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Abstract
This paper develops a new method for testing for Granger non-causality in panel data
models with large cross-sectional (N ) and time series (T ) dimensions. The method is
valid in models with homogeneous or heterogeneous coefficients. The novelty of the
proposed approach lies in the fact that under the null hypothesis, theGranger-causation
parameters are all equal to zero, and thus they are homogeneous. Therefore, we put
forward a pooled least-squares (fixed effects type) estimator for these parameters only.
Pooling over cross sections guarantees that the estimator has a

√
N T convergence rate.

In order to account for the well-known “Nickell bias”, the approach makes use of the
well-known Split Panel Jackknife method. Subsequently, a Wald test is proposed,
which is based on the bias-corrected estimator. Finite-sample evidence shows that the
resulting approach performs well in a variety of settings and outperforms existing
procedures. Using a panel data set of 350 U.S. banks observed during 56 quarters, we
test for Granger non-causality between banks’ profitability and cost efficiency.

Keywords Panel data · Granger causality · VAR · “Nickell bias” · Bias correction ·
Fixed effects

JEL Classification C12 · C13 · C23 · C33

1 Introduction

Predictive causality and feedback between variables is one of the main subjects of
applied time series analysis. Granger (1969) provided a definition that allows formal
statistical testing of the hypothesis that one variable is not temporally related to (or
does not “Granger-cause”) another one. Besides time series models, this hypothe-

B Artūras Juodis
A.Juodis@uva.nl

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00181-020-01970-9&domain=pdf
http://orcid.org/0000-0001-6808-3947


A. Juodis et al.

sis is also important in panel data analysis when examining relationships between
macroeconomic or microeconomic variables.

The seminal paper of Holtz-Eakin et al. (1988) provided one of the early contri-
butions to the panel data literature on Granger non-causality testing. Using Anderson
and Hsiao (1982) type moment conditions, the authors put forward a Generalised
Method of Moments (GMM) testing framework for short T panels with homogeneous
coefficients. Unfortunately, this approach is less appealing when T is sizeable. This
is due to the well-known problem of using too many moment conditions, which often
renders the usual GMM-based inference highly inaccurate. While there exist alterna-
tive fixed T procedures that can be applicable to cases where T is large (e.g. those of
Binder et al. 2005; Karavias and Tzavalis 2017; Juodis 2013; Arellano 2016; Juodis
2018), these methods are designed to estimate panels with homogeneous slope param-
eters only. Thus, when feedback based on past own values is heterogeneous (i.e. the
autoregressive parameters vary across individuals), inferences may not be valid even
asymptotically.

For the reasons above, one of the most popular approaches among practitioners has
been the one proposed by Dumitrescu and Hurlin (2012), which can accommodate
heterogeneous slopes under both null and alternative hypotheses. Their approach is
reminiscent of the so-called IPS panel unit root test for heterogeneous panels proposed
by Im et al. (2003) and involves averaging of individual Wald statistics. The resulting
standardized Wald test statistic has asymptotic normal limit as T → ∞ followed by
N → ∞. However, this approach does not account for “Nickell” bias, and therefore,
it is theoretically justified only for sequences with N/T 2 → 0, as it is the case with
standard Mean-Group type approaches.1

The aim of this paper is to propose a new test for Granger non-causality that explic-
itly accounts for “Nickell” bias and is valid in both homogeneous and heterogeneous
panels. The novelty of our approach comes from exploiting the fact that under the
null hypothesis, while the individual effects and the autoregressive parameters may
be heterogeneous across individuals, the Granger-causation parameters are all equal
to zero and thus they are homogeneous. We therefore propose the use of a pooled
estimator for these parameters only. Pooling over cross sections guarantees that the
estimator has the faster

√
N T convergence rate.

The pooled estimator suffers from the incidental parameters problem of Neyman
and Scott (1948) due to the presence of the predetermined regressors, see, e.g. Nickell
(1981) and Karavias and Tzavalis (2016). This result implies that standard tests for
pooled estimators do not control size asymptotically, unless N << T . To overcome
this problem, we use the idea of Split Panel Jackknife (SPJ) of Dhaene and Jochmans
(2015) and construct an estimator that is free from the “Nickell bias”. This type of bias
correctionworks verywell under circumstances that are empirically relevant:moderate
time dimension, heterogeneous nuisance parameters, and high persistence, as argued
byDhaene and Jochmans (2015), Fernández-Val andLee (2013) andChambers (2013),
respectively. Furthermore, Chudik et al. (2018) argue that SPJ procedures are suitable

1 For panels with a fixed-T dimension, and under normality of the innovations, Dumitrescu and Hurlin
(2012) propose centering their test statistic using moments of an appropriate F distribution rather than χ2.
However, the modified statistic is not standard normal for fixed-T (even under normality of the innovations)
because the suggested approximation assumes that regressors are strictly exogenous.
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so long as N/T 3 → 0. Thus, we test the null hypothesis of Granger non-causality by
using a Wald test based on our bias-corrected estimator.

AMonte Carlo study shows that the proposed method has good finite sample prop-
erties even in panels with a moderate time dimension. In contrast, the Wald statistic of
Dumitrescu and Hurlin (2012) can suffer from substantial size distortions, especially
when T << N . In terms of power, the proposed method appears to dominate the
method of Dumitrescu and Hurlin (2012), especially so in panels with N and T both
large.

Using a panel data set of 350 U.S. banks observed during the period 2006:Q1-
2019:Q4, we test for Granger non-causality between banks’ profitability and cost
efficiency. The null hypothesis is rejected in all cases, except for large banks during a
period spanning the financial crisis (2007–2009) and prior to the introduction of the
Dodd–Frank Act in 2011. This outcome may be conducive of past moral hazard-type
behaviour of large financial institutions.

The remainder of the present paper is organized as follows: Sect. 2 sets up themodel
and the hypothesis of interest. Section 3 outlines the SPJ estimator and the proposed
test statistic. Section 4 studies the finite sample performance of the approach using
Monte Carlo experiments. Section 5 presents the empirical illustration, and Sect. 6
concludes.

2 Testing framework

We consider a simple linear dynamic panel data model with a single covariate xi,t :

yi,t = φ0,i +
P∑

p=1

φp,i yi,t−p +
Q∑

q=1

βq,i xi,t−q + εi,t ; t = 1, . . . , T , (2.1)

for i = 1, . . . , N , where φ0,i captures the individual-specific fixed effects, εi,t denotes
the innovation for individual i at time t , φp,i denotes the heterogeneous autoregres-
sive coefficients and βq,i denotes the heterogeneous feedback coefficients or Granger
causation parameters.2 Thus, we assume that yi,t follows an ARDL(P,Q) process;
more generally, yi,t can be considered as one of the equations of a joint VAR model
for (yi,t , xi,t )

′. Such bivariate system is studied for simplicity of presentation, as our
results are straightforwardly extendable to multivariate systems.3

The null hypothesis that the time series xi,t does not Granger-cause (linearly) the
time series yi,t can be formulated as a set of linear restrictions on the β’s in Eq. (2.1):

H0 : βq,i = 0, for all i and q, (2.2)

2 Since the model above is observed over T time periods, it is implicitly assumed that
yi,−P+1, yi,−P+2, . . . , yi,0 are observed, and so are xi,−Q+1, xi,−Q+2, . . . , xi,0.
3 Also, to save space, we do not provide an exposition for how to test bi-directional causality, which can
take place in a similar manner by expressing x as a function of own lags and lagged values of y.
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against the alternative

H1 : βq,i �= 0 for some i and q. (2.3)

The model, null and alternative hypotheses presented here are as in Dumitrescu and
Hurlin (2012). Similarly to the case of panel unit root testing, rejection of the null
hypothesis should be interpreted as evidence of the existence of a large enough number
of cross-sectional units i in which the null hypothesis is violated (see, e.g. Pesaran
2012).

3 Approach

Equation (2.1) can be re-written as follows:

yi,t = z′i,tφi + x′
i,tβ i + εi,t , (3.1)

where zi,t = (1, yi,t−1, . . . , yi,t−P )′ and xi,t = (xi,t−1, . . . , xi,t−Q)′ are column
vectors of order 1 + P and Q, respectively, while φi = (φ0,i , . . . , φP,i )

′ and β i =
(β1,i , . . . , βQ,i )

′ denote the corresponding parameter vectors.
Define yi = (yi,1, . . . , yi,T )′ and εi = (εi,1, . . . , εi,T )′, both of which are col-

umn vectors of order T , and let Zi = (zi,1, . . . , zi,T )′ be a matrix of dimension
[T × (1 + P)], and X i = (xi,1, . . . , xi,T )′, a matrix of dimension [T × Q]. Equa-
tion (3.1) can be expressed in vector form as

yi = Ziφi + X iβ i + εi . (3.2)

Observe that under the null hypothesis of Granger non-causality, the true coefficient
vector of X i equals zero. Thus, assuming homogeneity in β i , Eq. (3.2) becomes

yi = Ziφi + X iβ + εi . (3.3)

In what follows, we shall use the abovemodel specification to estimate the common
parameters β. In particular, we propose the following least-squares (fixed effects type)
estimator of β:

β̂ =
(

N∑

i=1

X ′
i MZi X i

)−1 (
N∑

i=1

X ′
i MZi yi

)
, (3.4)

where MZi denotes a [T × T ] matrix that projects on the orthogonal complement

of Zi , i.e. MZi = IT − Zi
(
Z′

i Zi
)−1 Z′

i . The estimator in Eq. (3.4) generalizes the
standard FE estimator, as the latter imposes that all slope coefficients are homoge-
neous, including the autoregressive parameters (see, e.g. Hahn and Kuersteiner 2002).
Note that for this estimator to be well defined, a sufficient number of MZi matrices
should be nonzero. As in that paper, we limit our attention to balanced panels, and
so the necessary condition is T > 1 + P , which ensures that the coefficients φi are
estimable.

The model in (2.1) belongs to a class of panel data models with nonadditive unob-
served heterogeneity studied in Fernández-Val and Lee (2013). In particular, under
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Conditions 1–2 of that paper, which restrict qi,t = (yi,t , xi,t )
′ to be a strong mixing

sequence, conditional on all time-invariant effects, with at least 4 + δ moments (for
some δ > 0), the asymptotic distribution of β̂ is readily available. Note that the afore-
mentioned restriction rules out non-stationary and local-to-unity dynamics in yi and
X i .

In order to facilitate further discussion, we shall adapt the conclusions of Theorem
1 in Fernández-Val and Lee (2013) to the present setup:

Theorem 3.1 Under Conditions 1–2 (Fernández-Val and Lee 2013) and given N/T →
a2 ∈ [0;∞) as N , T → ∞ jointly:

√
N T

(
β̂ − β0

)
d→ J−1N (−ab, V ) . (3.5)

The Hessian matrix J in our case is given by:

J = plimN ,T →∞
1

N T

N∑

i=1

X ′
i MZi X i , (3.6)

while the exact form of V and b depends on the underlying assumptions of εi,t . For
example, if εi,t are independent and identically distributed (i.i.d.) over i and t , i.e.
εi,t ∼ i .i .d.(0, σ 2), then

V = σ 2 J . (3.7)

Thevector b captures the incidental parameter bias of the commonparameter estimator,
which is induced by estimation of φ1, . . . ,φN . Wewill not elaborate on the exact form
of this matrix, as it is not needed for the purposes of this paper.4

Although β̂ is consistent, the asymptotic distribution of the estimator is not centered
around zero under sequences where N and T grow at a similar rate. The presence of
bias invalidates any asymptotic inference because the bias is of the same order as the
variance (that is, unless a = 0). In particular, the use of β̂ for Granger non-causality
testing of H0 : β0 = 0Q will not lead to a test with correct asymptotic size. As a
result, the Wald test statistic:

W = N T β̂
′ (

J−1V J−1
)−1

β̂, (3.8)

converges to a non-central χ2(Q) distribution under the null hypothesis even if J and
V are assumed to be known.

The above discussion implies that β̂ should not be used in the construction of the
Wald test statistic (3.8). Instead, we suggest the use of the same test statistic, but based
on an alternative estimator that is free from the asymptotic bias term −ab. Below, we
shall focus on a bias-corrected estimator constructed based on the Jackknife principle,
using the Half Panel Jackknife (HPJ) procedure of Dhaene and Jochmans (2015).

4 For more details on the exact form of all matrices in Theorem 3.1, the interested reader is referred to
Fernández-Val and Lee (2013).
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Given a balanced panel with an even number of time series observations, the HPJ
estimator is defined as

β̃ ≡ 2β̂ − 1

2

(
β̂1/2 + β̂2/1

)
, (3.9)

where β̂1/2 and β̂2/1 denote the FE estimators of β based on the first T1 = T /2
observations, and the last T2 = T − T1 observations, respectively. The HPJ estimator
can be decomposed into a sum of two terms:

β̃ = β̂ +
(

β̂ − 1

2

(
β̂1/2 + β̂2/1

))
= β̂ + T −1 b̂, (3.10)

where the second component implicitly estimates the bias term in (3.5). The use of this
estimator can be justified in our setting given that the bias of β̂ is of order (T −1) and
thus satisfies the expansion requirement of Dhaene and Jochmans (2015). Although
there do exist alternative ways of splitting the panel to construct a bias-corrected
estimator, as shown in Dhaene and Jochmans (2015), the HPJ estimator minimizes the
higher order bias in the class of Split Panel Jackknife (SPJ), provided that the data are
stationary. For this reason, we limit our attention to Eq. (3.9).

Corollary 3.1 Under Conditions 1–2 of Fernández-Val and Lee (2013) and given
N/T → a2 ∈ [0;∞) as N , T → ∞ jointly:

ŴH P J = N T β̃
′ (

Ĵ
−1

V̂ Ĵ
−1

)−1
β̃

d→ χ2(Q), (3.11)

where, assuming εi,t ∼ i .i .d.(0, σ 2),

Ĵ = 1

N T

N∑

i=1

X ′
i MZi X i

V̂ = σ̂ 2 Ĵ

σ̂ 2 = 1

N (T − 1 − P) − Q

N∑

i=1

(
yi − X i β̂

)′
MZi

(
yi − X i β̂

)
.

The proof of this corollary follows from the corresponding results in Fernández-Val
and Lee (2013) and Dhaene and Jochmans (2015). The formula for V̂ can be easily
modified to allow for heteroskedasticity in both cross-sectional and time-series dimen-
sions, based, e.g. on the clustered-covariance matrix estimator of Arellano (1987). For
instance, cross-sectional heteroskedasticity can be accommodated by setting

V̂ = 1

N (T − 1 − P) − Q

N∑

i=1

X ′
i MZi ε̂i ε̂

′
i MZi X i , (3.12)

where ε̂i = yi − X i β̂. Given the recent results in Chudik et al. (2018), we conjecture
that for the HPJ approach to work it is only necessary to assume N/T 3 → 0.
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Remark 3.1 An alternative homogeneous estimator is available by taking into account
the fact that under the null hypothesis, not only β i = β for all i but also β1 = β2 =
. . . = βQ = 0. Therefore, letting xi,−1 = (xi,0, . . . , xi,T −1)

′, one can also consider
the following restricted fixed effects type estimator:

β̂1 =
(

N∑

i=1

x′
i,−1MZi xi,−1

)−1 (
N∑

i=1

x′
i,−1MZi yi

)
. (3.13)

This estimator is attractive because, under the null hypothesis, it does not require
specifying a value for Q. However, the resulting Wald test statistic is expected to have
lower power compared to that in Eq. (3.11).

Remark 3.2 Jackknife is by no means the only approach that corrects the incidental
parameters bias of the FE estimator. Alternatively, one can consider an analytical bias-
correction, as in Hahn and Kuersteiner (2002) and Fernández-Val and Lee (2013).
However, the analytical approach has several practical limitations such as the need to
specify a kernel function and the corresponding bandwidth. In this respect, the HPJ
approach of Dhaene and Jochmans (2015) has some clear advantages.

4 Monte Carlo simulation

4.1 Design

To illustrate the performance of the new testing procedure, we adapt the Monte Carlo
setup of Binder et al. (2005) and Juodis (2018). In particular, we assume that the
bivariate vector yi,t = (yi,t , xi,t )

′ is subject to the following VAR(1) process:

yi,t = Φ i yi,t−1 + εi,t ; εi,t ∼ N (02,Σ), (4.1)

for all i = 1, . . . , N , and t = 1, . . . , T . The vector yi,t is assumed to be initialized in
a distant past, in particular we set yi,−50 = 02 and discard the first 50 observations in
estimation.

In order to simplify parametrization, our baseline setup specifies that some of the
designmatrices are common for all i . In particular, we adopt Design 2 of Juodis (2018)
for the error variance matrix, setting

Σ ≡
(

σ 2
εy

σεy,x

σεy,x σ 2
εx

)
=

(
0.07 0.05
0.05 0.07

)
. (4.2)

Matrix Φ i is set equal to

Φ i =
(

αi βi

−0.5 ρ

)
, (4.3)

where in the homogeneous case we impose αi = α = 0.4 while in the heterogeneous
case αi = α + ξ

(y)
i = 0.4 + ξ

(y)
i , ξ (y)

i ∼ i .i .d.U [−.15, .15]. ρ alternates such that
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ρ = {0.4; 0.8}. This parameter controls the degree of persistence in xi,t , which can
be either moderate (ρ = 0.4) or high (ρ = 0.8).

The main parameter of interest is βi . For βi = 0, the Φ i matrix is lower triangular
so that xi,t does not Granger-cause yi,t . In this case, the empirical rejection rate
corresponds to the size of the test. On the other hand, for βi �= 0, the empirical
rejection rate reflects power. In order to cover a broad range of possible alternative
hypotheses, we consider the following schemes:

1. (Homogeneous). βi = β for all i . β = {0.00; 0.02; 0.03; 0.05}.
2. (Heterogeneous). βi = β + ξ

(x)
i , ξ (x)

i ∼ i .i .d.U [−0.1; 0.1], where β is as in the
homogeneous case.

The homogeneous design covers the classical pooled setup ofHoltz-Eakin et al. (1988).
On the other hand, heterogeneity introduced in the second design is qualitatively closer
to Dumitrescu and Hurlin (2012). Note that in the heterogeneous case E[βi ] = β.

Given that the procedure of Dumitrescu and Hurlin (2012) is primarily used in
medium-size macro-panels, we focus on combinations of (N , T ) that better reflect
these applications. In particular, we limit our attention to the following 9 combinations:

N = {50; 100; 200}; T = {20; 50; 100}. (4.4)

We consider the following test statistics:

• “DHT”—the Dumitrescu and Hurlin (2012) Wald test statistic given by5

W̃DH =
√

N

2P

T − 2P − 5

T − P − 3

((
T − 2P − 3

T − 2P − 1

)
1

N

N∑

i=1

Wi − P

)
. (4.5)

• “HPJ”—the proposed pooled Wald test statistic in Eq. (3.11), which is based on
the HPJ bias-corrected estimator.

Inference is conducted at the 5% level of significance. The total number of Monte
Carlo replications is set to 5, 000. Size-adjusted power is reported.

In an alternative setup, we also consider heteroskedastic innovations, where the
top-diagonal entry of the variance–covariance matrix Σ in Eq. (4.2), σ 2

εy
, is scaled by

ξ
(ε)
i ∼ i .i .d.U [0, 2], such that E

[
σ 2

εy ,i

]
= σ 2

εy
E

[
ξ

(ε)
i

]
= 0.07.

4.2 Results

This section provides a brief summary of the simulation results, which are reported in
Tables 3, 4, 5 and 6 in Appendix A. In specific,

• (size) when the degree of persistence in xi,t is moderate, such that ρ = 0.4, both
HPJ and DHT tests perform similarly. In particular, empirical size is fairly close to

5 The authors also propose an alternative Wald test statistic that is not centered. However, in the present
setup we prefer using DHT because it provides better size control.
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its nominal value inmost circumstances, with some size distortions observedwhen
T << N , especially for DHT. On the other hand, for ρ = 0.8, the performance of
both tests deteriorates. This is particularly so for DHT, where in 8 out of 18 cases
size exceeds 20%. In fact, for the case where N = 200 & T = 20 size is over
50%. On the other hand, HPJ appears to be more reliable and size remains below
15% under all circumstances.

• (power) for ρ = 0.4 HPJ dominates DHT almost uniformly in terms of power.
Similar conclusions can be drawn for ρ = 0.8. Note that on average, for any fixed
value of N , power increases with T at a higher rate for HPJ than DHT, which
reflects the

√
N T convergence rate of the bias-corrected least-squares estimator

employed by the HPJ test.
• (homogeneous vs heterogeneous models) The performance of the tests in the het-
erogeneous model is similar to the homogeneous one in terms of both size and
power.

• (homoskedasticity vs heteroskedasticity) The results are similar in terms of both
size and power under homoskedasticity and heteroskedasticity. This implies that
heteroskedasticity does not distort the performance of the tests, once appropriately
accounted for.

In summary, the above results suggest that HPJ has good finite sample properties
even in panels with a moderate time dimension. In contrast, DHT can suffer from
substantial size distortions, especially when T << N . Moreover, in terms of power,
HPJ dominates DHT, especially so in panels where N and T are both large.6

5 Illustration: Granger causality evidence on bank profitability and
efficiency

We perform Granger non-causality tests in order to examine the sign and the type of
temporal relation between banks profitability and cost efficiency. We employ panel
data from a random sample of 350 U.S. banking institutions, each one observed over
56 time periods, namely 2006:Q1-2019:Q4. This data set has also been used by Cui
et al. (2020), albeit in a different context related to the estimation of a spatial dynamic
panel model with common factors. The data are publicly available, and they have been
downloaded from the Federal Deposit Insurance Corporation (FDIC) website.7

5.1 Data andmodel specification

We consider the following specification:

yi,t = φ0,i +
P∑

p=1

φp,i yi,t−p +
Q∑

q=1

βq,i xi,t−q + εi,t , (5.1)

6 In further simulations, we have studied cases where both y and x are drawn based on a VAR(2) process
with either homogeneous or heterogeneous coefficients. The results are similar to those already reported
here, and so we refrain from discussing these further.
7 See https://www.fdic.gov/.
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for i = 1, . . . , N and t = 1, . . . , T , where y denotes profitability, which is proxied by
the return on assets (ROA), defined as annualized net income after taxes expressed as
a percentage of average total assets, and x denotes the time-varying operational cost
efficiency of bank i at period t , to be defined shortly. The parameters of themodel above
are described in Sect. 2. For the purposes of the present illustration, we shall focus
on the unidirectional link (one-way causation) from cost efficiency to profitability. In
addition, we shall impose P = Q.

A measure of cost efficiency has been constructed based on a cost frontier model
using a translog functional form, two outputs and three inputs. In particular, following
Altunbas et al. (2007), we specify

lnT Ci,t =
3∑

h=1

γh lnPh,i,t +
2∑

h=1

δh lnYh,i,t + 0.5
2∑

m=1

2∑

n=1

μmn lnYm,i,t lnYn,i,t

+
3∑

m=1

3∑

n=1

πmn lnPm,i,t lnPn,i,t +
2∑

m=1

3∑

n=1

ξmn lnYm,i,t lnPn,i,t + ηi + τt + υi t ,

(5.2)

where T C represents total cost, while Y1 and Y2 denote two outputs, net loans and
securities, respectively; Y1 is defined as gross loans minus reserves for loan loss pro-
vision. Y2 is the sum of securities held to maturity and securities held for sale. P1, P2
and P3 denote three input prices, namely the price of capital, price of labour and price
of loanable funds. The model above is estimated using two-way fixed effects regres-
sion. The bank-specific, time-varying operational inefficiency component is captured
by the sum of the two fixed effects, i.e. ηi + τt . Subsequently, cost efficiency, xi,t is
computed as follows:

xi,t = emin{η̂i +τ̂t }i,t −(η̂i +τ̂t ), (5.3)

which ensures that larger scores imply higher cost efficiency such that themost efficient
bank scores one.

We initially test for Granger non-causality using Eq. (5.1) based on the entire
sample, i.e. all 350 banks during 2006:Q1-2019:Q4. Subsequently, we split banks into
two groups based on their average size, which is proxied by the natural logarithm of
banks total assets. The grouping of banks is performed using a k-means algorithm,
as advocated, e.g. in Lin and Ng (2012) and Sarafidis and Weber (2015). In addition,
we distinguish between two subperiods, namely “Basel II” (2006:Q1-2010:Q4) and
a period under the Dodd-Frank Act “DFA” (2011:Q1-2019:Q4). Basel II represents
the second of the Basel Accords and constitutes recommendations on banking laws
and regulations issued by the Basel Committee on Banking Supervision (BCBS).8

The DFA is a federal law enacted towards the end of 2010, aiming “to promote the
financial stability of the United States by improving accountability and transparency
in the financial system, to end “too big to fail”, to protect the American taxpayer by
ending bailouts, to protect consumers from abusive financial services practices, and

8 Basel II was eventually superseded by the Basel III framework internationally.
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Table 1 Summary statistics for
bank size

Mean SD Min Max

Small banks 11.31 .599 9.71 12.29

Large banks 13.28 1.07 12.31 18.89

for other purposes”.9 In a nutshell, the DFA has instituted a new failure-resolution
regime, which seeks to ensure that losses resulting from bad decisions by managers
are absorbed by equity and debt holders, thus potentially reducing moral hazard.

5.2 Results

Table 1 reports summary statistics for the two groups of banks in terms of their size,
proxied by the natural logarithm of the average value (over time) of total assets.

Table 2 reports results for theWald test statistic and its p value for the null hypothesis
H0 : βq,i = 0 for all i and q. We also report the estimated number of lags employed,
P̂ , which is obtained using BIC,10 as well as estimates for the pooled estimator (stan-
dard errors in parentheses) of the Granger-causation parameters, defined in Eq. (3.9)
and denoted as β̂. When P̂ = 1, β̂ = β̂1 in Eq. (5.1), whereas for P̂ > 1 we report the

sumof the estimates ofβq , q = 1, . . . , P̂ , i.e. β̂ = ∑P̂
q=1 β̂q . The variance–covariance

matrix of the pooled estimator, V̂ , is computed as in Eq. (3.12), i.e. it accommodates
cross-sectional heteroskedasticity. For the purposes of comparison, we also report the
mean-group estimator of the Granger-causation parameters, β̂MG , computed using the
sample mean (across i) of the corresponding individual-specific regression estimates.

The top panel corresponds to the entire sample of 350 banks. Column “Full” reports
results for the entire period of the sample, i.e. 2006:Q1-2019:Q4. Columns “Basel II”
and “DFA” present results for two different subperiods, namely 2006:Q1-2010:Q4 and
2011:Q1-2019:Q4, respectively. The middle panel contains results for “small-sized”
banks, followed by “large-sized” banks at the bottom panel.

As we can see, in almost all cases the null hypothesis is rejected at the 1% level of
significance, which implies that cost efficiency Granger-causes profitability, i.e. past
values of x contain information that helps to predict y over and above the information
contained in past values of y. The only exception occurs when it comes to large banks
during Basel II, where the null hypothesis is not rejected, with a p value approximately
equal to 0.509. This result is important because it signifies potential moral hazard-
type behaviour prior to the introduction of the DFA; such outcome is consistent with
findings in the existing literature, such as those of Cui et al. (2020) and Zhu et al.
(2020). However, following the introduction of DFA, the null of Granger non-causality
is rejected for large banks as well.

In regards to the remaining quantities, in most cases P̂ = 1, i.e. the optimal lagged
value of x and y equals unity except for large banks during DFA, where P̂ = 2. As

9 See https://www.cftc.gov/sites/default/files/idc/groups/public/@swaps/documents/file/hr4173_enrolled
bill.pdf.
10 To ensure BIC is consistent under both under null and alternative hypotheses, we estimate P under the
alternative, thus allowing for heterogeneity of the Granger causation parameters.
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Table 2 Results for the
HPJ-based Wald test approach

Full Basel II DFA

All banks

Wald-stat. 19.67 7.69 10.22

p value [.000] [.006] [.001]

P̂ 1 1 1

β̂ .266 (.038) .476 (.047) .186 (.031)

β̂MG .349 (.082) .284 (.161) .371 (.097)

N 350 350 350

T 56 20 36

Small banks

Wald-stat. 12.2 7.32 10.74

p value [.000] [.007] [.001]

P̂ 1 1 1

β̂ .244 (.045) .575 (.059) .189 (.031)

β̂MG .338 (.099) .525 (.208) .302 (.116)

N 211 211 211

T 56 20 36

Large banks

Wald-stat. 9.13 .436 12.65

p value [.003] [.509] [.000]

P̂ 1 1 2

β̂ .346 (.025) .132 (.019) .423 (.036)

β̂MG .366 (.142) − .082 (.252) .477 (.168)

N 139 139 139

T 56 20 36

For P̂ = 1, β̂ = β̂1 in Eq. (5.1). For P̂ > 1 β̂ = ∑P̂
q=1 β̂q . Standard

errors in parentheses

expected, the Granger-causation parameters are statistically significant at the 5% level,
except for β̂MG when the null hypothesis of Granger non-causality is not rejected.

We have also run Granger non-causality tests based on the method of Dumitrescu
and Hurlin (2012) (the “DHT” test statistic) using the Stata algorithm developed by
Lopez and Weber (2017).11 The results are identical when it comes to lag model
selection using BIC. However, as it turns out, this time the null hypothesis of Granger
non-causality is rejected in all cases, including for the sample of large banks during the
subperiod under Basel II. In particular, in this case the DHT statistic equals 2.58 with
a p value of 0.0099. Given that the result is marginal at the 1% level of significance,
and taking into account the potentially substantial size distortions observed in the
simulations for the DHT test when T = 20, one is inclined to trust the outcome of the
HPJ-based Wald test reported in Table 2.

11 We do not report the results to save space. They are available from the authors upon request.
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6 Conclusions

This paper considers the problem of Granger non-causality testing in panels with large
cross-sectional and time series dimensions. First, we put forward a pooled fixed effects
type estimator for the Granger-causation parameters, which makes use of the fact that,
under the null hypothesis, these parameters are all equal to zero and, thus, they are
homogeneous. Pooling over cross sections guarantees that the estimator has a

√
N T

convergence rate. In order to account for thewell-known“Nickell bias”,wemakeuse of
the Split Panel Jackknife procedure of Dhaene and Jochmans (2015). Subsequently, a
Wald test is proposed, which is based on the bias-corrected fixed effects type estimator.
The resulting approach is valid irrespective of whether the alternative hypothesis is
homogeneous or heterogeneous, or whether the autoregressive parameters vary across
individuals or not, so long as T is (at least moderately) large.

The statistical model considered in this paper rules out any forms of the cross-
sectional dependence in εi,t . This restriction can be easily relaxed if one is willing to
assume that cross-sectional dependence is strong, generated by an unobserved factor
component, λ′

i f t . In particular, in this case one can use either the Common Correlated
Effects (CCE) approach of Pesaran (2006)/Chudik and Pesaran (2015) combined with
HPJ as in Juodis et al. (2020), or the PC estimator of Bai (2009)/Ando and Bai (2017).
In these setups, the HPJ-based statistic provides a natural starting point, as the finite
T corrections proposed by Dumitrescu and Hurlin (2012) are not feasible. In panels
with homogeneous autoregressive parameters and T fixed, one can employ the GMM
framework of Robertson and Sarafidis (2015) and the linear GMM estimator of Juodis
and Sarafidis (2020).12 We leave these avenues for future research.
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