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SUMMARY
Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the
transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate
that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nu-
clear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU up-
take, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner
WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a
longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence
time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted
cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced
replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of
PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the
continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.
INTRODUCTION

Faithful DNA replication is essential to maintain genome integrity

during cell division. However, problems during DNA replication

(i.e., replication stress) can arise from many sources (Gaillard

et al., 2015). Replication stress contributes to cancer develop-

ment (Forment and O’Connor, 2018; Gaillard et al., 2015) and

may also be exploited in clinical therapy to selectively kill cancer

cells (Forment and O’Connor, 2018; Sørensen and Syljuåsen,

2012). Identification of the molecular mechanisms underlying

replication stress is therefore of great significance.

Transcription-replication (T-R) conflicts are a major source of

replication stress (Gómez-González and Aguilera, 2019). Sharing

the same template, RNA and DNA polymerases may interfere

with each other, and such interference (i.e., T-R conflicts) can

cause replication stress and genome instability (Gaillard and

Aguilera, 2016; Gómez-González and Aguilera, 2019). Interest-

ingly, T-R conflicts are enhanced by oncogenic RAS and CY-

CLIN E and the breast-cancer-inducing hormone estrogen
C
This is an open access article under the CC BY-N
(Jones et al., 2013; Kotsantis et al., 2016; Stork et al., 2016)

and may thus also be involved in cancer development. T-R con-

flicts can create replication stress by transcription-induced chro-

matin alterations or topological stress (Gómez-González and

Aguilera, 2019). Furthermore, transcription can lead to formation

of nucleic acid structures such as R-loops, which can cause both

replication stress and genome instability (Hamperl et al., 2017;

Lang et al., 2017). R-loops are thus a characteristic of T-R con-

flicts, and overexpression of RNaseH1, which degrades the

RNA strand in RNA-DNA hybrids, can promote replication fork

progression in cells with replication stress caused by T-R con-

flicts (Hodroj et al., 2017; Klusmann et al., 2018; Kotsantis

et al., 2016).

RNA polymerase II (RNAPII) pervasively transcribes the

genome (Jensen et al., 2013) and has a high potential for creating

a physical barrier for DNA replication by itself (Gómez-González

and Aguilera, 2019). Indeed, the bacterial replisome pauses

upon encountering bacterial RNA polymerase (RNAP) in a

head-on conflict (Liu and Alberts, 1995). Furthermore, the
ell Reports 33, 108469, December 1, 2020 ª 2020 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The pRNAPII S5 Phosphatase PNUTS-PP1 Promotes DNA Replication

(A) Flow cytometry analysis of EdU incorporation in HeLa cells or HeLa bacterial artificial chromosome (BAC) clones stably expressing EGFPmouse pnuts (HeLa

GFPmpnuts) at 72 h after transfection with siRNA targeting human PNUTS (siPNUTS) or control siRNA (scr). Bottom charts show mean median EdU levels and

percentage of cells in S phase (indicated by regions in scatterplots) (n = 3). p value for percentage of cells in S phase was determined by the two-tailed Student’s

one-sample t test.

(B) DNA fiber analysis of HeLa cells 48 h after transfection with scr or siPNUTS. Representative images of obtained fibers, mean replication fork speed, and

distributions of replication fork speed are shown (n = 6). p value was determined by the Wilcoxon signed rank test.

(C) Flow cytometry analysis of HeLa and HeLa GFPmpnuts cells transfected as in (A) and stained with Hoechst 33258. Indicated samples were treated with

thymidine (T) for 24 h (T 24 h). In T + 6 h samples, thymidine was removed, and fresh media was added for 6 h.

(legend continued on next page)
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transcription-coupled repair factor Mfd and the accessory heli-

cases Rep and UvrD promote replication in bacteria by displac-

ing stalled RNAP (Hawkins et al., 2019; Pomerantz and O’Don-

nell, 2010). In addition, RNAPII mutants in yeast, which

promote the retention of RNAPII on chromatin, display impaired

replication fork progression and enhanced genome instability

(Felipe-Abrio et al., 2015). These findings imply that a dynamic

association of RNAPII with chromatin is required to prevent T-

R conflicts. However, at least in human cells, the factors involved

remain poorly understood.

During the transcription cycle, RNAPII becomes post-tran-

scriptionally modified in its C-terminal domain (CTD), which is

a large unstructured domain consisting of 52 heptapeptide re-

peats in humans (Harlen and Churchman, 2017). The modifica-

tions of the CTD regulate its association with factors involved

in initiation, elongation, RNA processing, and termination (Bent-

ley, 2014; Custódio and Carmo-Fonseca, 2016). The most well-

known modifications of the CTD are phosphorylation on serine

(S)2 (pRNAPII S2) and S5 (pRNAPII S5). Though previously

thought to be primarily associated with promoter proximal re-

gions, pRNAPII S5 is also found in gene-internal regions and is

particularly enriched on paused RNAPII at splice sites (Nojima

et al., 2015). pRNAPII S2 is low at promoter-proximal regions

and is associated with elongation and termination (Ahn et al.,

2004; Harlen and Churchman, 2017). The CTD also responds

to stress such as UV DNA damage, when it becomes extensively

hyperphosphorylated (Rockx et al., 2000). Whether the CTD is

involved in replication stress is not known. However, several

CTD binding proteins are required for resistance to the replica-

tion stress inducer doxorubicin (Winsor et al., 2013), indicating

such a connection.

Protein phosphatase 1 (PP1) is a major serine threonine phos-

phatase whose specificity is mediated by regulatory proteins

(Boens et al., 2013). PP1 nuclear targeting subunit (PNUTS) is

an abundant nuclear PP1 regulatory protein (Kreivi et al.,

1997), and its only established substrate is S5 in the CTD of

RNAPII (pRNAPII S5) (Ciurciu et al., 2013; Lee et al., 2010). We

previously found that PNUTS is involved in the G2 checkpoint

and ataxia telangiectasia and Rad3 related (ATR) signaling

(Landsverk et al., 2010, 2019). Our results suggested that ATR

can be activated via the CTD of RNAPII (Landsverk et al.,

2019). Here, we present evidence that PNUTS-PP1-mediated

dephosphorylation of RNAPII CTD suppresses T-R conflicts by

promoting degradation of RNAPII on chromatin, thus reducing

its residence time. Furthermore, we show that WDR82, a major

PNUTS interacting partner, shows similar effects. The pheno-

types of PNUTS and WDR82 depletion on both replication and

the RNAPII residence time on chromatin are dependent on the
(D) Western blot of experiment as in (C).

(E) Flow cytometry analysis as in (A) of HeLa cells 48 h after transfection with scr

(PNUTSRAXA) were transfected at 24 h post-siRNA transfection.

(F) Mean median EdU incorporation or percentage of S phase cells from experim

(G) Mean median EdU incorporation and percentage of cells in S phase from exp

(siSSU72) (n = 4).

(H) DNA fiber analysis of HeLa cells 48 h after transfection with scr or siSSU72.

shown. (n = 3). p value was determined by the two-tailed Student’s one-sample

Error bars represent SEM. See also Figure S1.
phospho-CTD binding protein CDC73, a component of the

PAF1 transcription elongation complex. Altogether, our results

provide insight into how regulation of the transcriptionmachinery

contributes to suppression of T-R conflicts in human cells.

RESULTS

PNUTS-PP1 Is Required for DNA Replication under
Normal and Stressed Conditions
In our previous work, we observed an increased fraction of cells

in S phase and reduced 5-ethynyl-20-deoxyuridine (EdU) incor-

poration after small interfering RNA (siRNA)-mediated depletion

of PNUTS in HeLa cells, suggesting PNUTS is required for

normal DNA replication (Landsverk et al., 2019). These effects

were specifically caused by depletion of PNUTS, as they were

rescued in cells expressing mouse GFPpnuts (GFPmpnuts) (Fig-

ure 1A), which is not affected by human PNUTS siRNA (PNUTS

blot in Figure 1D). In addition, PNUTS depletion strongly reduced

replication fork rates compared to control siRNA transfected

cells (Figure 1B). A higher fraction of S phase cells after depletion

of PNUTS was also observed in U2OS cells (Figure S1A). More-

over, PNUTS depletion induced slower recovery from thymidine-

induced replication stalling, as more cells transfected with con-

trol siRNA had reached the G2/M transition 6 h after release

from thymidine than cells transfected with PNUTS siRNA (Fig-

ure 1C). The reduced recovery from thymidine-induced replica-

tion stalling was also observed in U2OS cells (Figure S1B) and

was a specific effect after PNUTS depletion (Figure 1C). Interest-

ingly, a screen searching for factors necessary for recovery from

hydroxyurea (HU)-induced replication stalling identified PNUTS

among the candidate hits (Sirbu et al., 2013). In line with a role

after HU, more PNUTS-depleted cells accumulated in S phase

after HU treatment than control siRNA transfected cells (Fig-

ure S1C). Consistent with our own previous findings (Landsverk

et al., 2019), enhanced ATR signaling was observed after PNUTS

siRNA transfection, as measured by increased phosphorylation

of CHK1 on S317 and S345 and RPA32 on S33 (Figures 1D

and S1D). ATR signaling after depletion of PNUTS was further

enhanced by thymidine and was also rescued by GFPmpnuts

(Figures 1D and S1D). Moreover, the higher ATR signaling in

PNUTS-depleted cells correlated with reduced recovery from

replication stalling and a higher percentage of cells with high

levels of the DNA damage marker gH2AX at 6 h after release

from thymidine block (Figures 1C, 1D, and S1E). To address

whether the high ATR activity after depletion of PNUTS was

responsible for the effects on replication, we added the ATR in-

hibitor VE822 (Fokas et al., 2012). Neither EdU uptake nor repli-

cation fork rate was reversed by VE822 (Figures S1F and S1G),
or siPNUTS. EGFP PNUTS (PNUTSwt) or PP1-binding deficient EGFP PNUTS

ents as in (E) (n = 3).

eriments as in (A) of HeLa cells transfected with scr or siRNA targeting SSU72

Average replication fork speed and distributions of replication fork speed are

t test.
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Figure 2. WDR82, a Major PNUTS Interaction Partner, Also Promotes DNA Replication

(A) HeLa cells were isotopically labeled by growth in SILAC media and transiently transfected with PNUTS-EGFP or empty EGFP. After 24 h, lysates were

prepared and mixed at a 1:1 ratio. Complexes containing EGFP were isolated, separated by 1D SDS-PAGE, trypsin digested, and analyzed by liquid chro-

matography-tandem mass spectrometry (LC-MS/MS). Proteins were identified and SILAC ratios and relative abundance quantified using MaxQuant.

(B) Flow cytometry analysis (as in Figure 1A) at 72 h after transfection with scr or siRNA against WDR82 (siWDR82#3) (n = 5).

(legend continued on next page)
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suggesting ATR activity is not the main cause of the suppressed

replication after depletion of PNUTS. We further addressed

whether PP1 was involved by overexpressing a siRNA-resistant

PP1 binding deficient mutant (EGFP PNUTSRAXA). While wild-

type PNUTS (EGFP PNUTSwt) partially rescued the lower EdU

uptake and completely rescued the enhanced S phase fraction

after depletion of endogenous PNUTS, EGFP PNUTSRAXA did

not (Figures 1E and 1F). The dependency on PP1 suggested

that reduced pRNAPII S5 dephosphorylation might be causing

the effects of PNUTS depletion on replication. Supporting this,

depletion of another pRNAPII S5 phosphatase, SSU72 (Krishna-

murthy et al., 2004), also reduced EdU incorporation and replica-

tion fork speed and enhanced the S phase fraction (Figures 1G,

1H, and S3B). Together, these findings show that PNUTS-PP1 is

required for normal replication fork progression and suggest it

does so by dephosphorylating pRNAPII S5.

WDR82, a PNUTS Interaction Partner, Is Also Required
for DNA Replication under Normal and Stressed
Conditions
To search for additional PNUTS binding partners that might

contribute to the role of PNUTS-PP1 in DNA replication, we

performed stable isotope labeling of amino acids in cell culture

(SILAC) immunoprecipitation (IP) of PNUTS EGFP followed by

mass spectrometry (Figure 2A). This method allows the identi-

fication of high confidence protein interactions, as it enables

subtraction of background and bait interactions (Trinkle-Mul-

cahy, 2012). The major PNUTS interaction partners identified

were WDR82, TOX4 and the PP1 isoforms; PP1a, PP1b, and

PP1g (Figure 2A; Table S1). The PNUTS/TOX4/WDR82

(PTW)-PP1 complex has also been reported by others (Lee

et al., 2010). We verified the interactions by coIP using

EGFP-tagged PNUTS, mpnuts, TOX4, WDR82, PP1a, PP1b,

and PP1g (Figures S2A–S2E; data not shown). Consistent

with PNUTS acting as a scaffolding protein in the PTW-PP1

complex (Lee et al., 2010), depletion of WDR82 did not reduce

association of EGFP mpnuts with PP1g or TOX4 (Figure S2D),

and PP1 binding was not required for the association between

PNUTS and WDR82 or TOX4 (Figures S2A and S2C). As

WDR82 binds directly to pRNAPII S5 (Lee and Skalnik, 2008),

we addressed whether WDR82 might also play a role in DNA

replication. Indeed, siRNA-mediated depletion of WDR82

reduced EdU incorporation and increased the fraction of cells

in S phase compared to control siRNA transfected cells (Fig-

ure 2B). Supporting that PNUTS and WDR82 are acting in the

same pathway, co-depletion of WDR82 with PNUTS did not

show additive effects on EdU uptake or the S phase fraction

(Figures S3A and S3B). Depletion of WDR82 also reduced repli-

cation fork speed, reduced recovery from replication stalling,

and enhanced ATR signaling with and without thymidine (Fig-

ures 2C–2F, S2F, and S2G). The effects on recovery from repli-
(C) DNA fiber analysis of HeLa cells 48 h after transfection with scr or siWDR82#3 a

(D) Flow cytometry analysis (as in Figure 1C) of HeLa or HeLa cells stably expre

siWDR82#3.

(E) Western blot of experiment as in (D).

(F) Mean results from experiments as in (E) (n = 3).

Error bars represent SEM. See also Figures S2 and S3 and Table S1.
cation stalling and ATR signaling were specific for WDR82, as

they were rescued by siRNA-resistant WDR82 (Figures 2D–

2F, S2F, and S2G). Enhanced ATR signaling was also observed

with two additional siRNA oligonucleotides (Figures S2H and

S2I). Furthermore, WDR82 depletion caused higher accumula-

tion in S phase after HU and more RPA loading and higher

levels of gH2AX and pRPA S4S8 24 h after thymidine (Figures

2E, 2F , and S3C–S3E), suggesting WDR82 is required to pre-

vent DNA damage and promotes cell survival during replication

stress. Supporting this, WDR82 depletion reduced cell survival

after hydroxyurea treatment (Figure S3F).

WDR82 Facilitates pRNAPII S5 Dephosphorylation by
PNUTS-PP1 in Live Cells
We further addressed whether WDR82 plays a role in dephos-

phorylation of pRNAPII S5. Indeed, WDR82 depletion specif-

ically enhanced levels of pRNAPII S5 (Figures 3A, 3B, and S2I).

Previously, we used the CDK7 inhibitor THZ1 to show that

PNUTS-PP1 plays amajor role in pRNAPII S5 dephosphorylation

during replication stress (Landsverk et al., 2019). Remarkably,

we obtained similar results with WDR82. While pRNAPII S5

was reduced after THZ1 treatment in control siRNA transfected

cells, it was not reduced in cells transfected with WDR82 siRNA

(Figures 3C and 3D), supporting a role for WDR82 in pRNAPII S5

dephosphorylation. To further explore this, we performed an

in vitro dephosphorylation assay. Using RNAPII bound to

GFPmpnuts as a substrate, we confirmed that pRNAPII S5 is a

direct substrate for PNUTS-PP1 (Figures 3E and 3F; Ciurciu

et al., 2013; Lee et al., 2010). pRNAPII S5 was selectively de-

phosphorylated compared to pRNAPII S2 (Figures 3E and 3F),

showing that PNUTS-PP1 displays specificity for pRNAPII S5

versus pRNAPII S2 in vitro. Furthermore, PP1 was the phospha-

tase involved, as calyculin A, a PP1 inhibitor (Swingle et al.,

2007), inhibited pRNAPII S5 dephosphorylation (Figure 3E).

Though depletion of WDR82 reduced the amount of WDR82 in

theGFPmpnuts pull-downs, the rate of pRNAPII S5 dephosphor-

ylation was unaltered compared to controls (Figures 3E and 3G).

Thus, though WDR82 is required for pRNAPII S5 dephosphory-

lation in live cells, it may not be required for its dephosphorylation

in vitro. Alternatively, the small remaining amount ofWDR82 (Fig-

ure 3E) may be sufficient for in vitro dephosphorylation of p-

RNAPII S5. Supporting a requirement for WDR82 in mediating

RNAPII dephosphorylation in live cells, a higher amount of

RNAPII relative to GFPmpnuts was pulled down from WDR82-

depleted versus control siRNA transfected cells (Figure 3E,

time 0min, and Figure 3H). Moreover, the amount of RNAPII rela-

tive toPP1gwas also higher (Figure 3E, time 0min, and Figure 3I).

This is reminiscent of the increased interaction between pRNAPII

S5 with a hypoactive PNUTS-PP1 fusion mutant observed in

pull-downs fromHEK293T cells (Wu et al., 2018) and is thus high-

ly consistent with a dephosphorylation defect.
s in Figure 1B. p value was determined by theWilcoxon signed rank test (n = 6).

ssing siRNA-resistant WDR82 (WDR82-res) 72 h after transfection with scr or
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Figure 3. WDR82 Facilitates pRNAPII S5 Dephosphorylation by PNUTS-PP1 in Live Cells

(A) Western blot of HeLa or WDR82-res cells 72 h after siRNA transfection with scr or siWDR82#3.

(B) Mean pRNAPII S5 versus RNAPII from experiments as in (A). p values were determined by the two-tailed Student’s one-sample t test (n = 7).

(C) Western blot analysis of scr or siWDR82#3 transfected HeLa cells treated with thymidine (T) for 2, 4, and 6 h. THZ1 was added 2 h after thymidine treatment.

(D) Mean fold changes of pRNAPII S5 relative to RNAPII for THZ1 and thymidine samples relative to the T 2 h sample from experiments as in (C) (n = 8). Statistical

significance was determined from fold changes in scr versus siWDR82#3 samples at indicated time points.

(legend continued on next page)
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Depletion of PNUTS or WDR82 Enhances the Residence
Time of Phosphorylated RNAPII on Chromatin
T-R conflicts can occur due to enhanced retention of RNAPII on

chromatin (Chakraborty et al., 2018; Felipe-Abrio et al., 2015;

Poli et al., 2016). Thus, one hypothesis might be that defective p-

RNAPII S5 dephosphorylation could lead to alterations in the dy-

namics of RNAPII, causing T-R conflicts. We addressed this by

fluorescence recovery after photobleaching (FRAP) analysis of

GFP RNAPII inMRC5 cells (Steurer et al., 2018). PNUTS depletion

caused a larger immobile fraction of GFP RNAPII (Figure 4A), indi-

cating a larger fraction of RNAPII complexes were stably chro-

matin bound. Of note, the levels of GFP RNAPII were lower after

PNUTS depletion compared to control siRNA transfected cells

(Figure S4A). We further explored this by assessing the chromatin

residence time of transcriptionally engaged RNAPII. To do so, we

measured the decrease in RNAPII chromatin binding after THZ1

treatment, which prevents de novo transcription initiation (Steurer

et al., 2018) and pRNAPII S5 phosphorylation (Kwiatkowski et al.,

2014). Supporting inhibition of de novo transcription initiation by

THZ1, a reduction of chromatin-bound RNAPII was observed

both in PNUTS-depleted and in control siRNA transfected cells af-

ter THZ1 treatment during thymidine-induced replication stress

(Figures 4B and 4C). However, RNAPII on chromatin was less

reduced in cells depleted of PNUTS (reduced by 42%) compared

to control siRNA transfected cells (reduced by 72%) (Figures 4B

and 4C), consistent with higher residence time of chromatin-

bound RNAPII. Furthermore, pRNAPII S5 was also less reduced

in PNUTS-depleted cells after THZ1 treatment (Figure 4B and

4D). These results were further extended by high-precision flow

cytometry analysis of detergent-extracted cells, which confirmed

the higher residence time of pRNAPII S5 on chromatin with THZ1

after PNUTS depletion, both in the presence and absence of

thymidine (Figures 4E, 4G, 4H, S4B, S4D, and S4F). Furthermore,

similar results for pRNAPII S5 were found in WDR82-depleted

cells (Figures 4E, 4G, 4H, S4B, and S4D). Notably, flow cytometry

also allowed the distinction between G1 and S phases of the cell

cycle based on DNA content, and for pRNAPII S5, similar effects

were observed in both phases (Figures 4H and S4D). Using an

antibody that recognizes the N terminus of RNAPII, we confirmed

that levels of total RNAPII were reduced by THZ1 on chromatin in

PNUTS and WDR82 depleted and in control siRNA transfected

cells (Figures 4F, 4I, S4C, and S4E). Moreover, though the differ-

ences were smaller than with pRNAPII S5, total RNAPII chromatin

loading was significantly less reduced by THZ1 after depletion of

PNUTS or WDR82, at least in G1 phase (Figure 4I). These results

show that RNAPII has a higher residence time on chromatin after

depletion of PNUTS or WDR82. We reasoned that this was likely

caused by defective dephosphorylation of pRNAPII S5. Support-
(E) Western blot of a phosphatase assay using RNAPII pulled down with GFPmpn

were harvested 72 h after transfectionwith scr or siWDR82#3. Isolated GFP comp

of 100 nM calyculin A.

(F) Mean fold changes of pRNAPII/RNAPII for S2 and S5 relative to the t = 0 min

nificance was determined from fold changes of pRNAPII S2/RNAPII versus pRN

(G) As in (F) except showing fold changes of pRNAPII S5/RNAPII in complexes f

(H) Mean RNAPII relative to GFPmpnuts in complexes from cells transfected wit

(I) As in (H) except showing RNAPII relative to PP1g.

p values in (H) and (I) were determined by the two-tailed Student’s one-sample t
ing this, while EGFP PNUTSwt partially rescued the lower reduc-

tion in chromatin binding of pRNAPII S5 and RNAPII after THZ1

in PNUTS siRNA transfected cells, EGFP PNUTSRAXA rescued

less (Figures 4J, 4K, S4G, and S4H). Furthermore, depletion of

SSU72 also suppressed the reduction in pRNAPII S5 and

RNAPII on chromatin after THZ1 (Figure 4L). As depletion of two

different pRNAPII S5 phosphatases show similar effects, these re-

sults suggest that defective dephosphorylation of pRNAPII S5 un-

derlies the enhanced residence time of RNAPII on chromatin.

CDC73 Is Required to Enhance the Residence Time of
Phosphorylated RNAPII on Chromatin and for
Suppression of Replication after Depletion of PNUTS or
WDR82
Wepreviously found that CDC73, a component of the PAF1 tran-

scription elongation complexwhich binds the phospho-CTD (Qiu

et al., 2012), was required for high ATR activity after depletion of

PNUTS (Landsverk et al., 2019). To address whether it also plays

a role in the replication phenotypes and the enhanced RNAPII-

residence time on chromatin, we co-depleted CDC73 with

PNUTS. Co-depletion of CDC73 partially reversed the enhanced

residence time of RNAPII on chromatin, as RNAPII and pRNAPII

S5 were more reduced after THZ1 in cells co-depleted of CDC73

and PNUTS compared to cells transfected with PNUTS siRNA

alone (Figures 5A–5F and S5A–S5C). Co-depletion of CDC73

with PNUTS also partially reversed the slower replication fork

rate and EdU uptake in PNUTS depleted cells, while depletion

of CDC73 alone did not alter the replication fork rate compared

to control siRNA transfected cells (Figures 5G, 5H, S5D, and

S5E). Moreover, the enhanced EdU uptake upon co-depletion

of CDC73with PNUTSwas a specific effect of the CDC73 siRNA,

as it was rescued in cells expressing siRNA-resistant CDC73

(Figures 5H, S5D, and S5E). Co-depletion of CDC73 also

reversed the effects on replication after depletion of WDR82,

as it suppressed the enhanced accumulation of cells in S phase

after a low dose of hydroxyurea observed in cells depleted of

WDR82 alone (Figure S5F). Together, these results show

CDC73 is required for the prolonged residence time of phos-

phorylated RNAPII on chromatin and for suppression of replica-

tion after depletion of PNUTS and WDR82.

Enhanced Chromatin Retention of RNAPII Is Due to
Reduced Degradation on Chromatin after Depletion of
PNUTS or WDR82
During the chromatin extractions, we noticed that though the

levels of RNAPII decreased on chromatin with THZ1, they did

not increase in the corresponding soluble fractions (Figures 6A

and 6B). This indicated that RNAPII was being degraded at or
uts as substrate. HeLa GFPmpnuts or HeLa cells (used for control pull-downs)

lexeswere incubated at 30�C for the indicated times in the presence or absence

sample from (E) in complexes from cells transfected with scr. Statistical sig-

APII S5/RNAPII at indicated time points (n = 3).

rom cells transfected with scr and siWDR82#3.

h scr or siWDR82#3 as in (E) at t = 0 min. (n = 3).

test. Error bars represent SEM.
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in the close vicinity of chromatin during THZ1 treatment. To

further address this, we measured the chromatin residence

time of RNAPII and pRNAPII S5 after THZ1 treatment with the

proteasome inhibitor MG132. Remarkably, in the presence of

MG132, the levels of pRNAPII S5 and RNAPII were substantially

less reduced by THZ1 in control siRNA transfected cells in both

G1 and S phase (Figures 6C–6E). This is consistent with exten-

sive proteasome-mediated degradation of chromatin-bound

RNAPII during THZ1 treatment. In contrast, MG132 had a

much smaller effect on the levels of RNAPII and pRNAPII S5 in

PNUTS-depleted cells (Figures 6C–6G), indicating less protea-

some-mediated degradation of chromatin-bound RNAPII.

Similar effects were observed after depletion of WDR82 and

SSU72 (Figures 6C–6G). Moreover, co-depletion of CDC73

with PNUTS partially reversed the reduced effects of MG132

on RNAPII and pRNAPII S5 levels in cells depleted of PNUTS

alone (Figure S5G). Altogether, these results strongly suggest p-

RNAPII S5 dephosphorylation by WDR82/PNUTS-PP1 is pro-

moting degradation of RNAPII on chromatin, thereby reducing

RNAPII residence time.

Phosphorylated RNAPII Promotes T-R Conflicts after
Depletion of PNUTS or WDR82
So far, our results were consistent with defective pRNAPII S5

dephosphorylation stabilizing RNAPII by suppressing its degra-

dation on chromatin, and thus enhancing T-R conflicts after

depletion of PNUTS or WDR82. To further test this hypothesis,

we performed a proximity ligation assay (PLA) with RNAPII and

the replication factor proliferating cell nuclear antigen (PCNA)

by high-precision flow cytometry (Figures 7A, S6A, and S6B).

Supportingmore T-R conflicts after depletion of PNUTS, a higher

RNAPII-PCNA PLA signal in S phase was observed in PNUTS-

depleted cells compared to control cells (Figure 7A). A higher

PLA signal could also be observed by fluorescence microscopy

(Figure S6C). As we had previously observed increased amounts

of R-loops after depletion of PNUTS (Landsverk et al., 2019), we

addressed whether R-loops might be involved in the effects on

replication. Consistent with T-R conflicts, overexpression of

RNaseH1 partially rescued the reduced EdU incorporation and
Figure 4. Depletion of PNUTS or WDR82 Enhances the Residence Tim

(A) FRAP analysis of GFP-RNAPII knockin MRC5 cells transfected with siPNUT

Fluorescence recovery was measured every 0.4 s for 4 min, background correct

cells from three independent experiments are shown.

(B) Western blot analysis of chromatin fractions from cells at 48 h after transfecti

harvest. LAMIN B2 was used as loading control for chromatin fractions.

(C) Mean fold changes of RNAPII/LAMIN B2 with THZ1 and thymidine relative to

(D) As in (C) except showing pRNAPII S5/LAMIN B2.

(E) Flow cytometry analysis showing levels of pRNAPII S5 on chromatin versus D

without THZ1 (THZ1 4 h). The black line is to ease visual interpretation.

(F) As in (E) except showing levels of RNAPII on chromatin relative to DNA conte

(G) Histograms showing distribution of pRNAPII S5 levels on chromatin in G1 an

provided to ease visual interpretation.

(H) Mean fold changes of pRNAPII S5 on chromatin in THZ1-treated relative to n

(I) As in (H) except showing fold changes in total RNAPII levels.

(J) Mean fold changes of RNAPII on chromatin in THZ1-treated relative to nontre

transfection with PNUTSwt or PNUTSRAXA (n = 3).

(K) As in (J) except showing pRNAPII S5.

(L) As in (H) and (I), 42 h after transfection with scr and siSSU72 (n = 4).

In this figure, all p values were determined by the two-tailed Student’s one-samp
fork rate after depletion of PNUTS (Figures 7B and 7C). In

contrast, overexpression of RNaseH1 reduced EdU incorpora-

tion and fork rate in control siRNA transfected cells (Figures 7B

and 7C). R-loops are thus likely contributing to the reduced repli-

cation after depletion of PNUTS. On the other hand, overexpres-

sion of RNaseH1 did not rescue the reduced fork rate in cells

depleted of WDR82 (Figure 7C). To address whether the higher

stability of RNAPII on chromatin might contribute to suppression

of replication, we performed the fiber assay after inhibition of de

novo transcription initiation by THZ1. Remarkably, THZ1

enhanced replication fork rates after depletion of PNUTS and

WDR82 (Figure 7D), strongly supporting an involvement of T-R

conflicts via the longer residence time of RNAPII on chromatin.

In contrast, in control siRNA transfected cells, THZ1 slightly

reduced fork rates (Figure 7D). Note that THZ1 treatment had a

greater effect on rescuing the reduced fork rates after depletion

of WDR82 than PNUTS (Figure 7D). Indeed, this may reflect the

difference in severity of the effects after depletion PNUTS versus

WDR82 on replication and RNAPII residence time. Altogether,

our results strongly support the hypothesis that dephosphoryla-

tion of pRNAPII S5 by WDR82/PNUTS-PP1 suppresses the resi-

dence of time RNAPII on chromatin by promoting its degrada-

tion, thus preventing T-R conflicts and counteracting

replication stress (Figure 7E).
DISCUSSION

Replication stress is common in cancer cells and can be caused

by T-R conflicts (Gaillard and Aguilera, 2016; Gaillard et al.,

2015). The mechanisms that regulate transcription to prevent

T-R conflicts have until now remained obscure. In this work,

we describe a pathway involving a main signaling platform of

transcription, namely the CTD, that promotes degradation of

RNAPII on chromatin and counteracts replication stress. Our

work identifies an important role for RNAPII-CTD dephosphory-

lation in suppressing replication stress during normal transcrip-

tion. As reduced dephosphorylation of the CTD prevented pro-

teasome-mediated degradation of RNAPII and caused
e of Phosphorylated RNAPII on Chromatin

S or scr. GFP-RNAPII was bleached in a narrow strip spanning the nucleus.

ed, and normalized to prebleach fluorescence intensity. Mean values of n = 32

on with scr or siPNUTS. Thymidine was added at 6 h and THZ1 at 4 h prior to

thymidine alone in (B) (n = 6).

NA content 48 h after transfection with scr, siPNUTS, or siWDR82#3 with and

nt.

d S phase in individual cells from same experiment as in (E). The dotted line is

ontreated cells in G1 and S phases from experiments as in (E) (n = 3).

ated cells in G1, 48 h after transfection with scr and siPNUTS, and 42 h after

le t test. Error bars represent SEM. See also Figure S4.
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replication stress, our results suggest that continuous turnover

of RNAPII on chromatin is required to prevent T-R conflicts.

Our results support previous studies suggesting that

increased retention of RNAPII on chromatin can cause replica-

tion stress and that RNAPII can be removed by degradation dur-

ing T-R conflicts (Felipe-Abrio et al., 2015; Poli et al., 2016). Our

results show that this applies also in human cells and identify

several factors involved in regulation of RNAPII turnover to pre-

vent T-R conflicts, namely WDR82/PNUTS-PP1 and pRNAPII

S5. A previous study in yeast showed pRNAPII S5 prevented

ubiquitinylation and degradation of RNAPII (Somesh et al.,

2005), suggesting that the inhibitory role of pRNAPII S5 in

RNAPII degradation may be conserved. On the other hand, pre-

vious studies in human cells showed that the phosphorylated

CTDwas associated with increased RNAPII degradation (McKay

et al., 2001) and pRNAPII S5 was specifically bound to E3 ubiq-

uitin ligase after DNA damage (Yasukawa et al., 2008). Thus, in

human cells, there are likely multiple pathways for RNAPII degra-

dation. In line with this, the stability of RNAPII on chromatin was

reduced in S phase compared to G1 phase and pRNAPII S5 was

reduced in S phase by addition of thymidine after depletion of

PNUTS, but not in control siRNA transfected cells (Figures 4I

and S4F). High pressure to remove RNAPII during T-R collisions

in PNUTS-depleted cells in S phase may thus promote alterna-

tive pathways for RNAPII removal from chromatin.

Thoughmore work is required to understand the conditions un-

der which WDR82/PNUTS-PP1-dependent RNAPII degradation

occurs, the following points of evidence suggest it involves elon-

gatingRNAPII. First,RNAPIIbound toPNUTSwasphosphorylated

onS2 (Figure 3E), which is associatedwith elongation. Supporting

this, PNUTS colocalizes with pRNAPII S2 in flies and human cells

(Ciurciu et al., 2013; Verheyen et al., 2015) and was found

throughout the gene body by chromatin IP (ChIP) analysis in hu-

man cells (Cortazar et al., 2019). Furthermore, after THZ1 treat-

ment of PNUTS-depleted human cells, phosphorylation of both

RNAPII S5 and S2 was prolonged (Landsverk et al., 2019), sug-

gesting that the lack of pRNAPII S5 dephosphorylation might

also inhibit dephosphorylation of pRNAPII S2 or, more likely,

degradation of S2-phosphorylated elongating RNAPII. Moreover,

PNUTS was recently found to be a global decelerator of RNAPII

elongation that promotes termination (Austenaa et al., 2015; Cor-

tazar et al., 2019) andWDR82 also has a similar role in termination
Figure 5. Co-depletion of CDC73 Reverses Enhanced Residence Time

PNUTS or WDR82

(A) Western blot analysis of chromatin fractions from cells transfected with scr, s

transfection. Thymidine was added at 6 h and THZ1 at 4 h prior to harvest.

(B andC)Mean fold changes of RNAPII/LAMIN B2 (B) or pRNAPII S5/LAMIN B2 (C

(n = 3). p values were determined by the two-tailed Student’s one-sample t test.

(D) Flow cytometry analysis of pRNAPII S5 on chromatin in extracted cells 48 h aft

without THZ1 for 4 h (THZ1 4 h). The black line is shown to ease visual interpreta

(E) Distribution of pRNAPII S5 levels on chromatin in G1 and S phase in cells fro

(F) Mean fold changes of pRNAPII S5 and RNAPII on chromatin in THZ1-treated ve

the two-tailed Student’s one-sample t test.

(G) DNA fiber analysis performed in HeLa cells 48 h after transfection with scr, siP

fork speed, as well as replication fork speed, are shown (n = 3). p values were d

(H) Mean median EdU incorporation in HeLa or HeLa cells stably expressing siRN

siPNUTS and siCDC73 from experiments as shown in Figure S5D. p values were

Error bars represent SEM. See also Figure S5.
(Austenaa et al., 2015). Interestingly, termination factors have pre-

viously been found toplay a role in counteracting replication stress

andgenome instability, leading to the hypothesis that transcription

termination counteracts T-Rconflicts (Gómez-González andAgui-

lera, 2019). Therefore, the more stable, chromatin-bound, phos-

phorylated RNAPII fraction after depletion of PNUTS or WDR82

may in part represent elongating RNAPII that has failed to termi-

nate and is unable to be removed by degradation.

Notably, transcription termination factors are also connected

to R-loop metabolism (Santos-Pereira and Aguilera, 2015). One

way termination factors may prevent replication stress could

therefore be to remove hazardous R-loops (Santos-Pereira and

Aguilera, 2015). As depletion of PNUTS causes R-loops (Land-

sverk et al., 2019), the enhanced replication stress may therefore

be related to R-loops. Supporting this, we found that overex-

pression of RNaseH1 partially rescued the reduced EdU uptake

and fork rate after depletion of PNUTS. On the other hand, while

THZ1 completely rescued the fork rate in cells depleted of

WDR82, overexpression of RNaseH1 did not. Thus, R-loops

may contribute to the reduced replication when pRNAPII S5

dephosphorylation is suppressed by depletion of PNUTS but is

unlikely to be the main underlying cause.

CDC73, a tumor suppressor, is a component of the PAF1 tran-

scription elongation complex, which includes WDR61, CDC73,

PAF1, LEO1, and CTR9 in humans. Interactions between

CDC73, WDR61, and CTR9 with PNUTS have previously been

identified (Hein et al., 2015; Landsverk et al., 2019), and CDC73

andWDR61wereputative hits in our SILAC IP (Table S1), suggest-

ing thewhole or parts of thePAFcomplexmay functionally interact

withWDR82/PNUTS-PP1. Here, we show that CDC73 is required

for suppression of replication following depletion of PNUTS or

WDR82. CDC73 binding to the phospho-CTD is stimulated by di-

phosphorylation on S5/S2 or S5/S7 (Qiu et al., 2012). Moreover,

CDC73bindsmore toRNAPII after depletionofPNUTS (Landsverk

et al., 2019). CDC73may thus partially shield RNAPII fromother p-

RNAPII S5 phosphatases and/or from the proteasomemachinery

itself. Interestingly, in yeast, CDC73 and the PAF1 complex were

required forMec1dependent removal of RNAPII during replication

stress (Poli et al., 2016), suggesting interspecies differences or

multiple pathways for RNAPII degradation.

Here we show that WDR82 and PNUTS counteract replication

stress and find several lines of evidence connecting this to their
of RNAPII on Chromatin and Replication Effects after Depletion of

iPNUTS, or siPNUTS and siRNA against CDC73 (siCDC73) at 48 h after siRNA

) with THZ1 and thymidine relative to thymidine alone from experiments as in (A)

er transfection with scr, siPNUTS, siCDC73, and siPNUTS and siCDC73 with or

tion.

m same experiment as in (D).

rsus nontreated cells in G1 and S phases. (n = 3). p values were determined by

NUTS, siCDC73, and siPNUTS and siCDC73. Mean distributions of replication

etermined by the Wilcoxon signed rank test.

A-resistant CDC73 (CDC73-res) 72 h after siRNA transfection with siPNUTS or

determined by the two-tailed Student’s one-sample t test (n = 4).
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Figure 6. Enhanced RNAPII Chromatin Residence Time Is Caused by Less Proteasome-Mediated Degradation on Chromatin after Depletion

of PNUTS or WDR82

(A) Western blot analysis of chromatin and soluble fractions 48 h after transfection with scr or siPNUTS. Thymidine was added at 6 h and THZ1 at 4 h prior to

harvest. LAMIN B2 and CDK1 were used as loading controls for chromatin and soluble fractions, respectively.

(B) Mean levels of RNAPII/LAMINB2 andRNAPII/CDK1 from experiments as in (A) (n = 5). p valueswere determined by the two-tailed Student’s one-sample t test.

(C) Distribution of RNAPII and pRNAPII S5 levels on chromatin in G1 cells 48 h after transfection with scr, siPNUTS, siWDR82#3, and siSSU72 with and without

THZ1 and MG132 (4 h).

(D) Mean fold changes from (C) of RNAPII on chromatin in THZ1-treated relative to nontreated cells with and without MG132 in G1 phase (n = 3, except for

siSSU72, where n = 2).

(E) As in (D) but showing fold changes of pRNAPII S5.

(F) Effect of MG132 on fold changes after THZ1, as determined by the fold change with MG132 divided by the fold change without MG132 from (D) and (E). If this

value is above 1, then MG132 stabilizes pRNAPII S5 and/or RNAPII on chromatin. Data are presented as mean ± SEM (n = 3, except for siSSU72, where n = 2).

(G) As in (F) but in S phase.

p values in (D)–(G) were determined by the two-tailed Student’s one-sample t test. Error bars represent SEM.
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roles in RNAPII CTD dephosphorylation. By using a PP1 binding

deficient mutant of PNUTS, we show that PP1 is required for the

effects of PNUTS on DNA replication and RNAPII residence time

(Figures 1E, 1F, 4J, and 4K). Furthermore, depletion of SSU72, a

different RNAPII S5 phosphatase, gave similar effects as deple-

tion of PNUTS andWDR82 on DNA replication and RNAPII chro-

matin stability (Figures 1G, 1H, and 6C–6G), strongly supporting

that RNAPII S5 is the relevant substrate forWDR82/PNUTS-PP1.

In line with this, co-depletion of the phospho-CTD binding pro-

tein CDC73 (Qiu et al., 2012) with PNUTS, suppressed the effects

on RNAPII chromatin binding and DNA replication (Figures 5,

S5A–S5E, and S5G). Moreover, addition of a transcription inhib-

itor that prevents de novo RNAPII initiation or overexpression of

RNaseH1 to remove R-loops partially reversed the replication

stress phenotype (Figures 7B–7D). Interestingly, low expression

of WDR82was associated with poor prognosis in colorectal can-

cer (Liu et al., 2018), but the underlying molecular explanation

was unknown. Furthermore, high expression of WDR82 corre-

lated with higher survival in pancreatic cancer, and high expres-

sion of PNUTS is a favorable prognostic marker in pancreatic

and cervical cancer (Gendoo et al., 2019; Hu et al., 2018; Uhlen

et al., 2017). Replication stress is frequently found in pancreatic

and colorectal cancers (Manic et al., 2018; Wallez et al., 2018)

and can also be induced by human papillomavirus infection,

the main cause of cervical cancer (Moody, 2019). Therefore, in

light of our results, we propose that PNUTS and WDR82 may

prevent tumor aggressiveness by suppressing replication stress.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
Fig

(A)

Val

inte

(B)

wer

(C)

EG

(D)

rep

(E)

ma

PN

Erro

14
B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Chemicals and treatments

B siRNA and DNA transfections

B Western blotting and antibodies

B Flow cytometry analysis
ure 7. Replication-Transcription Collisions Suppress DNA Replicat

Flow cytometry proximity ligation assay (PLA) analysis showing proximity of RN

ues in flow cytometry scatterplots show median PLA levels in S phase cells

rpretation, as more dots (single cells) are above this line in PNUTS siRNA tra

Flow cytometry analysis showing EdU incorporation 72 h after transfection w

e stained and analyzed as in Figure 1A. Mean median EdU incorporation and

Average replication fork speed from DNA fiber analysis in HeLa cells 48 h after

FP-RNase H1. p values were determined by the two-tailed Student’s one-sam

DNA fiber analysis in HeLa cells at 48 h after siRNA transfection. THZ1 was

lication fork speed and distributions of replication fork speed are shown (n =

Model for how WDR82/PNUTS-PP1 counteracts T-R collisions. Under regula

tin by dephosphorylating pRNAPII S5 in a timely manner, thus allowing RNA

UTS/WDR82, CDC73 binds to phosphorylated RNAPII and prevents RNAPII d

r bars represent SEM. See also Figure S6.

Cell Reports 33, 108469, December 1, 2020
B Chromatin fractionation for western blotting

B Chromatin fractionation for flow cytometry

B Proximity ligation assay for flow cytometry

B Proximity ligation assay by microscopy

B DNA Fiber assay

B GFP pulldowns and SILAC experiment

B Mass spectrometry and data analysis

B Phosphatase assay

B Live cell imaging

B Immunofluorescence

B Clonogenic survival assay

B Prognostic data

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2020.108469.

ACKNOWLEDGMENTS

We thank the Flow Cytometry Core Facility and Core Facility for Advanced

Light Microscopy at the Oslo University Hospital for helpful assistance and

Beata Grallert for generating the CDC73 siRNA-resistant cell line. We are

grateful for funds from the Norwegian Research Council (275918), the

South-Eastern Norway Regional Health Authority (2014035 and 2013017),

and the Norwegian Cancer Society (3367910).

AUTHOR CONTRIBUTIONS

H.B.L., L.E.S., and L.T.E.B. conducted most of the experiments. L.T.-M. per-

formed SILAC mass spectrometry (MS) proteomics. B.S. and J.A.M. per-

formed FRAP analysis. C.C. and L.E.S. constructed cells stably expressing

siRNA-resistant WDR82. E.P. provided the DNA fiber assay technique and

gave expert advice. O.J.B.L. performed initial experiments regarding

WDR82. L.E.S., L.T.E.B., L.T.-M., B.S., J.A.M., H.B.L., and R.G.S. planned ex-

periments and analyzed results. H.B.L. and R.G.S. conceived and supervised

the study and wrote most of the paper. All authors contributed to editing the

manuscript text.

DECLARATIONS OF INTEREST

The authors declare no competing interests.

Received: May 1, 2020

Revised: October 5, 2020

Accepted: November 10, 2020

Published: December 1, 2020
ion after Depletion of PNUTS or WDR82

APII and PCNA in HeLa cells 72 h after siRNA transfection with scr or siPNUTS.

(within the region shown in Figure S6B). The black line is used to ease visual

nsfected cells than in control siRNA transfected cells.

ith siPNUTS or scr and 48 h after transfection with EGFP-RNaseH1. Samples

percentage of cells in S phase are shown. (n = 3).

transfection with scr, siPNUTS, or siWDR82#3 and 24 h after transfection with

ple t test.

added for 100 min before and during DNA fiber labeling (total 140 min). Mean

3). p values were determined by the two-tailed Student’s one-sample t test.

r conditions, WDR82/PNUTS-PP1 contributes to turnover of RNAPII on chro-

PII degradation and removal and preventing T-R conflicts. After depletion of

egradation, thus creating T-R conflicts. See main text for details.

https://doi.org/10.1016/j.celrep.2020.108469
https://doi.org/10.1016/j.celrep.2020.108469


Article
ll

OPEN ACCESS
REFERENCES

Ahn, S.H., Kim, M., and Buratowski, S. (2004). Phosphorylation of serine 2

within the RNA polymerase II C-terminal domain couples transcription and 30

end processing. Mol. Cell 13, 67–76.

Andersen, J.S., Lyon, C.E., Fox, A.H., Leung, A.K., Lam, Y.W., Steen, H.,

Mann, M., and Lamond, A.I. (2002). Directed proteomic analysis of the human

nucleolus. Curr. Biol. 12, 1–11.

Austenaa, L.M., Barozzi, I., Simonatto, M., Masella, S., Della Chiara, G., Ghi-

sletti, S., Curina, A., deWit, E., Bouwman, B.A., de Pretis, S., et al. (2015). Tran-

scription of mammalian cis-regulatory elements is restrained by actively en-

forced early termination. Mol. Cell 60, 460–474.

Bentley, D.L. (2014). Coupling mRNA processing with transcription in time and

space. Nat. Rev. Genet. 15, 163–175.

Beullens, M., Stalmans, W., and Bollen, M. (1998). The biochemical identifica-

tion and characterization of new species of protein phosphatase 1. Methods

Mol. Biol. 93, 145–155.

Bjursell, G., and Reichard, P. (1973). Effects of thymidine on deoxy-

ribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in Chi-

nese hamster ovary cells. J. Biol. Chem. 248, 3904–3909.

Boens, S., Szekér, K., Van Eynde, A., and Bollen, M. (2013). Interactor-guided

dephosphorylation by protein phosphatase-1. Methods Mol. Biol. 1053,

271–281.

Campeau, E., Ruhl, V.E., Rodier, F., Smith, C.L., Rahmberg, B.L., Fuss, J.O.,

Campisi, J., Yaswen, P., Cooper, P.K., and Kaufman, P.D. (2009). A versatile

viral system for expression and depletion of proteins in mammalian cells.

PLoS ONE 4, e6529.

Chakraborty, P., Huang, J.T.J., and Hiom, K. (2018). DHX9 helicase promotes

R-loop formation in cells with impaired RNA splicing. Nat. Commun. 9, 4346.

Ciurciu, A., Duncalf, L., Jonchere, V., Lansdale, N., Vasieva, O., Glenday, P.,

Rudenko, A., Vissi, E., Cobbe, N., Alphey, L., and Bennett, D. (2013).

PNUTS/PP1 regulates RNAPII-mediated gene expression and is necessary

for developmental growth. PLoS Genet. 9, e1003885.

Cortazar, M.A., Sheridan, R.M., Erickson, B., Fong, N., Glover-Cutter, K.,

Brannan, K., and Bentley, D.L. (2019). Control of RNA Pol II speed by

PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a ‘‘sitting

duck torpedo’’ mechanism. Mol. Cell 76, 896–908.e4.
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Gómez-González, B., and Aguilera, A. (2019). Transcription-mediated replica-

tion hindrance: a major driver of genome instability. Genes Dev. 33, 1008–

1026.
Hahn,M.A., Dickson, K.A., Jackson, S., Clarkson, A., Gill, A.J., andMarsh, D.J.

(2012). The tumor suppressor CDC73 interacts with the ring finger proteins

RNF20 and RNF40 and is required for the maintenance of histone 2B monou-

biquitination. Hum. Mol. Genet. 21, 559–568.
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RNAPII N terminus (Clone F-12) Santa Cruz Biotechnology Cat#sc-55492; RRID:AB_630203

RPA70 (Lot #3) Cell Signaling Technology Cat#2267; RRID:AB_2180506

TOX4 (Lot #G1915) Santa Cruz Biotechnology Cat#sc-102139; RRID:AB_2206288

WDR82 (Clone D2I3B) Cell Signaling Technology Cat#99715; RRID:AB_2800319

WDR82 (Lot #A1212) Santa Cruz Biotechnology Cat#sc-103325; RRID:AB_10838774

Chemicals, Peptides, and Recombinant Proteins

Thymidine Sigma Aldrich CAS: 50-89-5

Hydroxyurea Sigma Aldrich CAS: 127-07-1

5-Chloro-20-deoxyuridine Sigma Aldrich CAS: 50-90-8

5-Iodo-20-deoxyuridine Sigma Aldrich CAS: 54-42-2

GFP-Trap_Dynabeads Chromotek Cat#gtm-20

Complete EDTA-free Protease Inhibitor

Cocktail

Merck Cat#5892791001

PhosSTOP phosphatase inhibitors Merck Cat#4906837001

Benzonase Merck Cat#70664-3

Calyculin A Sigma Aldrich CAS: 101932-71-2

THZ1 ApexBio CAS: 1604810-83-4

EdU Thermo Fisher CAS: 61135-33-9

Pacific Blue Succinimidyl Ester Thermo Fisher CAS: 215868-33-0

Alexa Fluor 647 NHS Ester (Succinimidyl

Ester)

Thermo Fisher Cat#A20006

(Continued on next page)
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Formalin solution Sigma Aldrich Cat#HT5011

VE822 Selleckchem CAS: 1232416-25-9

MG132 Sigma Aldrich CAS: 133407-82-6

Critical Commercial Assays

Click-iT Plus EdU Alexa Fluor 594 Flow

Cytometry Assay Kit

Thermo Fisher Cat#C10646

Click-iT Plus EdU Alexa Fluor 488 Flow

Cytometry Assay Kit

Thermo Fisher Cat#C10633

Duolink flowPLA Detection Kit - Orange Sigma Aldrich Cat#DUO94003

Duolink In Situ Detection Reagents Red Sigma Aldrich Cat#DUO92008

Duolink In Situ PLA Probe Anti-Mouse

MINUS

Sigma Aldrich Cat#DUO92004

Duolink In Situ PLA Probe Anti-Mouse

PLUS

Sigma Aldrich Cat#DUO92002

Experimental Models: Cell Lines

HeLa (human female adenocarcinoma

epithelial cells)

Landsverk et al., 2019 N/A

U2OS (human female osteosarcoma

epithelial cells)

Landsverk et al., 2019 N/A

GFP- POLR2A knockin MRC5 SV40 cells

(Human male fetal lung, SV40 transformed

fibroblast cells)

Steurer et al., 2018 N/A

HeLa GFPmpnuts (HeLa BAC clones stably

expressing GFP mouse pnuts)

Hyman laboratory N/A

HeLa CDC73-res cells (HeLa cells stably

expressing siRNA resistant untagged

wildtype CDC73)

This paper N/A

HeLa WDR82-res cells (HeLa cells stably

expressing siRNA resistant unagged

wildtype WDR82)

This paper N/A

Oligonucleotides

Scr (scrambled control siRNA)

GGUUUCUGUCAAAUGCAAACGGCUU

Landsverk et al., 2010 Stealth siRNA

siRNA targeting sequence: PNUTS

(siPNUTS) GCAAUAGUCAGGAGCGAUA

Thermo Fisher (Landsverk et al., 2019) Silencer select s328

siCDC73 AAACAAGGUUGUCAACGAGAA Hahn et al., 2012 N/A

siRNA targeting sequence: WDR82

(siWDR82 #1)

CUACCUUUAAGAUGCAGUA

Sigma-Aldrich SASI_Hs02_00358014

siRNA targeting sequence: WDR82

(siWDR82 #2)

CCUUUAAGAUGCAGUAUGA

Sigma-Aldrich SASI_Hs02_00358015

siRNA targeting sequence: WDR82

(siWDR82 #3)

CAAAAUAGACGAUACUAUU

Thermo Fisher Silencer select s58697

siRNA targeting sequence: SSU72

(siSSU72) GGAGCUUCCUGUUGUUCAU

Sigma-Aldrich (Landsverk et al., 2019) SASI_Hs01_00024012

Recombinant DNA

pEGFP PNUTS Landsverk et al., 2019 N/A

pEGFP PNUTS (V399A, W401A) Landsverk et al., 2019 N/A

pEGFP-RNaseH1 Landsverk et al., 2019 N/A

pPNUTS EGFP Landsverk et al., 2010 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pEGFP WDR82 This paper N/A

pEGFP TOX4 This paper N/A

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

FlowJo 10.6.0 BD Biosciences N/A

Image Lab BioRad N/A

MS-Quant Mortensen et al., 2010 http://msquant.sourceforge.net

Axiovision 4.8.2 Carl Zeiss N/A

FACS Diva BD Biosciences N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Randi

Syljuåsen (randi.syljuasen@rr-research.no).

Materials Availability
All reagents generated in this study are available upon request to the Lead Contact.

Data and Code Availability
The published article includes all datasets generated or analyzed during this study (Table S1).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human female cervical cancer HeLa Kyoto and female osteosarcoma U2OS cells were grown at 37�C in Dulbecco’smodified Eagle’s

medium (DMEM) and human male SV40 transformed fetal lung fibroblast MRC5 cells were grown in DMEM: Nutrient Mixture F-12

supplemented with antibiotics and 10% fetal bovine serum, at 37�C; 20% O2, and 5% CO2 in a humidified incubator. Throughout

the manuscript, HeLa Kyoto (HeLa) cells were used unless otherwise stated. The cell lines, with exception of the MRC5 cells,

were authenticated by short tandem repeat profiling using Powerplex 16 (Promega) and regularly tested for mycoplasma contami-

nation. HeLa BAC cells stably expressing EGFP mouse pnuts were a generous gift from the laboratory of Tony Hyman. MRC5 cells

with knockin GFP POLR2A (Referred to in text as GFP RNAPII) were previously described (Steurer et al., 2018). To generate the un-

tagged CDC73-res cell lines, siRNA resistant CDC73 was cloned as previously described (Landsverk et al., 2019). HeLa cells were

transduced and cells carrying the transgene were selected with 0.5 mg/ml puromycin. For the WDR82-res cell lines, the weak PGK

promoter was used for transgene expression to achieve low expression levels. Third generation Lentivirus was generated using pro-

cedures and plasmids as previously described (Campeau et al., 2009). Briefly, an untagged siRNA-resistantWDR82 allele was cloned

into Gateway ENTRY plasmids using standard molecular biology techniques. From these vectors, Lentiviral transfer vectors were

generated by recombination into lentiviral destination vectors (vectors derived from Addgene plasmid #19068 and pCDH-

EF1a-MCS-IRES-PURO (SystemBiosciences, inc.)) using Gateway LR reactions. VSV-G pseudotyped lentiviral particles were pack-

aged using a third generation packaging system (Dull et al., 1998) (Addgene plasmids # 12251, 12253, 12259). HeLa Kyoto cells were

then transduced with low virus titers (MOI % 1) and stable expressing populations were generated by antibiotic selection.

METHOD DETAILS

Chemicals and treatments
Thymidine (Sigma Aldrich) was used at 2 mM, Hydroxyurea (Sigma Aldrich) at 100 mM, CDK7-inhibitor THZ1 (ApexBio) at 1 mM, EdU

(Thermo Fisher) at 2 mM, VE822 (Selleckchem) at 500 nM andMG132 (Sigma Aldrich) at 50 mM. Note that thymidine, like hydroxyurea

(Timson, 1975), suppresses replication by inhibiting deoxyribonucleotide synthesis (Bjursell and Reichard, 1973).

siRNA and DNA transfections
Wild-type and RAXA(V399A,W401A) full-length pEGFP PNUTS, pEGFPRNaseH1 and pEGFPNIPP1 have been previously described

(Landsverk et al., 2019; Trinkle-Mulcahy et al., 1999). For the SILAC IP, PNUTS EGFP lacking the seven C-terminal aminoacids was

used (Landsverk et al., 2010). TheWDR82 genewas synthesized from geneart and cloned into pEGFP-C1. During gene synthesis, the

encoded amino acid sequence was kept constant, but the nucleotide sequence was altered to enhance genesynthesis, resulting in
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siRNA resistance against siWDR82#3. TOX4 was ordered from Open Biosystems (Homo sapiens MGC verified FL cDNA, Clone ID:

3880134, Accession: BC013689), and cloned into pEGFP-C1 (Clontech), using EcoRI/SalI restriction sites and the following primers:

FWD_EcoRI:

GATCGAATTCTATGGAGTTTCCCGGAGGAAATG and REV_SalI:

GATCGTCGACTTTCACAAACACCACTGTGTTTG. Sequences of siRNA oligonucleotides can be found in the Key Resources Ta-

ble. siRNA was transfected using Oligofectamine or RNAimax (Life technologies), and plasmid DNA with Fugene HD (Promega) or

Attractene (QIAGEN). Experiments were performed 65–72 h after siRNA transfection unless otherwise stated.

Western blotting and antibodies
Quantitative western blotting was performed as previously described (Landsverk et al., 2019). Briefly, cells were resuspended in ice-

cold TX-100 buffer (100 mM NaCl, 50 mM Tris pH 7.5, 2 mMMgCl2, 0.5% TX-100) containing 100 U/ml Benzonase (Sigma-Aldrich),

Complete EDTA-free Protease Inhibitor Cocktail (Merck) and PhosSTOP phosphatase inhibitors (Merck). After 24 h incubation at 4�C,
LaneMarker Reducing Sample Buffer (Pierce Biotechnologies) was added and samples were boiled (95�C, 5min). Criterion TGX gels

(BioRad) and nitrocellulose membranes (BioRad) were used for separation and transfer. Antibodies used are found in Key Resources

Table. Blots were imaged in a Chemidoc MP (BioRad) using chemiluminescence substrates (Supersignal west pico, dura or femto;

Thermo Scientific). Quantifications were performed and images processed in Image Lab 4.1 (BioRad) software. Range of detection

was verified by including a dilution series of one of the samples and excluding saturated signals. The resulting standard curve allowed

accurate quantification. To blot for total protein after detection of a phosphorylated protein, membranes were stripped using ReBlot

Plus Mild Antibody Stripping Solution (Millipore).

Flow cytometry analysis
For analysis of EdU incorporation, cells were labeled for 1 h with 2 mM EdU (Thermo Fisher) and fixed in 70% ethanol or, when GFP

fluorescence was simultaneously monitored, formalin solution (Sigma Aldrich). EdU was labeled with the Click-iT Plus EdU Alexa

Fluor 488 or 594 Flow Cytometry Assay Kits (Thermo Fisher), and DNA with FxCycle Far Red (Thermo Fisher) or Hoechst 33258

(Thermo Fisher). EdU positive cells (shown in black region in Figure 1A) were defined as S phase cells, and median EdU levels

were measured within these. When GFP fluorescence was simultaneously monitored, GFP positive cells were selected prior to

further analysis. In most of the flow cytometry experiments, with exception of those involving RPA loading, gH2AX or DNA profiles

alone, barcoding was performed as previously described (Håland et al., 2015), using either Pacific blue or Alexa Fluor 647 Succini-

midyl Ester, to eliminate variation in antibody/EdU staining between the individual samples. Briefly, samples were incubated with di-

lutions in the range of 0.001 – 0.1 ng/mL Pacific blue Succinimidyl Ester (Thermo Fisher) or 0,002 mg/mL Alexa Fluor 647 Succinimidyl

Ester (Thermo Fisher) in PBS for 30min prior to staining. The barcoded cells were added to the other cells prior to labeling, thus acting

as an internal standard which were separated by gating during analysis. Flow cytometry analysis of gH2AX staining and RPA loading

was performed as previously described (Håland et al., 2015; Landsverk et al., 2019). Briefly, for measuring RPA loading, the cells were

treated with 750 mL low salt extraction buffer (0.1% Igepal CA-630, 10 mM NaCl, 5 mM MgCl2, 0.1 mM PMSF, 10 mM Potassium

phosphate buffer (pH 7.4)) for 5 min on ice, fixed by adding 250 mL formalin (Sigma Aldrich) and incubation was continued for 1 h

on ice. For gH2AX labeling, cells were fixed directly in ice cold 70% ethanol. The samples were next incubated with primary (anti-

RPA70 or anti-gH2AX) and secondary antibodies (Alexa Flour 488 and 647), diluted in flow buffer (0.1% Igepal CA-630, 6.5 mM

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, 137 mM NaCl, 0.5 mM ethylenediaminetetraacetic acid (pH7.5)) containing 4% non-fat

milk, and stained with the DNA-stains Hoechst 33258 or FxCycle. Note that in the rescue experiments with CDC73 (Figure 5H), de-

pletions of CDC73 and PNUTS were verified by western blotting (Figure S5E). Samples were analyzed in a LSRII flow cytometer (BD

Biosciences) and processed in FACSDiva and FlowJo software (Both BD Biosciences).

Chromatin fractionation for western blotting
For chromatin fractionation of western blotting samples, cells were harvested, isolated by centrifugation and washed in PBS. To

release non-chromatin bound factors, the cell pellet was resuspended in ice-cold chromatin extraction buffer (20 mM HEPES (pH

7.9), 1.5 mM MgCl2, 50 mM NaCl, 300 mM Sucrose, 0.5% TX-100, Complete EDTA-free Protease Inhibitor Cocktail (Merck), Phos-

STOP phosphatase inhibitors (Merck) and 20 mM MG132 (Sigma Aldrich)) and incubated for 10 min at 4�C with gentle mixing

(300 rpm). Soluble and chromatin bound fractions were separated by centrifugation. The pellet containing chromatin bound factors

was washed once in chromatin extraction buffer, followed by chromatin digestion for 2 h at 4�C with gentle mixing (300 rpm) in

chromatin extraction buffer containing 100 U/mL Benzonase (Sigma Aldrich). Lane Marker Reducing Sample Buffer (Pierce Biotech-

nologies) was added to both soluble and chromatin bound fraction samples, and the samples were boiled for 5 min at 95�C prior to

analysis by quantitative western blotting. Final volumes of soluble versus chromatin bound fractions were kept equal, so they could

be directly compared. Notably, as we included a dilution curve in the western blots after chromatin fractionation, in our study this

method was superior for determining absolute values.

Chromatin fractionation for flow cytometry
For flow cytometry analysis of chromatin bound RNAPII, cell pellets were resuspended in 100 mL chromatin extraction buffer for 5min

on ice. The cells were fixed by addition of formalin solution (Sigma Aldrich) directly to the cell suspension at a ratio of 10:1 of formalin
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versus chromatin extraction buffer, and incubated at room temperature for 10 min. Cells were then washed once in PBS and bar-

coded and labeled as above (see gH2AX and RPA staining) with antibodies to RNAPII and pRNAPII S5 with the following modifica-

tions. One barcoded (with Pacific blue or Alexa Fluor 647) control sample of non-treated, non-extracted HeLa cells was added to all

the individual samples. This provided an internal control both for extraction efficiency and for normalization, resulting in highly accu-

rate quantifications. In addition, a secondary antibody control was included in each experiment, where primary antibody staining was

omitted, allowing subtraction of background due to secondary antibody staining. Note that for the experiments involving MG132, the

rescue experiments with EGFP PNUTSwt and EGFP PNUTSRAXA, and the experiments with siSSU72, chromatin extraction buffer with

140 mM NaCl was used. The higher NaCl concentration enhanced the differences in RNAPII and pRNAPII S5 chromatin binding be-

tween THZ1 treated and non-treated samples. In the rescue experiments with EGFP PNUTSwt and EGFP PNUTSRAXA, efficient

knockdown of endogenous PNUTS was verified by western blotting and equal expression of the GFP constructs was verified by

GFP expression by flow cytometry (Figures S4G and S4H).

Proximity ligation assay for flow cytometry
The proximity ligation assay (PLA) for flow cytometry (Duolink flowPLA Detection Kit – Orange (Sigma Aldich)) was performed in

accordance to themanufacturer’s instructions with the followingmodifications. At 72 h after siRNA transfection, HeLa cells were har-

vested, counted (83 105 cells per condition were used per 100 mL Duolink reaction volume) and fixed in 70% ethanol for 24 h or more

at �20�C. Next, cells were barcoded with Pacific Blue, mixed and split into different tubes: one stained with both antibodies (anti-

PCNA and anti-RNAPII) and both PLA probes, both antibodies and only one PLA probe, only one of the antibodies, but both PLA

probes, or unstained (For overview see Figure S6A). Cells were blocked for 5 min in flow buffer (0.1% Igepal CA-630, 6.5 mM

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, 137 mM NaCl, 0.5 mM EDTA (pH7.5)), containing 4% (w/v) non-fat milk, and incubated

with antibodies diluted in blocking buffer at 4�C overnight. After this, cells were washed once with 500 mL PBS with 1% FBS and

incubated with pre-mixed PLA probe anti-rabbit minus and PLA probe anti-mouse plus diluted in PLA blocking buffer for 1 h at

37�C. The subsequent steps were carried out in accordance to manufacturer’s instructions using 100 min amplification time and

30 min detection time. Finally, the cells were resuspended in PBS containing 1 ml/ml FxCycle Red (Thermo Fisher) and 50 ml/ml Ribo-

nuclease A (QIAGEN). The cells were then analyzed in a LSRII flow cytometer (BD Biosciences) and processed in FACSDiva and

FlowJo software (Both BD Biosciences).

Proximity ligation assay by microscopy
For detection of proximity between RNAPII and PCNA using the proximity ligation assay for immunofluoresence microscopy, HeLa

cells were pre-extracted in detergent buffer (20 mM HEPES, pH 7.4; 50 mM NaCl; 1.5 mMMgCl2: 300 mM sucrose; 0.05% Triton X-

100) for 5 min on ice prior to fixation with formalin. Coverslips were stained with anti-RNAPII (1PB 7C2, Proteogenix) and anti- PCNA

(Abcam) in PBS-AT (PBS with 0.5% Triton X-100 and 1% BSA) overnight. The subsequent steps in proximal ligation assay were car-

ried out with Duolink In Situ Orange Kit Mouse/Rabbit (Sigma Aldrich) in accordance to manufacturer’s instructions (100 min ampli-

fication time). Cells were examined with a Zeiss LSM 880 confocal microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany)

equipped with an Ar-Laser Multiline (458/488/514 nm), a DPSS-561 10 (561 nm), a Laser diode 405-30 CW (405 nm), and a

HeNe-laser (633 nm). The objective used was a Zeiss C-Apochromat 40x NA/1.2 W DICIII.

DNA Fiber assay
HeLa cells were pulse labeled with 25 mM 5-Chloro-20-deoxyuridine (CldU) (Sigma Aldrich) followed by 250 mM 5-Iodo-20-deoxyur-
idine (IdU) (Sigma Aldrich) for 20 min each. After labeling, cells were harvested and resuspended in ice-cold PBS. DNA fiber spreads

were prepared by spotting 2 mL of cells (53 105 cells permL in PBS) ontomicroscope slides (SuperFrost, Thermo Scientific), followed

by lysis with 7 mL of 0.5% SDS, 200 mM Tris-HCl pH 7.4 and 50 mM EDTA for 5-7 min before spreading. DNA spreads were fixed in

methanol/acetic acid (3:1). Prior to immunodetection, slides were treated with 2.5 M HCl for 1 h and 15 min. The slides were further

incubated with rat anti-bromodeoxyuridine andmouse anti-bromodeoxyuridine for 1 h to detect CldU and IdU labeled tracts, respec-

tively. Subsequently, slides were fixed in formalin solution for 10 min to increase staining intensity and further incubated with anti-rat

IgG AlexaFluor 568 and anti-mouse IgG AlexaFluor 488 (Molecular Probes, 1:500) for 2 h. Slides were mounted with Fluoroshield

(Sigma). Imageswere acquiredwith an AxioImager Z1 ApoTomemicroscope system (Carl Zeiss, Jena, DE) using a 63x (1.4 numerical

aperture) oil lens, a AxioCam Mrm camera and the Axiovision 4.8.2 (Carl Zeiss) software. Images were analyzed using ImageJ

(Schneider et al., 2012). In each independent experiment, at least 250 fibers were measured per condition. Replication track lengths

were calculated using the conversion factor 1 mM = 2.59 kb (Jackson and Pombo, 1998).

GFP pulldowns and SILAC experiment
For SILACGFP pulldowns, cells were grown for six cell divisions in DMEMcontaining L-arginine and L-lysine or L-arginine 13C6 and L-

lysine 4,4,5,5-D4 (Life Technologies). 24 h prior to harvesting, labeled cells were transiently transfected with EGFP alone or PNUTS

EGFP. Nuclei were harvested, and GFP pulldowns performed as previously described with some modifications (Trinkle-Mulcahy

et al., 2006). To increase efficiency of extraction of chromatin bound proteins, nuclei were resuspended in a high salt (500 mM

NaCl) RIPA buffer for the sonication step and the resulting lysates diluted with NaCl-free RIPA buffer to a final concentration of

150 mM NaCl. Equal amounts of lysate (by total protein concentration) were mixed 1:1 and EGFP-tagged proteins isolated using
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the GFP-Trap_A affinity matrix (Chromotek). Beads were washed and combined and proteins eluted for gel separation and trypsin

digestion as previously described (Prévost et al., 2013). GFP pulldowns followed by western blotting were performed as the SILAC

GFP pulldowns, but with the following modifications. Cells grown in regular medium were transiently transfected with EGFP

PNUTSwt, EGFP PNUTSRAXA, EGFP TOX4, EGFP WDR82 or EGFP NIPP1 24 h prior to harvest. The cells were spun down and re-

suspended directly in ice-cold high salt RIPA buffer (500 mM NaCl) and sonicated. The resulting lysates were diluted as above to

150 mM NaCl, and lysate volumes were adjusted to contain an equal amount of protein prior to isolation of EGFP-tagged proteins

with GFP-Trap_Dynabeads (ChromoTek). The beads were washed five times in RIPA buffer (150mMNaCl), diluted in 1x LaneMarker

Reducing Sample Buffer (Pierce Biotechnologies) and were boiled (95�C, 5 min) prior to analysis by western blotting.

Mass spectrometry and data analysis
High-resolution mass spectrometric analysis was performed as described previously (Andersen et al., 2002) using a LTQ-FT-ICR

mass spectrometer (Thermo Finnigan). Protein ratios were calculated for each arginine and lysine-containing peptide as the peak

area of L-arginine 13C6 and L-lysine 4,4,5,5-D4 divided by the peak area of L-arginine and L-lysine for each single scan mass spec-

trum. Peptide ratios for all arginine and lysine -containing peptides sequenced for each protein were averaged. The open source soft-

ware MS-Quant was used to extract information from the Mascot HTML database search files (Matrix Science) and to evaluate the

certainty in peptide identification and in peptide abundance ratio.

Phosphatase assay
Phosphatase assay was based on the method of Beullens et al. (Beullens et al., 1998) with modifications detailed below. RNAPII in

isolated GFPpnuts complexes were used as substrate, and isolated as in the GFP pulldowns above with the following modifications.

HeLa or HeLa GFPmpnuts were transfected with scr or siWDR82#3 and harvested after 72 h. Cells were resuspended in ice-cold TX-

100 buffer (100 mMNaCl, 50 mM Tris pH 7.5, 2 mMMgCl2, 0.5% TX-100) containing 100 U/ml Benzonase (Merck), Complete EDTA-

free Protease Inhibitor Cocktail (Merck), PhosSTOP phosphatase inhibitors (Merck) and 50 mMMG132 (Sigma Aldrich). Lysates were

precleared and GFPmpnuts complexes were isolated with GFP-Trap_Dynabeads (Chromotek). GFPmpnuts complexes were

washed three times with TX-100 buffer containing 400 mM NaCl, and two times with PP1 buffer (20 mM Tris, 0.5 mM DTT, 1 mM

MnCl2, 0.025% Tween-20, Complete EDTA-free Protease Inhibitor Cocktail and 50 mM MG132). Complexes were resuspended in

PP1 buffer, aliquoted and placed at 30�C with gentle mixing (300 rpm) for the indicated times. Reactions were stopped by addition

of PhosSTOP phosphatase inhibitors (Merck) and LaneMarker Reducing Sample Buffer (Pierce Biotechnologies), and samples were

boiled prior to analysis by western blotting.

Live cell imaging
Live-cell imaging was performed on a Leica SP5 confocal laser scanning microscope with a HCX PL APO CS 63 3, 1.40-NA oil-im-

mersion lens. Images were recorded with a 488-nm Argon laser and a 500- to 600-nm bandpass filter. For FRAP, at pixel size 24.63

24.6 mM, a strip of 512 3 32 pixels spanning the nucleus was imaged every 400 ms with 400 Hz. Twenty-five frames were recorded

before the bleach pulse. The average, background-corrected fluorescence intensity of frames 10–20 of these prebleach measure-

ments were used to calculate the prebleach fluorescence intensity. GFP fluorescence in the strip was bleached for one frame

with 100% laser power. The recovery of fluorescence was monitored for 4 min (600 frames) within and outside the strip, back-

ground-corrected, and normalized to pre-bleach fluorescence intensity.

Immunofluorescence
For detection of chromatin loaded RPA70 and gH2AX by immunofluorescence, HeLa cells were pre-extracted in detergent buffer

(20 mM HEPES, pH 7.4; 50 mM NaCl; 1.5 mM MgCl2: 300 mM sucrose; 0.05% Triton X-100) for 5 min on ice prior to fixation with

formalin solution (Sigma Aldrich). Coverslips were stained with anti-RPA70 and anti- gH2AX in PBS-AT (PBS with 0.5% Triton X-

100 and 1% BSA), followed by anti-mouse Alexa Fluor 568 and anti-rabbit Alexa Fluor 488 (Thermo Fisher). Imaging and analysis

was as previously described (Landsverk et al., 2019).

Clonogenic survival assay
For the clonogenic survival assay 200 HeLa cells were seeded in 6 cm culture dishes (BD Biosciences) with medium

containing no drug or 50 mM or 100mM of hydroxyurea (Sigma Aldrich). On day 13 after seeding, 500 mL fresh medium was added

to the dishes and the cells were cultured for an additional 6 days (19 days in total), fixed in 70% ethanol and stained with

methylene blue. Colonies of 50 or more cells were counted as survivors. Survival fractions were calculated in each experiment as

the average cloning efficiency (from 3 parallel dishes) after treatment with hydroxyurea, divided by the average cloning efficiency

for non-treated cells.

Prognostic data
Prognostic data for PNUTS (PPP1R10) was found at the Human Protein Atlas available from http://www.proteinatlas.org
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QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments, except when otherwise stated, were performed three times or more. Error bars represent standard error of mean

(SEM). P values were determined by the two-tailed student’s two sample t test unless otherwise stated, and were determined using

Microsoft Excel, except the Wilcoxon test, which was performed using Sigmaplot. n refers to number of independent experiments,

except in Figure 4A, when it refers to number of cells analyzed. * < 0.05, ** < 0.01, *** < 0.001
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