UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Minimising risk to thoracic surgical teams in an era of COVID-19

Patel, Akshay Jatin; Mohamed, Saifullah; Caruana, Edward Joseph; Naidu, Babu

DOI: 10.1007/s12055-020-01073-1

License: Creative Commons: Attribution (CC BY)

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Patel, AJ, Mohamed, S, Caruana, EJ & Naidu, B 2020, 'Minimising risk to thoracic surgical teams in an era of COVID-19: exploring possible preventative measures', *Indian Journal of Thoracic and Cardiovascular Surgery*, pp. 1-5. https://doi.org/10.1007/s12055-020-01073-1

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

MINI REVIEW ARTICLE

Minimising risk to thoracic surgical teams in an era of COVID-19: exploring possible preventative measures

Akshay Jatin Patel^{1,2} • Saifullah Mohamed² • Edward Joseph Caruana^{3,4} • Babu Naidu^{2,5}

Received: 14 August 2020 / Revised: 27 September 2020 / Accepted: 29 September 2020 \odot The Author(s) 2020

Abstract

The demands of curtailing the impact of the coronavirus disease 2019 (COVID-19) global pandemic have disrupted the world's ability to care for patients with thoracic pathologies. Those who undergo thoracic surgical therapeutic procedures are a high-risk category, likely to have impaired lung function but also high risk for exposing clinical teams to aerosolised viral loads. In light of this global pandemic, thorough pre-procedural planning, adequate personal protective equipment (PPE), experienced personnel and judicious anaesthetic and intra-operative measures will serve to be instrumental in ensuring positive patient outcomes whilst still protecting the safety of healthcare workers.

Keywords COVID-19 · Coronavirus · SARS-CoV-2 · Thoracic surgery · Transmission

Introduction

The novel coronavirus, now termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a significant global impact in the space of 4 months. This has had resounding effects on the ability to deliver adequate healthcare to all those who require it. The demands of curtailing the impact of the pandemic have disrupted the world's ability to care for patients with thoracic pathologies. The ever increasing burden of the coronavirus disease 2019 (COVID-19) pandemic coupled with the finite amount of hospital resources has forced surgeons to prioritise cases and protect patients. At the

Akshay Jatin Patel ajp.788@gmail.com

- ¹ Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
- ² Department of Thoracic Surgery, University Hospitals Birmingham NHS Trust, Birmingham, UK
- ³ Department of Thoracic Surgery, University Hospital of Leicester, Leicester, UK
- ⁴ NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
- ⁵ Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

same time, however, careful consideration must also be given to the hospital policies and procedures that need to be implemented in order to protect the healthcare teams from viral transmission. Numerous bodies from multiple cancer, surgical and research organisations have come together to form consensus statements on how we can mitigate the risk of transmission through optimisation of pre-operative, intra-operative and post-operative procedures [1]. This brief article seeks to provide an overview of the current guidance on how intraoperative precautions can be employed to make thoracic surgical procedures safer for all healthcare personnel involved.

Comments

Therapeutic procedures on the lung during the era of COVID-19 automatically place clinical teams to a high risk of exposure from aerosolised viral loads. Procedures such as bronchoscopy, tracheostomy, double-lumen endotracheal tube placement, airway surgery, laparoscopy and lung surgery with post-operative parenchymal air leaks all pose a risk. Multidisciplinary strategies should initially be put in place to triage patients to treatment pathways that are often alternative to surgery. These should be balanced against the COVID-19 status of the hospital, the level of hospital resources available and the COVID-19 trajectory of the hospital (i.e. not in rapid escalation phase) [1]. Those patients who do undergo surgery or allied thoracic surgical procedures must be carried out after

Tracheostomy and bronchoscopy both have a continuing role in managing weaning from extended periods of mechanical ventilation during this pandemic. Working groups have determined that for tracheostomy, patient selection and timing of procedure are paramount [2]. The procedure be delayed until at least day 10 of mechanical ventilation and when there are signs of clinical improvement. Use of enhanced personal protective equipment (PPE) should be carried whenever possible in an appropriate location. Minimal use of diathermy is advocated with use of a smoke evacuator in the case of an open surgical technique. Pre-oxygenation, followed by a trial of apnoea in the intensive care unit (ICU), with an FiO₂ of 1.0 and positive end-expiratory pressure of 5 cm H₂O, in patients who are supine before tracheostomy to show physiological readiness to tolerate the procedure, with strategies to mitigate aerosolisation is also advised [2]. Little exists in the way of objective evidence to see if there is a tangible transmission impact from the implementation of these added precautions; however, Angel and colleagues [3] reported on the outcomes of 98 COVID-19-positive patients on mechanical ventilation undergoing a novel percutaneous dilational tracheostomy (PDT) procedure. The concurrent use of rigid bronchoscopy adjacent to the endotracheal tube provided good visualisation whilst reducing the risk of virus aerosolisation. The procedure was deemed safe and feasible with a low overall procedural complication rate (5.1%). At the time of reporting, 33% of patients had been weaned from mechanical support, 19% had their tracheostomy tube downsized and 8% were de-cannulated. Forty patients remained on full ventilator support. An 8-person healthcare team was involved in performing PDT on all the patients in this series; of these, 4 were formally tested for SARS-CoV-2, and none was positive. No person in the entire healthcare team developed any coronavirus-related symptoms. Furthermore, Mecham and colleagues [4] reviewed the literature for evidence on how to best perform tracheostomy in patients with potential COVID-19 infection. They concluded that adequate peri-procedural planning, enhanced provisions of PPE and careful anaesthesia are key to good patient outcome and ensuring the safety of all involved. Furthermore, timely execution of the procedure at the bedside would help to limit the number of personnel exposed. Wahidi and colleagues [5] provided six guiding statements on the role of bronchoscopy during the COVID-19 pandemic. Of these, one statement was evidence based (level 2C); the use of bronchoscopy to diagnose, stage or characterise known or suspected lung cancer in an area where COVID-19 transmission is present, should be carried out in a timely and safe manner. The remaining five consensus-based statements relate to preprocedural COVID-19 patient testing and the provision and use of full PPE throughout.

During the conduct of thoracic surgery and elective lung resection, multiple guidance documents have been produced. Rakovich and colleagues [6] assimilated a multi-disciplinary working group in order to guide the conduct of elective lung cancer resections to reduce the risk of viral transmission through aerosolisation. Six time points were devised; strategies were devised to reduce the risk for aerosol at each time point (these are all detailed in Table 1). These strategies can help to revise and guide operating theatre protocols for the purposes of this pandemic and indeed similar situations in the future. Thornton and colleagues [7] developed a set of practicebased recommendations for airway management and lung isolation during thoracic surgery to mitigate against the risk of aerosolisation. Guidance is provided around tracheal intubation and extubation, conduct of lung isolation and single-lung ventilation as well as flexible bronchoscopy. When dealing with hypoxic episodes during singlelung ventilation, the authors recommend two-lung ventilation for critical hypoxia. However shunt-driven hypoxia can be overcome by administering oxygen to the dependent lung which is advised to be via a continuous positive pressure circuit with a built-in high-efficiency particulate air (HEPA) filter. Soma and colleagues [8] designed an 8step operative checklist to reduce aerosolisation of secretions. The checklist was based on an example of paediatric laryngo-bronchoscopy for diagnostic and therapeutic purposes (foreign body removal). The steps start with notifying the surgical booking centre and on-call anaesthetist all the way through to surgical and anaesthetic completion and debrief. Measures are described at each step to reduce risk of aerosolisation. Intra-procedural measures include lowest acceptable gas flows for oxygenation and glass screens to protect surgical teams during visualisation through rigid bronchoscopy.

In the world of Minimally Invasive and Robotic Surgery, similar working groups have been formed. Porter and colleagues [9] conducted a pan-specialty review in an effort to provide guidance on how to mitigate against the transmission of COVID-19 in minimally invasive surgery. The risk of COVID-19 transmission through CO₂ insufflation during these procedures remains unclear; however, precautions should be undertaken to decrease exposure to surgical smoke, decrease production of surgical plume and filter any gaseous products (e.g. CO₂) through pre-approved filters. Van den Eynde and colleagues [10] described guidance on the conduct of robot-assisted cardiothoracic surgical procedures in COVID-19 patients. Whilst the conduct of the surgery may be beneficial over traditional open methods in terms of length of post-operative stay and recovery, these must be balanced against the risk of viral aerosolisation which should be managed by judicious use of CO2 insufflation as well as highenergy electrocautery and ultrasonic devices.

Antion (also, formul find) Faint group Controls Controls Controls Antion (bit) Second (bit)	Table 1 Summary of wo	Summary of working group guidelines			
96 COVID-19-to parients on mucleoping a novel prectations. Rest 971 bicking Emby platents M = 3 (3%) mickipping a novel prectations. Emby platents M = 3 (3%) mickipping a novel prectations. Emby platents M = 3 (3%) mickipping a novel prectations. Emby platents M = 3 (3%) Gary haltbacketony (PDD) Empy interaction nuterenovation nuterenovation anyonan and or SARS-CoV-2 positive testing (m = 8, 4 of whom undervent throat lesting who tratheostony. M = 3 (3%) Minimally investie M = 4 (3%) Emby space of the precutations approach anyonant of or SARS-CoV-2 positive testing (m = 8, 4 of whom undervent throat lesting who tratheostony. M = 3 (3%) Minimally investie M = 4 (3%) Embed or devest who performed or devest method or devest who platents Minimally investie Minimally investie M = 4 (3%) Emblatents Minimally investie Minimally investie M = 4 (3%) Emblatents Minimally investie Minimally investie M = 4 (3%) Emblatents Minimally investie Minimally investie M = 4 (3%) Emblatents Minimally investie M = 4 (3%) M = 4 (3%) M = 4 (3%) Minimally investie M = 4 (4%	Author, date, journal and country, study type (level of evidence)	Patient group	Outcomes		Comments
COVID-19-positive patients requiring trachossorys Trachossory and beside approach should be limited to decrease viral aprexamoous approach should be limited to decrease viral apprexame surgical patients Bedside approach should be limited to decrease viral approach should be limited to decrease viral apprexame (laparoscopic, VATS, robotic) Bedside approach should be limited to decrease viral approach should be limited to decrease viral approach Iferetive lung cancer resection patents Intubation and Extubation Reduce CO ₂ working pressure to the lowest acceptable level Seal off operating room until althome contaminants acceptable level Iferetive lung cancer resection patents Intubation and Extubation Seal off operating room until althome contaminants acceptable level Seal off operating room until althome contaminants acceptable level Ifertive lang cancer resection patents Intubation and patient positioning Seal off operating room until althome contaminants acceptable level Ifertive lang cancer resection patents Intubation and patient positioning Seal off operating room until althome contaminants acceptable level Ifertive lang cancer resection patients Intubation and patient positioning Seal off operating room until althome contaminants acceptable level Ifertive lang cancer resection patient Interprocedural planting Double-lumme the over homoleal blocker patients required Ifertive lang cancer resection pactest Elective tauting <td< td=""><td>Angel et al. (2020) [3] Ann Thorac Surg, USA Case series (level IV)</td><td>98 COVID-19+ve patients on mechanical ventilation ≥ 5 days undergoing a novel percutaneous dilational tracheostomy (PDT)</td><td>Safety and feasibility of PDT - Post-PDT bleeding Early patient outcomes - Fully weaned post PDT Early healthcare provider outcomes for COVID-19 symptoms and/or SARS-CoV-2 positive testing (n = 8, 4 of whom underwent formal testing with PCP asset testino)</td><td>(5.1%) 2 (33%)</td><td>Modified PDT techniques involves placement of bronchoscope <i>alongside</i> endotracheal tube to mitigate risk of virus aerosolisation</td></td<>	Angel et al. (2020) [3] Ann Thorac Surg, USA Case series (level IV)	98 COVID-19+ve patients on mechanical ventilation ≥ 5 days undergoing a novel percutaneous dilational tracheostomy (PDT)	Safety and feasibility of PDT - Post-PDT bleeding Early patient outcomes - Fully weaned post PDT Early healthcare provider outcomes for COVID-19 symptoms and/or SARS-CoV-2 positive testing (n = 8, 4 of whom underwent formal testing with PCP asset testino)	(5.1%) 2 (33%)	Modified PDT techniques involves placement of bronchoscope <i>alongside</i> endotracheal tube to mitigate risk of virus aerosolisation
Minimaly invasive Minimaly invasive surgery (MIS) surgical patients Minimaly invasive surgery (MIS) (laparoscopic, VATS, robotic) Turn (MIS to Jamed urgent or energency procedures reconcutant parameter section patients Elective lung cancer resection patents Intubation and Extubation Seal off operating room until airborne contraminants are compatible level Elective lung cancer resection patents Intubation and Extubation Seal off operating room until airborne contraminants barve bene removed Access to best Conduct of surgery access to thest Seal off operating room until airborne contraminants have bene removed Access to thest Conduct of surgery access to thest Double-lunnen the over bronchial blocker Access to thest Conduct of surgery access to thest Double-lunnen the over bronchial blocker Access to thest Conduct of surgery access to thest Double-lunnen the over bronchial blocker Access to thest Conduct of surgery access to thest Double-lunnen the over bronchial blocker Access to thest Double-lunnen the over bronchial blocker Double-lunnen the over bronchial blocker Access to thest Interrupt vontilation when operimg intervosal space Double-lunnen were bronchial blocker Access to thest Access to thest Double-lunnen were bronchial blocker <td< td=""><td>Mecham et al. (2020) [4] <i>Laryngoscope</i>, USA Expert opinion (level V)</td><td>COVID-19-positive patients requiring tracheostomy</td><td>Tracheostomy</td><td>ıs approach exposure</td><td>Consensus on literature based on COVID-19 and 2003 SARS outbreak data</td></td<>	Mecham et al. (2020) [4] <i>Laryngoscope</i> , USA Expert opinion (level V)	COVID-19-positive patients requiring tracheostomy	Tracheostomy	ıs approach exposure	Consensus on literature based on COVID-19 and 2003 SARS outbreak data
Elective lung cancer resection patents Intubation and Extubation Seal off operating room until airborne contaminants Lung isolation and patient positioning Lung isolation and patient positioning Double-Iumen ube over tranceded Lung isolation and patient positioning Conduct of surgery Double-Iumen ube over trancediang extubation Access to chest Pouble-Iumen ube over trancediang intercostal space Double-Iumen ube over trancediang intercostal space Access to chest Conduct of surgery Double-Iumen ube over trancediang intercostal space Access to chest Double-Iumen ube over trancediang intercostal space Conduct of surgery Double-Iumen ube over trancediang Access to chest Double-Iumen ube over trancediang Access to chest Double-Iumen ube over trancediang Access to chest Double-Iumen ube over tranced Conduct of surgery Double-Iumen ube over tranced Access to chest Double-Iumen ube over tranced Access to chest Double-Iumen ube over tranced Access to chest Conduct of surgery Breitard surgery Double-Iumen ube over tranced Access to chest Procedure termination and lung re-expansion Paediatric patients requiring Interprocedure termination and lung re-expansion Paediatric partice partice partice partice paersenter for tranceding to chest drainage	Porter et al. (2020) [9] Br J Urol, Global Panel Expert opinion (level V)	Minimally invasive surgical patients	Minimally invasive surgery (MIS) (laparoscopic, VATS, robotic)	Appropriate pre-procedured partiting. Limit MIS to planned urgent or emergency procedures. Reduce CO ₂ working pressure to the lowest acceptable level Suction residual CO ₂ from a patient into a closed filtration system using the smallest filter available	Appropriate Personal Protective Equipment (PPE) including N-95 masks should be made available to all healthcare workers involved. CO ₂ insufflation is optional in VATS thoracic surgery in view of the rigid
Paediatric patients requiring Intra-procedurally Lowest gas flows to maintain oxygenation laryngo-bronchoscopy for diag- nostic purposes/foreign body re- trieval	Rakovich et al. (2020) [6] Amals of Surgery, Canada Expert opinion (level V)		 Intubation and Extubation Lung isolation and patient positioning Access to chest Conduct of surgery Procedure termination and lung re-expansion Chest drainage 		Aerosol transmission risk divided into 6 time points with mitigating strategies for each time-point
	Soma et al. (2020) [8] Int J Pediatr Otorhinolaryngol, Australia Expert opinion (level V)	Paediatric patients requiring laryngo-bronchoscopy for diag- nostic purposes/foreign body re- trieval	Intra-procedurally		An 8-step operative team checklist was created to reduce aerosolisation of secretions during aerosol-generating procedures (AGP)

Table 1 (continued)				
Author, date, journal and Patient group country, study type (level of evidence)	Patient group	Outcomes	Key results	Comments
Thomton et al. (2020) [7] Br J Anaesth, UK Expert opinion (level V)	Thoracic surgery patients requiring lung isolation	Tracheal intubation	Pre-oxygenation to achieve an end-tidal F _E O ₂ > 90% Ensure adequate neuromuscular blockade, as assessed with a peripheral nerve stimulator Release positive pressure within circuit with an	
		Lung isolation	adjustable pressure-limiting valve Place a high-efficiency particulate air (HEPA) viral filter prior to opening a double-lumen tube to the atmosphere Open to the atmosphere after allowing release of nositive messure within the lung through a HFPA	
		Flexible Bronchoscopy	filter Appropriate handling and designation of re-usable	
Van den Eynde et al. (2020) [10] <i>J Robot Swrg.</i> , Belgium Expert opinion (level V)	Cardiothoracic robotic surgical patients	Robot-assisted cardiothoracic surgery	Minimise CO ₂ release Close port taps before insertion Attach a CO_2 filter to one of the ports for smoke evacuation Deflate the thorax with a suction device prior to entering or removing material Avoid use of ultrasonic sealing and use lowest	
Wahidi et al. (2020) [5] <i>Chest</i> , USA Expert opinion (level V)	Patients undergoing bronchoscopy	Bronchoscopy	possible electrocautery energy One lung ventilation should be avoided if possible in COVID-19 diseased lungs particularly if this is as- sociated with intolerable hypoxamia/hypercapnia in COVID-19 injured lungs Sparing use of procedure Defer all non-urgent cases in an area where COVID-19 transmission within the community is present PPE should be worn at all times	Systematic review and critical analysis of the literature.

Conclusion

The COVID-19 pandemic has dramatically affected the conduct of healthcare practices globally. This has sparked the development of various guidelines to reduce the risk of viral transmission during thoracic surgery and allied specialties. In light of this global pandemic, there is a growing body of evidence, which is largely guideline, expert opinion and consensus driven, yet still represents the current best platform from which we can inform our precautions in the management of this uncertain threat. Thorough pre-procedural planning, adequate PPE, experienced personnel and judicious anaesthetic and intra-operative measures will serve to be instrumental in ensuring positive patient outcomes whilst still protecting the safety of healthcare workers.

Authors' contributions AJP, SM and EC designed and constructed the manuscript together with data accrual. BN provided supervisorial support and critique in manuscript revisions. All authors have read and approved the manuscript.

Funding None.

Data availability All data and material are publicly available.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Thoracic Surgery Outcomes Research Network. COVID-19 guidance for triage of operations for thoracic malignancies: a consensus statement from Thoracic Surgery Outcomes Research Network. J Thorac Cardiovasc Surg. 2020;160:601–5.
- McGrath BA, Brenner MJ, Warrillow SJ, et al. Tracheostomy in the COVID-19 era: global and multidisciplinary guidance. Lancet Respir Med. 2020;8:717–25.
- Angel L, Kon ZN, Chang SH, et al. Novel percutaneous tracheostomy for critically ill patients with COVID-19. Ann Thorac Surg. 2020;S0003–4975(20):30603–2.
- Mecham JC, Thomas OJ, Pirgousis P, Janus JR. Utility of tracheostomy in patients with COVID-19 and other special considerations. Laryngoscope. 2020. https://doi.org/10.1002/ lary.28734.
- Wahidi MM, Shojaee S, Lamb CR, et al. The use of bronchoscopy during the COVID-19 pandemic: CHEST/AABIP Guideline and Expert Panel Report. Chest. 2020;S0012– 3692(20):30850–3.
- Rakovich G, Urbanowicz R, Issa R, Wang HT. Minimising the risk of aerosol contamination during elective lung resection surgery. Ann Surg. 2020;272:e125-e128.
- Thornton M, Reid D, Shelley B, Steven M. Management of the airway and lung isolation for thoracic surgery during the COVID-19 pandemic: recommendations for clinical practice endorsed by the Association for Cardiothoracic Anaesthesia and Critical Care and the Society for Cardiothoracic Surgery in Great Britain and Ireland. Anaesthesia. 2020. https://doi.org/10.1111/anae.15112.
- Soma M, Jacobson I, Brewer J, Blondin A, Davidson G, Singham S. Operative team checklist for aerosol generating procedures to minimise exposure of healthcare workers to SARS-CoV-2. Int J Pediatr Otorhinolaryngol. 2020;134:110075.
- Porter J, Blau E, Gharagozloo F, et al. Society of Robotic surgery review: recommendations regarding the risk of COVID-19 transmission during minimally invasive surgery. BJU Int. 2020;126: 225-234.
- Van den Eynde J, De Groote S, Van Lerberghe R, Van den Eynde R, Oosterlinck W. Cardiothoracic robotic assisted surgery in times of COVID-19. J Robot Surg. 2020. https://doi.org/10.1007/s11701-020-01090-7.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.