagnosis. It is clear that the diagnostic precision of the proposed 432 

method is far more accurate than the conventional method [45]. The computation time, the maximum relative error of 433 
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each case and the number of required sensors for Cases 1-3 are summarized in Table 9. There is a significant 434 

improvement when comparing the novel sequential and conventional methods in both diagnostic precision and 435 

computation speed. In Case 2, the maximum relative error is 1.4E-3 %, which is substantially smaller than that of the 436 

traditional method, since the sequential diagnostic method can resolve the smearing effect. The calculation speed of 437 

the method is over 300 times faster than the conventional method, and this is attributed to the reduction of the matrix’s 438 

dimensions in the iterative diagnostic algorithm. In Case 3, the method demonstrates a maximum relative error of 439 

2.2E-2 %, and the computation time of the proposed approach is more than 200 times faster than the traditional method. 440 

Table 9 Comparison between three diagnostics cases. 441 

Items Symbols Units Case 1 
Attempt 1 

Case 1 
Attempt 2 

Case 1 
Attempt 3 Case 2 Case 3 

Computation Time 𝐶𝑇 Second 22.659 129.682 197.368 0.070 0.108 
Max Relative Error 𝜆𝑚𝑎𝑥  % 6.52 4.53 4.45 1.4E-3 2.2E-2 

No. of Sensors Required 𝑁𝑂𝑆 - 16 16 16 16 13 
 442 

 443 

Fig. 9 Comparison of relative diagnostic error for three diagnostic cases. 444 

4.5 Case 4: Effect of the Measurement Noise 445 

To analyze the influence of noise on diagnostic accuracy, measurement noise generated via the engine 446 

thermodynamic model is imposed on the measured values. We have assumed that the noise is subject to a Gaussian 447 

distribution with zero mean and standard deviation one, and the maximum deviation is shown in Table 10 [49,50]. We 448 

assume that the engine measurements are recorded every 15 seconds, and for 5 minutes of steady-state operation, this 449 

means that there are 20 operating points available. Then, 20 sets of measurements with random noise added are 450 
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generated for 𝐹𝑃𝑇 fault diagnosis (Step 1) in Case 2. Two examples of such noisy measurements, namely 𝑁𝐹𝑃𝑇 and 451 

𝑇9, are shown in Fig. 10. The 21st point is the post-filtered value of the measurement obtained from the previous 20 452 

noisy data by an averaging filter [51], which is an averaging process of each measurement. The 22nd point represents 453 

the actual value of measurement, with no noise added. The preprocessed measurements (21st point) are used in Case 454 

4, which is essentially a repetition of 𝐹𝑃𝑇 fault diagnosis (Step 1) in Case 2. 455 

Table 10 Maximum measurement noise [49,50]. 456 

Measurement Range Typical Error 

Pressure [atm] 
0.204-3.06 0.50% 

0.544-31.30 0.5% or 0.125 atm whichever is greater 

Temperature [℃] 
-65-290 ±3.3  

290-1000 ±√2.52 + (0.0075 × 𝑇)2   
1000-1300 ±√3.52 + (0.0075 × 𝑇)2  

Shaft Power - 0.10% 
Rotational Speed - 0.10% 

Relative Humidity [%] - 0.10% 

Fuel Flow [kg/h] 
Up to 5450 63.4  

Up to 12260 142.7  
 457 

 458 

Fig. 10 Measured values of 𝑵𝑭𝑷𝑻 and 𝑻𝟗 with added Gaussian measurement noise, post-filtered measurement, 459 
and true value. 460 

The diagnostic performance of Case 4 is shown in Fig. 11 (a). The relative error of 𝐿𝑃𝑇 degradation parameters, 461 

predicted from the sequential diagnostic with respect to the implanted faults, is shown in Fig. 11 (b). Table 11 indicates 462 

that the noisy measurements impact the prediction of the degradation factors when comparing with 𝐹𝑃𝑇  fault 463 
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diagnosis (Step 1) in Case 2. Nevertheless, the estimation errors of the degradation factors are still relatively small 464 

and acceptable even when the effect of measurement noise has been considered, with the relative errors of efficiency 465 

and flow capacity being 0.11% and 0.16%, respectively. 466 

Table 11 Diagnostic results of Case 4. 467 

Items Symbols Units Step 1 
Computation Time 𝐶𝑇 Second 0.011 
Measurement Error 𝑅𝑀𝑆𝐸𝑀𝑒𝑎 - 2.6E-6 

Degradation Factor Error 𝑅𝑀𝑆𝐸𝑋 - 1.4E-3 
Operating point 𝑛 - 1 

No. of Iteration Steps 𝑁𝐼𝑆 - 6 
No of total calls to engine sub-models 𝑁𝑂𝑀𝑜𝑑𝑒𝑙  - 18 

 468 

 
(a) Convergence of diagnosis. 

 
(b) Relative diagnostic error. 

Fig. 11 Convergence performance and relative diagnostic error for Case 4. 469 

 470 

From a practical point of view, several aspects should be taken into consideration in the application of the proposed 471 

diagnostic method. Ensuring appropriate systems and support of data filtration [52] and sensor validation [53] should 472 

be a priority for fault diagnosis. There is, therefore, a definite need for map adaptation [8,54] of the engine model to 473 

align with actual engine measurements based on healthy data and generic maps from the open literature. This 474 

adaptation process should be carried out every time maintenance is carried out. This is crucial in refining and updating 475 

the engine model that establishes the benchmark upon which any further diagnostic analysis is going to be based. The 476 

proposed diagnostic method is not only adequate for off-line steady-state diagnosis but can also be applied in real-477 

time since the fast convergence of the algorithms provides flexibility in its implementation. The comparison between 478 

Case 2 and Case 3 reveals that the sequential diagnostic scheme should be reconfigured when there are changes in the 479 

type of engine, location of sensors and the number of available sensors. This is a typical limitation from a modeling 480 
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perspective and something that characterizes the model-based diagnostics methods, which rely heavily on the engine 481 

model. However, the substantial accuracy and efficiency improvements of this method, in comparison to existing 482 

model-based techniques [45], trade-off the previous limitation. 483 

The findings of this study have several practical implications. More broadly, to develop a full picture of condition-484 

based maintenance, additional studies such as fault prognosis [11,37,55], maintenance optimization [56], economic 485 

analysis [57], engine emissions modeling [58] could be implemented to complement the developed model. Further 486 

studies, which take these aspects into account, should enable a prognostic health management solution for the gas 487 

turbine engine. It will not only improve the reliability and availability of gas turbines but also economically benefit 488 

engine stakeholders. The desirable features and excellent performance capabilities of the proposed method motivate 489 

the inclusion of transient operating conditions in the diagnosis and variable geometry of compressors; tasks that the 490 

authors are currently engaged in. 491 

5. Conclusions 492 

This study proposes a novel sequential diagnostic method for gas turbines with the primary aim of improving the 493 

accuracy and computation speed when compared with the conventional model-based GPA. The engine performance 494 

model is validated against commercial software for both the design point and off-design steady-state conditions. The 495 

novel sequential diagnosis approach is evaluated via a well-used GPA method.  496 

The conclusions drawn from this study are summarized as follows: 497 

⚫ The maximum relative errors between the developed engine performance model and GasTurb is less than 498 

0.71% for the given test conditions. 499 

⚫ The developed sequential diagnostic algorithm is superior in both diagnostic accuracy and computation speed 500 

to the conventional GPA, with a maximum relative error less than 1.4E-3 % and convergence in 0.070 501 

seconds. 502 

⚫ The sequential diagnostic algorithm with reduced number of engine measurements outperforms the 503 

conventional method. In such a case, the maximum relative error is only 2.2E-2 %, which is significantly 504 

lower than the one achieved by the existing NLGPA method. Additionally, the proposed method converges 505 

more than 200 times faster than the NLGPA. 506 
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⚫ With the aid of a noise filter, the impact of measurement uncertainty can be reduced to an acceptable level 507 

for engineering applications. In this situation, the relative errors of two degradation factors for the free power 508 

turbine are 0.11% and 0.16% for efficiency and mass flow capacity, respectively. 509 

The present study establishes a sequential framework for engine performance diagnosis with better precision and 510 

computation efficiency than the existing model-based method, by eliminating the smearing effect and reducing the 511 

matrix dimensions in the iterative diagnostic algorithm. Additionally, the novel diagnostic method with reduced 512 

measurement could potentially decrease the cost of engine operations and the flow disturbances caused by sensors in 513 

the engine gas path. 514 

Overall, the results of the case studies demonstrate the superiority of this method in terms of diagnostic accuracy 515 

and computation time, even with a reduced number of measurements, in comparison with the existing NLGPA method. 516 

This new approach is sufficiently modular to be applied in all types of gas turbine engines with the potential to support 517 

the operation and maintenance of gas turbine assets more cost-effectively and accurately than existing GPA methods. 518 
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 523 

Appendix A 524 

A.1 Computation Efficiency 525 

This appendix provides detailed information about the iterative diagnostic algorithm from a computational 526 

perspective. The sub-model of engine performance simulation consumes most of the computational resources during 527 

GPA. The conventional diagnostics covers the “outer loop” (NLGPA: iteration of the degradation factor) and “inner 528 

loop” (iteration of the engine performance model). The size of the Jacobian matrix, involved in the iteration, influences 529 

the computation speed.  530 

Fig. A. 1 demonstrates the dimensions of the Jacobian matrix for the outer and inner loops of the conventional 531 

method [45]. The traditional diagnostic method includes 11 gas path measurements and 10 health parameters (Table 532 
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2), which establish the dimensions of the matrix in Fig. A. 1 (pictured at right). The subscript “𝑛” denotes the number 533 

of operating points that determine the number of calls to the engine model. In this study, “𝑛” is set to one, two, and 534 

three, which correspond to a maximum of 3 operating points. As far as off-design performance is concerned, the 535 

developed model needs 8 iteration variables (Appendix B), and the dimension of the matrix for engine simulation are 536 

shown in Fig. A. 1. Such a nested iteration reduces the computational efficiency of the engine diagnosis dramatically 537 

and could be affected by the smearing effect. The number of calls to the engine model in the diagnostic algorithm and 538 

the number of calls to the engine sub-models in engine simulation for one step is also demonstrated in Fig. A. 1. 539 

 540 

 541 

Fig. A. 1 Matrix dimensional analysis of conventional fault diagnosis. 542 

 543 

 544 
Fig. A. 2 Matrix dimensional analysis of sequential diagnostic with all available measurements. 545 

 546 

Contrary to the conventional method, the sequential diagnostic method needs to call only the specific sub-model 547 

directly in the engine performance model, which can reduce computing complexity. Furthermore, the sequential 548 

diagnosis has a lower number of matrix dimensions during iteration, which could diminish issues of dimensionality. 549 

The size of the Jacobian matrix for the novel sequential approach is also highlighted, and the number of calls to each 550 

engine sub-model during one iteration is demonstrated. For sequential diagnostics with all available measurements, 551 

the number of dependent variables, independent variables, and calls to engine sub-models are summarized in Fig. A. 552 

2 based on Fig. 3. The number of iteration variables is the longitudinal length of four matrices, which are 2, 2, 2, and 553 
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7 for each sequential step in order, respectively. In contrast, the convergence criteria are the transverse length of four 554 

matrices, which are 2, 2, 2, and 9, respectively. 555 

For sequential diagnostics with reduced measurements, the number of dependent variables, independent variables, 556 

and calls to engine sub-models are summarized in Fig. A. 3, based on Fig. 4. The number of iteration variables is the 557 

longitudinal length of three matrices, which are 2, 7, and 7 for each sequential step in order, respectively. In contrast, 558 

the convergence criteria are the transverse length of three matrices, which are 3, 9, and 9, respectively. The comparison 559 

between the conventional method and novel method on the computation burden is illustrated in Table A. 1. As the 560 

actual computation burden relies on the convergence steps, all results presented in Table A. 1 are referred to a single 561 

iteration step for obtaining the Jacobian matrix. 562 

 563 

 564 
Fig. A. 3 Matrix dimensional analysis of sequential diagnostic with reduced number of measurements. 565 

 566 

Table A. 1 Comparison of computation burden to each engine sub-model. 567 

Item Symbol CD SDA SDR 
No. of Calls to Intake Model 𝑁𝑂𝐼𝑁𝑇  𝑛 ×80 0 0 

No. of Calls to Compressor Model 𝑁𝑂𝐶𝑂𝑃 𝑛 ×160 4 42 
No. of Calls to Burner Model 𝑁𝑂𝐵𝑢𝑟𝑛 𝑛 ×80 0 0 
No. of Calls Mixture Model 𝑁𝑂𝑀𝐼𝑋  𝑛 ×160 21 21 

No. of Calls to Turbine Model 𝑁𝑂𝑇𝑈𝑅𝐵  𝑛 ×240 44 48 
No. of Calls to Duct Model 𝑁𝑂𝐷𝑈𝐶𝑇  𝑛 ×80 0 0 

No. of Calls to Nozzle Model 𝑁𝑂𝑁𝑜𝑧𝑧𝑙𝑒 𝑛 ×80 0 0 
CD: Conventional Diagnostic. 568 
SDA: Sequential Diagnostic with All Available Measurements. 569 
SDR: Sequential Diagnostic with Reduced Number of Measurements. 570 
 571 
 572 
 573 
 574 
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Appendix B 575 

B.1 Modular Modelling of Gas Turbine Components 576 

For an industrial gas turbine, the engine consists of six major components: intake, compressor, burner, mixture, 577 

turbine, duct, and exhaust nozzle. The algorithm of engine performance simulation was adapted from the method 578 

described by [59–63]. 579 

➢ Intake Model 580 

For a stationary gas turbine engine, the engine Mach Number is zero, and it is assumed that the engine is installed 581 

at sea level with no pressure loss at the intake. Hence, the modeling of intake only needs to decide the 𝑊𝐴𝑅 for 582 

calculating the gas properties at the following simulation. The 𝑊𝐴𝑅 is calculated by Eq. (B.1) [63]. 583 

 

𝑊𝐴𝑅 =
𝑊𝑊𝐴

𝑊𝐷𝐴
=

0.622𝑃𝑠𝑎𝑡
𝑃𝑎𝑚𝑏
0.01𝑅𝐻 − 𝑃𝑠𝑎𝑡

 

 

(B.1) 

where 𝑊𝑊𝐴 is mass flow rate of water vapor, 𝑊𝐷𝐴 denotes the mass flow rate of dry air and 𝑃𝑠𝑎𝑡  denotes the saturation 584 

pressure of water vapor. 585 

𝑃𝑠𝑎𝑡  is obtained by Eq. (B.2), which is related to the ambient pressure and temperature [64]. 586 

 

𝑃𝑠𝑎𝑡 = (1.0007 + 3.46 ∙ 10−6 ∙ 101.325𝑃𝑎𝑚𝑏 ) ∙ 0.61121 ∙ 𝑒𝑥𝑝  
17.502(𝑇𝑎𝑚𝑏 − 273.15)

𝑇𝑎𝑚𝑏 − 32.18
  

 

(B.2) 

 587 

➢ Compressor Model 588 

For calculating compressor performance, the inlet temperature (𝑇𝑖𝑛), pressure (𝑃𝑖𝑛), shaft rotational speed (𝑁), 589 

compressor flow capacity degradation factor (𝑋𝐶,𝐹), and the efficiency degradation factor (𝑋𝐶,𝐸) should be known so 590 

that the 𝑋𝐶,𝐹 and 𝑋𝐶,𝐸 are applied to scale the healthy compressor map by Eq. (1), where 𝑋𝐶,𝐹 and 𝑋𝐶,𝐸 are equal to 591 

one at a healthy/clean state. 592 

When shaft speed 𝑁 and inlet conditions are known, the corrected shaft rotational speed (𝐶𝑁) is expressed by Eq. 593 

(B.3) [60,61]. 594 

 

𝐶𝑁 =
(𝑁 √𝑇𝑖𝑛 )𝑂𝐷

(𝑁 √𝑇𝑖𝑛 )𝐷𝑃
 

 

(B.3) 

where the subscript “𝐷𝑃” and “𝑂𝐷” represents the design point and off-design point, respectively. 595 
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If the compressor pressure ratio (𝑃𝑅) is known, then the outlet pressure (𝑃𝑜𝑢𝑡) is determined by: 596 

 
𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 ∙ 𝑃𝑅 

 
(B.4) 

As 𝐶𝑁 and 𝑃𝑅 are known, the compressor efficiency (𝐸𝑓𝑓𝐶) and corrected mass flow (𝐶𝑀) could be obtained 597 

from the scaled component map. The inlet temperature, pressure, and flow capacity are known, hence the inlet mass 598 

flow (𝑊𝑖𝑛) is given by: 599 

 

𝑊𝑖𝑛 = 𝐶𝑀 ∙
𝑃𝑖𝑛 𝑃𝑆𝐿𝑆 

√𝑇𝑖𝑛 𝑇𝑆𝐿𝑆 
 

 

(B.5) 

where the subscript “𝑆𝐿𝑆” represents the sea level static conditions. 600 

The inlet entropy and enthalpy of the compressor are obtained as follows: 601 

 
[𝑆𝑖𝑛 ,𝐻𝑖𝑛 ] = 𝐺𝑎𝑠𝑃𝑟𝑜𝑝[𝑇,𝑃](𝑇𝑖𝑛 ,𝑃𝑖𝑛 ,𝐹𝐴𝑅,𝑊𝐴𝑅) 

 
(B.6) 

Hence, the enthalpy at isentropic compression (𝐻𝑖𝑠) is given by:  602 

 
𝐻𝑖𝑠 = 𝐺𝑎𝑠𝑃𝑟𝑜𝑝[𝑆,𝑃](𝑆𝑖𝑛 ,𝑃𝑜𝑢𝑡 ,𝐹𝐴𝑅,𝑊𝐴𝑅) 

 
(B.7) 

And the outlet enthalpy is given by Eq. (B.8) [59] as follows: 603 

 
𝐻𝑜𝑢𝑡 = 𝐻𝑖𝑛 − (𝐻𝑖𝑛 − 𝐻𝑖𝑠 ) ∙ 𝐸𝑓𝑓𝐶 

 
(B.8) 

Then, the outlet temperature (𝑇𝑜𝑢𝑡) can be determined by the following relationship: 604 

 
𝑇𝑜𝑢𝑡 = 𝐺𝑎𝑠𝑃𝑟𝑜𝑝[𝐻,𝑃](𝐻𝑜𝑢𝑡 ,𝑃𝑜𝑢𝑡 ,𝐹𝐴𝑅,𝑊𝐴𝑅) 

 
(B.9) 

The calculation of bleeding in a compressor is based on modularizing computations; as demonstrated below for 606 

one bleeding path. The required inputs for bleeding include the bleed pressure ratio fraction (𝐹𝑟𝑎𝑐𝑃𝑅) and bleed mass 607 

flow rate fraction (𝐹𝑟𝑎𝑐𝑊).  608 

Then, the bleed outlet pressure (𝑃𝑅𝑏𝑙𝑒𝑒𝑑) and mass flow rate (𝑊𝑏𝑙𝑒𝑒𝑑) are computed by Eqs. (B.10), (B.4) and 609 

(B.11): 610 

 
𝑃𝑅𝑏𝑙𝑒𝑒𝑑 = 𝑃𝑅 ∙ 𝐹𝑟𝑎𝑐𝑃𝑅  

 
(B.10) 

 611 

 
𝑊𝑏𝑙𝑒𝑒𝑑 = 𝑊𝑖𝑛 ∙ 𝐹𝑟𝑎𝑐𝑊 

 
(B.11) 
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Hence, the bleeding outlet enthalpy (𝐻𝑏𝑙𝑒𝑒𝑑) and temperature (𝑇𝑏𝑙𝑒𝑒𝑑) are determined by Eqs. (B.7), (B.8) and 612 

(B.9), respectively. 613 

The outlet mass flow (𝑊𝑜𝑢𝑡) is calculated by: 614 

 
𝑊𝑜𝑢𝑡 = 𝑊𝑖𝑛 − 𝑊𝑏𝑙𝑒𝑒𝑑  

 
(B.12) 

Finally, the compressor work (𝐶𝑊) is: 615 

 
𝐶𝑊 = 𝑊𝑜𝑢𝑡 ∙ (𝐻𝑜𝑢𝑡 − 𝐻𝑖𝑛 )+𝑊𝑏𝑙𝑒𝑒𝑑 ∙ (𝐻𝑏𝑙𝑒𝑒𝑑 − 𝐻𝑖𝑛 ) 

 
(B.13) 

 616 

➢ Burner Model 617 

The burner pressure drop (∆𝑃) can be obtained by Eq. (B.14), which relates the specified design point pressure 618 

loss and kinetic head (𝐾𝐻) of burner inlet at both design point and off-design point conditions [62]: 619 

 

∆𝑃𝐷𝑃

∆𝑃𝑂𝐷
=

𝐾𝐻𝐷𝑃

𝐾𝐻𝑂𝐷
 

 

(B.14) 

where the kinetic head is referred to Eq. (B.15) as follows: 620 

 

𝐾𝐻 =
𝑊𝑖𝑛

2 ∙ 𝑇𝑖𝑛

𝑃𝑖𝑛
 

 

(B.15) 

The burner exit pressure is computed by: 621 

 
𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 ∙ ∆𝑃𝑂𝐷  

 
(B.16) 

The enthalpy released (∆𝐻) by fuel combustion is given by: 622 

 
∆𝐻 = 𝑊𝐹𝑢𝑒𝑙 ∙ 𝐿𝐻𝑉 ∙ 𝐸𝑓𝑓𝐵 

 
(B.17) 

where 𝑊𝐹𝑢𝑒𝑙 is the burner fuel flow rate, 𝐿𝐻𝑉 is low heating value, and 𝐸𝑓𝑓𝐵 is burner efficiency. 623 

The computation of the exit enthalpy of combustion gas is based on mass and energy conservation: 624 

 

𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛 ∙ 𝑊𝑖𝑛 + ∆𝐻

𝑊𝑜𝑢𝑡
 

 

(B.18) 

The 𝐹𝐴𝑅 of the combustor gas is determined through 𝑊𝐴𝑅, 𝑊𝐹𝑢𝑒𝑙  and 𝑊𝑜𝑢𝑡 as follows: 625 

 

𝐹𝐴𝑅 =
𝑊𝐹𝑢𝑒𝑙

(𝑊𝑜𝑢𝑡 − 𝑊𝐹𝑢𝑒𝑙 ) ∙ (1 − 𝑊𝐴𝑅)
 

 

(B.19) 

Finally, the burner exit temperature is obtained by Eq. (B.9). 626 
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➢ Mixture Model 627 

The mixture model is applied for mixing of core flow, and cooling flows in a constant area, when one inlet flow 628 

is much smaller than the other. It is assumed that the total outlet pressure of mixed flow is equal to the total inlet 629 

pressure of core flow. The mass flow of mixed flow can be determined based on mass conservation. Then, the enthalpy 630 

of exit is: 631 

 

𝐻𝑜𝑢𝑡 =
𝑊𝑚𝑎𝑖𝑛 ∙ 𝐻𝑚𝑎𝑖𝑛 +𝑊𝑏𝑙𝑒𝑒𝑑 ∙ 𝐻𝑏𝑙𝑒𝑒𝑑

𝑊𝑜𝑢𝑡
 

 

(B.20) 

Finally, the 𝐹𝐴𝑅 of mixed gas is referred to Eq. (B.19) and the outlet temperature of mixed flow is determined by 632 

Eq. (B.9). 633 

 634 

➢ Turbine Model 635 

For calculating the turbine performance model, the 𝑇𝑖𝑛, 𝑃𝑖𝑛 , 𝑁, 𝑊𝐹𝑢𝑒𝑙 , turbine flow capacity degradation factor 636 

𝑋𝑇,𝐹, and turbine efficiency degradation factor 𝑋𝑇,𝐸 should be known and 𝑋𝑇,𝐹 are 𝑋𝑇,𝐸 are applied to scale the original 637 

health map by Eq. (1), where 𝑋𝑇,𝐹 and 𝑋𝑇,𝐸  are equal to one at a healthy/clean state. 638 

When shaft speed 𝑁 and the inlet conditions are known, the 𝐶𝑁 could be obtained by Eq. (B.3). If the turbine 639 

expansion ratio of pressure (𝑃𝑅) is known, the turbine outlet pressure (𝑃𝑜𝑢𝑡) is given by: 640 

 
𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 𝑃𝑅  

 
(B.21) 

As 𝐶𝑁 and 𝑃𝑅 are known, the actual turbine efficiency (𝐸𝑓𝑓𝑇) and corrected mass flow (𝐶𝑀) could be obtained 641 

from the scaled turbine map. Due to the turbine inlet temperature, pressure, and corrected mass flow are known, the 642 

turbine inlet mass flow could be obtained by Eq. (B.5). 643 

Since the 𝐸𝑓𝑓𝑇 is known, the turbine outlet enthalpy is computed by: 644 

 
𝐻𝑜𝑢𝑡 = 𝐻𝑖𝑛 − (𝐻𝑖𝑛 − 𝐻𝑖𝑠 ) ∙ 𝐸𝑓𝑓𝑇 

 
(B.22) 

The turbine outlet temperature could be calculated by Eq. (B.9), and turbine work (𝑇𝑊) is as follows: 645 

 
𝑇𝑊 = 𝑊𝑖𝑛 ∙ (𝐻𝑖𝑛 − 𝐻𝑜𝑢𝑡) 

 
(B.23) 

➢ Duct Model 646 

In the Duct model, we considered a total pressure loss that could be obtained by Eq. (B.14). The outlet mass flow 647 

and total enthalpy are the same as the inlet condition. Hence, the outlet temperature is calculated by Eq. (B.9). 648 
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➢ Nozzle Model 649 

For industrial gas turbines, the Mach number of nozzle exit flow is less than one since the nozzle is under sub-650 

critical condition. Hence, the following calculation will only discuss the calculation process for subsonic flow where 651 

the nozzle exit static pressure (𝑝𝑜𝑢𝑡) is equal to the ambient pressure. Moreover, the assumed isentropic expansion 652 

means that the static entropy (𝑠𝑜𝑢𝑡) is equal to total entropy (𝑆𝑜𝑢𝑡) and obtained by Eq. (B.6). The nozzle static 653 

temperature (𝑡𝑜𝑢𝑡), static density (𝜌𝑜𝑢𝑡), heat capacity ratio (𝛾), and gas constant (𝑅𝑔) are given by: 654 

 
[𝑡𝑜𝑢𝑡 ,𝜌𝑜𝑢𝑡 ,𝛾,𝑅𝑔] = 𝐺𝑎𝑠𝑃𝑟𝑜𝑝[𝑆,𝑃](𝑠𝑜𝑢𝑡 ,𝑝𝑜𝑢𝑡 ,𝐹𝐴𝑅,𝑊𝐴𝑅) 

 
(B.24) 

Then, the nozzle outlet velocity (𝑉𝑜𝑢𝑡) is calculated by: 655 

 

𝑉𝑜𝑢𝑡 =  𝛾 ∙ 𝑅𝑔 ∙ 𝑡𝑜𝑢𝑡 

 

(B.25) 

Finally, the determination of the nozzle exit mass flow is based on the component characteristic. 656 

 
𝑊𝑜𝑢𝑡 = 𝜌𝑜𝑢𝑡 ∙ 𝑉𝑜𝑢𝑡 ∙ 𝐴𝑜𝑢𝑡 

 
(B.26) 

where 𝐴𝑜𝑢𝑡 is the cross-section area of the exhaust nozzle. 657 

 658 

B.2 Map Scaling of Rotating Component at Design Point 659 

The rotating component maps include the characteristic parameters, such as corrected shaft rotational speed, 660 

pressure ratio, corrected mass flow rate, and component efficiency. However, the generic maps from the open literature 661 

may not align with actual component characteristics in concern at the design point. Hence, the design point map 662 

scaling is launched and referred to [46] to represent the actual component characteristic based on the design point 663 

specification. 664 

The scaling factor of pressure ratio (𝑆𝐹𝑃𝑅) is: 665 

 

𝑆𝐹𝑃𝑅 =
𝑃𝑅𝐷𝑃 − 1
𝑃𝑅𝑚𝑎𝑝 − 1

 

 

(B.27) 

where the subscript “DP” refers to the design point value, while the subscript “map” indicates the value obtained 666 

through generic maps. 667 

The scaling factor of corrected mass flow (𝑆𝐹𝐶𝑀) is given by:  668 
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𝑆𝐹𝐶𝑀 = 𝐶𝑀𝐷𝑃 𝐶𝑀𝑚𝑎𝑝  

 
(B.28) 

Similarly, the scaling factor of component efficiency (𝑆𝐹𝐸𝑓𝑓) is: 669 

 
𝑆𝐹𝐸𝑓𝑓 = 𝐸𝑓𝑓𝐷𝑃 𝐸𝑓𝑓𝑚𝑎𝑝  

 
(B.29) 

 670 

B.3 Cross-Section Area of Exhaust Nozzle 671 

For the design point, the nozzle exit entropy could be obtained by Eq. (B.6). By assuming that the exhaust gas is 672 

expanding isentropically [63] to the ambient, the static entropy (𝑠𝑜𝑢𝑡) is equal to the total entropy (𝑆𝑜𝑢𝑡). Hence, 𝑡𝑜𝑢𝑡, 673 

𝜌𝑜𝑢𝑡, 𝛾 and 𝑅𝑔 are calculated by Eq. (B.24) and the 𝑉𝑜𝑢𝑡 is given by Eq. (B.25).  674 

Finally, the exhaust nozzle's cross-section area is determined by Eq. (B.30), while exhaust mass flow rate is known 675 

at the design point. 676 

 
𝐴𝑜𝑢𝑡 =𝑊𝑜𝑢𝑡 (𝜌𝑜𝑢𝑡 ∙ 𝑉𝑜𝑢𝑡)  

 
(B.30) 

 677 

B.4 Gas Turbine Performance Model for RB211-24G 678 

The gas turbine's performance simulation is based on the above algorithms for each engine component representing 679 

any gas turbine. The balancing process of a triple-shaft industrial gas turbine engine is shown in Fig. B. 1 which is 680 

adapted from [40]. Eight iteration variables are required for the iteration that are 𝑁𝐿𝑃, 𝑃𝑅𝐿𝑃𝐶 , 𝑁𝐻𝑃, 𝑃𝑅𝐻𝑃𝐶 , 𝑊𝐹𝑢𝑒𝑙 , 681 

𝑃𝑅𝐻𝑃𝑇 , 𝑃𝑅𝐿𝑃𝑇 , 𝑃𝑅𝐹𝑃𝑇 . Meanwhile, convergence criteria are shown in the left part of Fig. B. 1, where the subscript 682 

“pre” refers to the mass flow from the previous block. In contrast, the subscript “loc” indicates the mass flow obtained 683 

through component characteristics. 684 
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 686 

Fig. B. 1 Balancing process of the off-design performance simulation. 687 
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