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Abstract: An angular analysis of the decay B0 → φK∗(892)0 is reported based on a pp

collision data sample, corresponding to an integrated luminosity of 1.0 fb−1, collected at a

centre-of-mass energy of
√
s = 7 TeV with the LHCb detector. The P-wave amplitudes and

phases are measured with a greater precision than by previous experiments, and confirm

about equal amounts of longitudinal and transverse polarization. The S-wave K+π− and

K+K− contributions are taken into account and found to be significant. A comparison

of the B0 → φK∗(892)0 and B0 → φK∗(892)0 results shows no evidence for direct CP

violation in the rate asymmetry, in the triple-product asymmetries or in the polarization

amplitudes and phases.
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1 Introduction

The decay B0→ φK∗0,1 has a branching fraction of (9.8± 0.6)× 10−6 [1]. In the Standard

Model it proceeds mainly via the gluonic penguin diagram shown in figure 1. Studies of

observables related to CP violation in this decay probe contributions from physics beyond

the Standard Model in the penguin loop [2–4]. The decay was first observed by the CLEO

collaboration [5]. Subsequently, branching fraction measurements and angular analyses

have been reported by the BaBar and Belle collaborations [6–11].

The decay involves a spin-0 B-meson decaying into two spin-1 vector mesons (B →
V V ). Due to angular momentum conservation there are only three independent configura-

tions of the final-state spin vectors, a longitudinal component where in the B0 rest frame

both resonances are polarized in their direction of motion, and two transverse components

with collinear and orthogonal polarizations. Angular analyses have shown that the longi-

tudinal and transverse components in this decay have roughly equal amplitudes. Similar

1In this paper K∗0 is defined as K∗(892)0 unless otherwise stated.
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Figure 1. Leading Feynman diagram for the B0→ φK∗0 decay.

results are seen in other B → V V penguin transitions [12–15]. This is in contrast to tree-

level decays such as B0 → ρ+ρ−, where the V − A nature of the weak interaction causes

the longitudinal component to dominate. The different behaviour of tree and penguin de-

cays has attracted much theoretical attention, with several explanations proposed such as

large contributions from penguin annihilation effects [16] or final-state interactions [17, 18].

More recent calculations based on QCD factorization [19, 20] are consistent with the data,

although with significant uncertainties.

In this paper, measurements of the polarization amplitudes, phases, CP asymmetries

and triple-product asymmetries are presented. In the Standard Model the CP and triple-

product asymmetries are expected to be small and were found to be consistent with zero

by previous experiments [6–10]. The studies reported here are performed using pp collision

data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass

energy of
√
s = 7 TeV with the LHCb detector.

2 Analysis strategy

In this analysis the B0→ φK∗0 decay is studied, where the φ and K∗0 mesons decay to

K+K− and K+π−, respectively (the study of the charge conjugate B
0

mode is implicitly

assumed in this paper). Angular momentum conservation, for this pseudoscalar to vector-

vector transition, allows three possible helicity configurations of the vector-meson pair, with

amplitudes denoted H+1, H−1 and H0. These can be written as a longitudinal polarization,

A0, and two transverse polarizations, A⊥ and A‖,

A0 = H0 , A⊥ =
H+1 −H−1√

2
and A‖ =

H+1 +H−1√
2

. (2.1)

In addition to the dominant vector-vector (P-wave) amplitudes, there are contributions

where either the K+K− or K+π− pairs are produced in a spin-0 (S-wave) state. These

amplitudes are denoted AKKS and AKπS , respectively. Only the relative phases of the am-

plitudes are physical observables. A phase convention is chosen such that A0 is real. The

remaining amplitudes have magnitudes and relative phases defined as

A‖ = |A‖|eiδ‖ , A⊥ = |A⊥|eiδ⊥ , AKπS = |AKπS |eiδ
Kπ
S and AKKS = |AKKS |eiδKKS . (2.2)

– 2 –
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Figure 2. The helicity angles θ1, θ2, Φ for the B0→ φK∗0 decay.

To determine these quantities, an analysis of the angular distributions and invariant masses

of the decay products is performed. It is assumed that the contribution from B0 →
K+K−K+π−, where both the K+K− and K+π− are non-resonant, is negligible.

In the following sections the key elements of the analysis are discussed. First, the con-

ventions used in the angular analysis are defined together with the form of the differential

cross-section. Next, the parameterization of the K+π− and K+K− mass distributions is

discussed. Finally, the triple-product asymmetries that can be derived from the angular

variables are defined.

2.1 Angular analysis

The angular analysis is performed in terms of three helicity angles (θ1, θ2,Φ), as depicted in

figure 2. The angle θ1 is defined as the angle between the K+ direction and the reverse of

the B0 direction in the K∗0 rest frame. Similarly, θ2 is the angle between the K+ direction

and the reverse of the B0 direction in the φ rest frame. The angle Φ is the angle between

the decay planes of the φ and K∗0 mesons in the B0 rest frame.

The flavour of the decaying B0 meson is determined by the charge of the kaon from the

K∗0 decay. To determine the polarization amplitudes, the B0 and B
0

decays are combined.

For the study of CP asymmetries, the B0 and B
0

decays are separated.

Taking into account both the P- and S-wave contributions and their interference, the

differential decay rate [8] is given by the sum of the fifteen terms given in table 1,

d5Γ =
9

8π

15∑
i=1

hi fi(θ1, θ2,Φ)Mi(mKπ,mKK)dΩ(KKKπ) . (2.3)

The hi factors are combinations of the amplitudes, fi are functions of the helicity angles,

Mi are functions of the invariant mass of the intermediate resonances and dΩ(KKKπ) is

a four-body phase-space factor,

dΩ(KKKπ) ∝ qφqK∗qB0 dmKπ dmKK dcosθ1 dcosθ2 dΦ , (2.4)

– 3 –
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i hi fi(θ1, θ2,Φ) Mi(mKπ,mKK)

1 |A0|2 cos θ21 cos θ22 |MKπ
1 (mKπ)|2|MKK

1 (mKK)|2

2 |A‖|2 1
4 sin θ21 sin θ22(1 + cos(2Φ)) |MKπ

1 (mKπ)|2|MKK
1 (mKK)|2

3 |A⊥|2 1
4 sin θ21 sin θ22(1− cos(2Φ)) |MKπ

1 (mKπ)|2|MKK
1 (mKK)|2

4 |A⊥||A∗‖|ei(δ⊥−δ‖) −1
2 sin θ21 sin θ22 sin(2Φ) |MKπ

1 (mKπ)|2|MKK
1 (mKK)|2

5 |A‖||A∗0|eiδ‖
√

2 cos θ1 sin θ1 cos θ2 sin θ2 cos Φ |MKπ
1 (mKπ)|2|MKK

1 (mKK)|2

6 |A⊥||A∗0|eiδ⊥ −
√

2 cos θ1 sin θ1 cos θ2 sin θ2 sin Φ |MKπ
1 (mKπ)|2|MKK

1 (mKK)|2

7 |AKπS |2 1
3 cos θ22 |MKπ

0 (mKπ)|2|MKK
1 (mKK)|2

8 |A‖||A∗KπS |ei(δ‖−δKπS )
√
6
3 sin θ1 cos θ2 sin θ2 cos Φ |MKK

1 (mKK)|2MKπ
1 (mKπ)M∗Kπ0 (mKπ)

9 |A⊥||A∗KπS |ei(δ⊥−δKπS ) −
√
6
3 sin θ1 cos θ2 sin θ2 sin Φ |MKK

1 (mKK)|2MKπ
1 (mKπ)M∗Kπ0 (mKπ)

10 |A0||A∗KπS |e−iδKπS
2√
3

cos θ1 cos θ22 |MKK
1 (mKK)|2MKπ

1 (mKπ)M∗Kπ0 (mKπ)

11 |AKKS |2 1
3 cos θ21 |MKK

0 (mKK)|2|MKπ
1 (mKπ)|2

12 |A‖||A∗KKS |ei(δ‖−δKKS )
√
6
3 sin θ1 cos θ1 sin θ2 cos Φ |MKπ

1 (mKπ)|2MKK
1 (mKK)M∗KK0 (mKK)

13 |A⊥||A∗KKS |ei(δ⊥−δKKS ) −
√
6
3 sin θ1 cos θ1 sin θ2 sin Φ |MKπ

1 (mKπ)|2MKK
1 (mKK)M∗KK0 (mKK)

14 |A0||A∗KKS |e−iδKKS
2√
3

cos θ21 cos θ2 |MKπ
1 (mKπ)|2MKK

1 (mKK)M∗KK0 (mKK)

15 |AKπS ||A∗KKS |ei(δKπS −δKKS ) 2
3 cos θ1 cos θ2 MKK

1 (mKK)MKπ
0 (mKπ)M∗KK0 (mKK)M∗Kπ1 (mKπ)

Table 1. Definition of the hi, fi and Mi terms in eq. (2.3). Note that the P-wave interference

terms i = 4 and i = 6 take the imaginary parts of A⊥A
∗
‖ and A⊥A

∗
0, while i = 5 takes the real

part of A‖A
∗
0. Similarly the S-wave interference terms i = 9 and i = 13 take the imaginary parts of

A⊥A
∗
SM1M

∗
0 , and the terms i = 8, 10, 12, 14 take the real parts of A‖A

∗
SM1M

∗
0 and A0A

∗
SM1M

∗
0 .

where qA is the momentum of the daughter particles in the mother’s (A = B0, φ,K∗0)

centre-of-mass system.

The differential decay rate for B
0→ φK

∗0
is obtained by defining the angles using the

charge conjugate final-state particles and multiplying the interference terms f4, f6, f9, f13
by −1. To allow for direct CP violation, the amplitudes Aj are replaced by Aj , for j =

0, ‖,⊥, S. The rate is normalized separately for the B
0

and B0 decays such that the P- and

S-wave fractions are

FP = |A0|2 + |A‖|2 + |A⊥|2 , FS = |AKπS |2 + |AKKS |2 , FP + FS = 1 , (2.5)

and

FP = |A0|2 + |A‖|2 + |A⊥|2 , F S = |AKπS |2 + |AKKS |2 , FP + F S = 1 . (2.6)

In addition, a convention is adopted such that the phases δKπS and δKKS are defined as the

difference between the P- and S-wave phases at the K∗0 and φ meson poles, respectively.

2.2 Mass distributions

The differential decay width depends on the invariant masses of the K+π− and K+K− sys-

tems, denoted mKπ and mKK , respectively. The P-wave K+π− amplitude is parameterized

using a relativistic spin-1 Breit-Wigner resonance function,

MKπ
1 (mKπ) =

mKπ

qK∗

mK∗
0 ΓKπ1 (mKπ)

(mK∗
0 )2 −m2

Kπ − imK∗
0 ΓKπ1 (mKπ)

, (2.7)

– 4 –
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where mK∗
0 = 895.81 MeV/c2 [1] is the K∗0 mass. The mass-dependent width is given by

ΓKπ1 (mKπ) = ΓK
∗

0

mK∗
0

mKπ

1 + r2q20
1 + r2q2K∗

(
qK∗

q0

)3

, (2.8)

where q0 is the value of qK∗ at mK∗
0 , r = 3.4 ~c/GeV [21] is the interaction radius and ΓK

∗
0 =

47.4 MeV/c2 is the natural width of the K∗0 meson [1]. The P-wave K+K− amplitude,

denoted MKK
1 (mKK), is modelled in a similar way using the values mφ

0 = 1019.455 MeV/c2

and Γφ0 = 4.26 MeV/c2 [1]. In the case of the φ meson the natural width is comparable to the

detector resolution of 1.2 MeV/c2, which is accounted for by convolving the Breit-Wigner

with a Gaussian function.

As the K∗0 is a relatively broad resonance, the S-wave component in the K+π− system,

denoted MKπ
0 (mKπ), needs careful treatment. In this analysis the approach described in

ref. [8] is followed, which makes use of the LASS parameterization [21]. This takes into

account an L = 0 K∗0 (1430) contribution together with a non-resonant amplitude. The

values used for the LASS parameterization are taken from ref. [8].

Finally, an S-wave in the K+K− system is considered. This is described by the Flatté

parameterization of the f0(980) resonance [22],

MKK
0 (mKK) =

1

m2
f0
−m2

KK − imf0(gππρππ + gKKρKK)
, (2.9)

where the gKK,ππ are partial decay widths and the ρKK,ππ are phase-space factors. The

values mf0 = 939 MeV/c2, gππ = 199 MeV/c2 and gKK/gππ = 3.0 were measured in ref. [23].

The Flatté distribution is convolved with a Gaussian function to account for the detector

resolution. Other approaches to modelling the mass distributions for both the K+π− and

K+K− S-wave are considered as part of the systematic uncertainty determination.

2.3 Triple-product asymmetries

The amplitudes and phases can be used to calculate triple-product asymmetries [2, 4, 24].

Non-zero triple-product asymmetries arise either due to a T -violating phase or a CP -

conserving phase and final-state interactions. Assuming CPT symmetry, a T -violating

phase, which is a true asymmetry, implies that CP is violated.

For the P-wave decay, two triple-product asymmetries are calculated from the results

of the angular analysis [4],

A1
T =

Γ(sθ1θ2 sin Φ > 0)− Γ(sθ1θ2 sin Φ < 0)

Γ(sθ1θ2 sin Φ > 0) + Γ(sθ1θ2 sin Φ < 0)
and A2

T =
Γ(sin 2Φ > 0)− Γ(sin 2Φ < 0)

Γ(sin 2Φ > 0) + Γ(sin 2Φ < 0)
,

(2.10)

where sθ1θ2 = sign(cos θ1 cos θ2). These asymmetries can be rewritten in terms of the

interference terms between the amplitudes [4], h4 and h6 in table 1,

A1
T = − 4

π
Im(A⊥A

∗
0) and A2

T = −2
√

2

π
Im(A⊥A

∗
‖) . (2.11)

Since the decay products identify the flavour at decay, the data can be separated into B0

and B
0

decays and the triple-product asymmetries calculated for both cases. This allows

– 5 –
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a determination of the true asymmetries, A k
T (true) = (AkT +A

k
T )/2, and so called fake

asymmetries, AkT (fake) = (AkT − A
k
T )/2, where k = 1, 2. In the Standard Model the value

of AkT (true) is predicted to be zero and any deviation from this would indicate physics

beyond the Standard Model. Non-zero values for AkT (fake) reflect the importance of strong

final-state phases [4].

The S-wave contributions allow two additional triple-product asymmetries to be de-

fined from h9 and h13 in table 1,

A3
T =

Γ(sθ1 sin Φ > 0)− Γ(sθ1 sin Φ < 0)

Γ(sθ1 sin Φ > 0) + Γ(sθ1 sin Φ < 0)

= −
√

3

2

∫
|MKK

1 (mKK)|2Im(A⊥A
∗Kπ
S MKπ

1 (mKπ)M∗Kπ0 (mKπ))dmKKdmKπ ,

(2.12)

and

A4
T =

Γ(sθ2 sin Φ > 0)− Γ(sθ2 sin Φ < 0)

Γ(sθ2 sin Φ > 0) + Γ(sθ2 sin Φ < 0)

= −
√

3

2

∫
|MKπ

1 (mKπ)|2Im(A⊥A
∗KK
S MKK

1 (mKK)M∗KK0 (mKK))dmKKdmKπ ,

(2.13)

where sθi = sign(cos θi) for i = 1, 2.

3 Detector and dataset

The LHCb detector [25] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector

includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-

rounding the pp interaction region, a large-area silicon-strip detector located upstream of

a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip

detectors and straw drift tubes placed downstream. The polarity of the dipole magnet

is reversed at intervals corresponding to roughly 0.1 fb−1 of collected data, in order to

minimize systematic uncertainties associated with detector asymmetries. The combined

tracking system provides a momentum measurement with relative uncertainty that varies

from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c, and impact parameter resolution of 20µm

for tracks with high transverse momentum (pT). Charged hadrons are identified using two

ring-imaging Cherenkov detectors [26]. Photon, electron and hadron candidates are iden-

tified by a calorimeter system consisting of scintillating-pad and preshower detectors, an

electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system

composed of alternating layers of iron and multiwire proportional chambers.

The trigger [27] consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction.

In this analysis two categories of events that pass the hardware trigger stage are considered:

those where the signal b-hadron products are used in the trigger decision (TOS) and those

– 6 –
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where the trigger decision is caused by other activity in the event (TIS) [27]. The software

trigger requires a three-track secondary vertex with large transverse momenta of the tracks

and a significant displacement from the primary pp interaction vertices (PVs). At least one

track should have pT > 1.7 GeV/c and χ2
IP with respect to any primary interaction greater

than 16, where χ2
IP is defined as the difference in χ2 of a given PV reconstructed with and

without the considered track. A multivariate algorithm [28] is used for the identification

of secondary vertices consistent with the decay of a b hadron.

Simulated data samples are used to correct for the detector acceptance and response.

In the simulation, pp collisions are generated using Pythia 6.4 [29] with a specific LHCb

configuration [30]. Decays of hadronic particles are described by EvtGen [31], in which

final-state radiation is generated using Photos [32]. The interaction of the generated

particles with the detector and its response are implemented using the Geant4 toolkit [33,

34] as described in ref. [35].

4 Event selection

The selection of events is divided into two parts. In the first step a loose selection is per-

formed that retains the majority of signal events, whilst reducing the background by a large

fraction. Following this, a multivariate method is used to further reduce the background.

The selection starts from well reconstructed charged particles with a pT > 500 MeV/c

that traverse the entire spectrometer. Fake tracks, not associated to actual charged parti-

cles, are suppressed using the output of a neural network trained to discriminate between

these and real particles [36]. Further background suppression is achieved by exploiting the

fact that the products of b-hadron decays have a large impact parameter (IP) with respect

to the nearest PV. The IP of each track with respect to any primary vertex is required to

have a χ2
IP > 9.

To select well-identified pions and kaons, the difference in the logarithms of the likeli-

hood of the kaon hypothesis relative to the pion hypothesis (DLLKπ) is provided using infor-

mation from the ring-imaging Cherenkov detectors. The kaons that form the φ→ K+K−

candidate are required to have DLLKπ > 0. To reduce background from π+π− pairs, a

tighter requirement, DLLKπ > 2, is applied to the kaon in the K+π− pair. For the pion in

the K+π− pair the requirement is DLLKπ < 0.

The resulting charged particles are combined to form φ and K∗0 meson candidates.

The invariant mass of the K+K− (K+π−) pair is required to be within ±15 MeV/c2

(±150 MeV/c2) of the known mass of the φ (K∗0) meson [1]. Finally, the pT of the φ

and K∗0 mesons should both be greater than 900 MeV/c, and the fit of their two-track

vertices should have a χ2 < 9.

Candidate B0 meson decays with K+K−K+π− invariant mass in the range 5150 <

mKKKπ < 5600 MeV/c2 are formed from pairs of selected φ and K∗0 meson candidates. A

fit is made requiring all four final-state particles to originate from a common vertex and the

χ2 per degree of freedom of this fit is required to be less than 15. To remove B0
s → φφ decays

where a kaon has been incorrectly identified as a pion, the invariant mass of the K+π−

pair is recalculated assuming that both particles are kaons. If the resulting invariant mass

– 7 –
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is within ±15 MeV/c2 of the known φ mass, the candidate is rejected. Finally, the decay

vertex of the B0 meson candidate is required to be displaced from the nearest PV, with

a flight distance significance of more than 5 standard deviations, and the B0 momentum

vector is required to point back towards the PV with an impact parameter less than 0.3 mm

and χ2
IP < 5.

Further background suppression is achieved using a geometric likelihood (GL)

method [15, 37, 38]. The GL is trained using a sample of simulated B0→ φK∗0 signal

events together with background events selected from the upper mass sideband of the B0

meson, mKKKπ > 5413 MeV/c2, and the φ mass sidebands, |mKK − mφ
0 | > 15 MeV/c2.

These sidebands are not used in the subsequent analysis. Six discriminating variables are

input to the GL: the IP of the B0 candidate with respect to the PV, the distance of closest

approach of the φ and K∗0 meson candidate trajectories, the lifetime of the B0 candidate,

the transverse momentum of the B0 candidate, the minimum χ2
IP of the K+K− pair and

the minimum χ2
IP of the K+π− pair. As a figure of merit the ratio S/

√
S +B is considered,

where S and B are the yields of signal and background events in the training samples, scaled

to match the observed signal and background yields in the data. The maximum value for

the figure of merit is found to be 24.6 for GL > 0.1, with signal and background efficiencies

of 90 % and 21 %, respectively, compared to the selection performed without the GL. This

reduces the sample size for the final analysis to 1852 candidates.

5 K+K−K+π− mass model

The signal yield is determined by an unbinned maximum likelihood fit to the K+K−K+π−

invariant mass distribution. The selected mass range is chosen to avoid modelling partially

reconstructed B decays with a missing hadron or photon. In the fit the signal invariant mass

distribution is modelled as the sum of a Crystal Ball function [39] and a wider Gaussian

function with a common mean. The width and fraction of the Gaussian function are fixed

to values obtained using simulated events. A component is also included to account for

the small contribution from the decay B
0
s → φK∗0 [38]. The shape parameters for this

component are in common with the B0 signal shape and the relative position of the B0
s

signal with respect to the B0 signal is fixed using the known mass difference between B0

and B0
s mesons [1]. The invariant mass distribution is shown in figure 3, together with the

result of the fit, from which a yield of 1655± 42 B0 signal candidates is found.

After the selection the background is mainly combinatorial and is modelled by an

exponential. Background from B0
s → φφ decays, with one of the kaons misidentified as

a pion is reduced by the veto applied in the selection. The number of candidates from

this source is estimated to be 6 events using simulation. These are distributed across the

K+K−K+π− mass range, and are considered negligible in the fit. A potential background

from B0 → D+
s K

−(D+
s → φπ+) decays, which would peak in the signal region, is also

found to be negligible. Possible background from the yet unobserved decay Λ0
b → φpK−

with a misidentified proton is considered as part of the systematic uncertainties.
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Figure 3. Invariant mass distribution for selected K+K−K+π− candidates. A fit to the model

described in the text is superimposed (red solid line). The signal contribution is shown as the

blue dotted line. The contribution from combinatorial background is shown in green (dotted line).

A contribution from B
0

s→ φK∗0 (purple dot-dashed line) decays is visible around the known B0
s

meson mass.

6 Angular fit

The physics parameters of interest for this analysis are defined in table 2. They include

the polarization amplitudes, phases and amplitude differences between B0 and B
0

decays

from which the triple-product asymmetries are calculated.

The correlation between the fit variables and mKKKπ is found to be less than

3 %. Therefore, the background can be subtracted using the sPlot method [40], with

mK+K−K+π− as the discriminating variable. The results of the invariant mass fit discussed

in section 5 are used to give each candidate a signal weight, Wn, which is a function

of mK+K−K+π− . The weight is used to subtract the background contributions from the

distributions of the decay angles and intermediate resonance masses, which are fit using

a signal-only likelihood that is a function of θ1, θ2,Φ,mKπ and mKK . The angular fit

minimizes the negative log likelihood summed over the n selected candidates

− lnL = −α
∑
n

WnlnSn , (6.1)

where α =
∑

nWn/
∑

nW
2
n is a normalization factor that includes the effect of the weights

in the determination of the uncertainties [41, 42], and S is the signal probability density

function (eq. (2.3)) convolved with the detector acceptance.

The acceptance of the detector is not uniform as a function of the decay angle of the

K+π− system (θ1) and the K+π− invariant mass. This is due to the 500 MeV/c criterion

applied on the pT of the pion from the K∗0 meson decay. In contrast, the acceptance is
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Figure 4. Binned projections of the detector acceptance for (a) mKπ, (b) mKK , (c) cos θ1, (d)

cos θ2 and (e) Φ. The acceptance for the TOS (filled crosses) and not TOS (open squares) are

shown on each plot.

relatively uniform as a function of the decay angles θ2 and Φ, and the invariant mass of

the K+K− system.

The detector acceptance is modelled using a four-dimensional function that depends

on the three decay angles and the K+π− invariant mass. The shape of this function is

obtained from simulated data. As the quantities relating to the pT of the decay products

are used in the first-level hardware based trigger, the acceptance is different for candidates

that have a TIS or TOS decision at the hardware trigger stage [27]. Consequently, the

trigger acceptance is calculated and corrected separately for the two categories. The 17 %

of candidates that fall in the overlap between the two categories are treated as TOS, and

the remaining TIS candidates are labelled ‘not TOS’. The projections of the acceptance are

shown in figure 4. In the subsequent analysis the data set is divided into the two categories

and a simultaneous fit is performed.

7 Angular analysis results

Figure 5 shows the data distribution for the intermediate resonance masses and helicity

angles with the projections of the best fit overlaid. The goodness of fit is estimated using

a point-to-point dissimilarity test [43], the corresponding p-value is 0.64.

The fit results are listed in table 2. The value of fL returned by the fit is close to 0.5,

indicating that the longitudinal and transverse polarizations have similar size. Significant S-
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Figure 5. Data distribution for the helicity angles and of the intermediate resonance masses: (a)

mKπ and (b) mKK , (c) cos θ1, (d) cos θ2 and (e) Φ. The background has been subtracted using the

sPlot technique. The results of the fit are superimposed.

wave contributions are found in both the K+π− and K+K− systems. The CP asymmetries

in both the amplitudes and the phases are consistent with zero.

Using eqs. (2.11)–(2.13), the values for the triple-product asymmetries are derived from

the measured parameters and given in table 3. The true asymmetries are consistent with

zero, showing no evidence for physics beyond the Standard Model. In contrast, all but

one of the fake asymmetries are significantly different from zero, indicating the presence of

final-state interactions.

The systematic uncertainties on the measured amplitudes, phases and triple-product

asymmetries are summarized in table 4. The largest systematic uncertainties on the results

of the angular analysis arise from the understanding of the detector acceptance. The
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angular acceptance function is determined from simulated events as described in section 6.

An uncertainty, labelled ‘Acceptance’ in the table, is assigned to account for the limited

size of the simulation sample used. This is estimated using pseudo-experiments with a

simplified simulation.

A difference is observed in the kinematic distributions of the final-state particles be-

tween data and simulation. This is attributed to the S-wave components, which are not

included in the simulation. To account for this, the simulated events are reweighted to

match the signal distributions as expected from the best estimate of the physics param-

eters from data (including the S-wave). In addition, the events are reweighted to match

the observed distributions of the B0 candidate and final-state particle transverse momenta.

The reweighting is done separately for the two trigger categories and the nominal results

are recalculated using the reweighted simulation to determine the angular acceptance. The

difference between the weighted and unweighted results is taken as a systematic uncertainty

(labelled ‘Data/MC’ in the table).

A further uncertainty arises from the K+K−K+π− mass model used to determine the

signal weights for the angular analysis. The fit procedure is repeated using different signal

and background models. For the signal component a double Gaussian model is used instead

of the sum of a Gaussian and a Crystal Ball function. Similarly, the influence of background

modelling is probed using a first-order polynomial instead of an exponential function.

Other changes to the background model are related to the possible presence of additional

backgrounds. A possible small contribution from misidentified Λb → pK−K+K− and

Λb → pπ−K+K+ decays is added and the fit repeated. Finally, the lower bound of the

fit range is varied and the contribution from partially reconstructed B decays modelled.

The largest difference compared to the central values is assigned as an estimate of the

systematic uncertainty (labelled ‘Mass model’ in the table).

Alternative models of the S-wave contributions in both the K+K− and K+π− system

are considered. The default fit uses the LASS parameterization to model the K+π− S-wave.

As variations of this, both a pure phase-space model and a spin-0 relativistic Breit-Wigner

with mean and width of the K∗0 (1430) resonance are considered [1]. For the K+K− S-

wave a pure phase-space model is tried in place of the Flatté parameterization. The

largest observed deviation from the nominal fit is taken as a systematic uncertainty (column

labelled ‘S-wave’ in the table).

Various consistency checks of the results are made. As a cross-check candidates that are

in the overlap between the trigger categories are treated as TIS for the angular correction

in the fit rather than TOS. The dataset is also divided according to the magnetic field

polarity. The results obtained in these studies are consistent with the nominal results and

no additional uncertainty is assigned.

8 Direct CP rate asymmetry

The raw measurement of the rate asymmetry is obtained from

A =
N(B

0→ φK
∗0

)−N(B0→ φK∗0)

N(B
0→ φK

∗0
) +N(B0→ φK∗0)

. (8.1)
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Parameter Definition Fitted value

fL 0.5(|A0|2/FP + |A0|2/FP) 0.497± 0.019± 0.015

f⊥ 0.5(|A⊥|2/FP + |A⊥|2/FP) 0.221± 0.016± 0.013

fS(Kπ) 0.5(|AKπS |2 + |AKπS |2) 0.143± 0.013± 0.012

fS(KK) 0.5(|AKKS |2 + |AKKS |2) 0.122± 0.013± 0.008

δ⊥ 0.5(argA⊥ + argA⊥) 2.633± 0.062± 0.037

δ‖ 0.5(argA‖ + argA‖) 2.562± 0.069± 0.040

δS(Kπ) 0.5(argAKπS + argA
Kπ
S ) 2.222± 0.063± 0.081

δS(KK) 0.5(argAKKS + argA
KK
S ) 2.481± 0.072± 0.048

ACP0 (|A0|2/FP − |A0|2/FP)/(|A0|2/FP + |A0|2/FP) −0.003± 0.038± 0.005

ACP⊥ (|A⊥|2/FP − |A⊥|2/FP)/(|A⊥|2/FP + |A⊥|2/FP) +0.047± 0.074± 0.009

AS(Kπ)CP (|AKπS |2 − |A
Kπ
S |2)/(|AKπS |2 + |AKπS |2) +0.073± 0.091± 0.035

AS(KK)CP (|AKKS |2 − |AKKS |2)/(|AKKS |2 + |AKKS |2) −0.209± 0.105± 0.012

δCP⊥ 0.5(argA⊥ − argA⊥) +0.062± 0.062± 0.005

δCP‖ 0.5(argA‖ − argA‖) +0.045± 0.069± 0.015

δS(Kπ)CP 0.5(argAKπS − argA
Kπ
S ) +0.062± 0.062± 0.022

δS(KK)CP 0.5(argAKKS − argA
KK
S ) +0.022± 0.072± 0.004

Table 2. Parameters measured in the angular analysis. The first and second uncertainties are

statistical and systematic, respectively.

Asymmetry Measured value

A1
T (true) −0.007± 0.012± 0.002

A2
T (true) +0.004± 0.014± 0.002

A3
T (true) +0.004± 0.006± 0.001

A4
T (true) +0.002± 0.006± 0.001

A1
T (fake) −0.105± 0.012± 0.006

A2
T (fake) −0.017± 0.014± 0.003

A3
T (fake) −0.063± 0.006± 0.005

A4
T (fake) −0.019± 0.006± 0.007

Table 3. Triple-product asymmetries. The first and second uncertainties on the measured values

are statistical and systematic, respectively.

The numbers of events, N , are determined from fits to the mKKKπ invariant mass dis-

tribution performed separately for B0 and B
0

decays, identified using the charge of the

final-state kaon. The dilution from the S-wave components is corrected for using the results

of the angular analysis.

The candidates are separated into the TIS and TOS trigger categories. In this study,

candidates that are accepted by both trigger decisions are included in both categories and
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Measurement Acceptance Data/MC Mass model S-wave Total

fL 0.014 0.005 0.002 0.001 0.015

f⊥ 0.013 0.002 0.001 0.001 0.013

fS(Kπ) 0.012 — 0.001 0.002 0.012

fS(KK) 0.007 — 0.002 0.003 0.008

δ⊥ 0.023 0.010 0.006 0.026 0.037

δ‖ 0.029 0.013 0.004 0.024 0.040

δS(Kπ) 0.045 0.026 0.004 0.062 0.081

δS(KK) 0.045 0.005 0.004 0.016 0.048

ACP0 — 0.002 0.002 0.004 0.005

ACP⊥ — 0.001 0.006 0.007 0.009

AS(Kπ)CP — 0.007 0.005 0.034 0.035

AS(KK)CP — 0.007 0.009 0.003 0.012

δCP⊥ — 0.003 0.001 0.004 0.005

δCP‖ — 0.005 0.002 0.014 0.015

δS(Kπ)CP — 0.005 0.003 0.021 0.022

δS(KK)CP — 0.002 0.002 0.003 0.004

A1
T (true) — 0.0005 0.0005 0.002 0.002

A2
T (true) — 0.0006 0.0005 0.002 0.002

A3
T (true) — 0.0002 0.0003 0.001 0.001

A4
T (true) — 0.0002 0.0003 0.001 0.001

A1
T (fake) — 0.0019 0.0017 0.005 0.006

A2
T (fake) — 0.0008 0.0008 0.003 0.003

A3
T (fake) — 0.0015 0.0006 0.005 0.005

A4
T (fake) — 0.0003 0.0004 0.007 0.007

Table 4. Systematic uncertainties on the measurement of the polarization amplitudes, relative

strong phases and triple-product asymmetries. The column labelled ‘Total’ is the quadratic sum of

the individual contributions.

a possible bias to the central value is treated as a systematic uncertainty. The obtained

raw asymmetries for the two trigger types are

ATOS
φK∗0 = +0.014± 0.043 and ATIS

φK∗0 = −0.002± 0.040 .

The direct CP asymmetry is related to the measured A by

ACP = A− δ with δ = AD + κdAP , (8.2)

where AD is the detection asymmetry between K+π− and K−π+ final-states, AP is the

asymmetry in production rate between B0 and B
0

mesons in pp collisions, and the factor

κd accounts for the dilution of the production asymmetry due to B0 −B0
oscillations.

The decay B0 → J/ψK∗0 is used as a control channel to determine the difference in

asymmetries

∆ACP = ACP (φK∗0)−ACP (J/ψK∗0) , (8.3)
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Parameter LHCb BaBar Belle

fL 0.497± 0.019± 0.015 0.494± 0.034± 0.013 0.499± 0.030± 0.018

f⊥ 0.221± 0.016± 0.013 0.212± 0.032± 0.013 0.238± 0.026± 0.008

δ⊥ 2.633± 0.062± 0.037 2.35 ± 0.13 ± 0.09 2.37 ± 0.10 ± 0.04

δ‖ 2.562± 0.069± 0.040 2.40 ± 0.13 ± 0.08 2.23 ± 0.10 ± 0.02

ACP0 −0.003± 0.038± 0.005 +0.01 ± 0.07 ± 0.02 −0.030± 0.061± 0.007

ACP⊥ +0.047± 0.072± 0.009 −0.04 ± 0.15 ± 0.06 −0.14 ± 0.11 ± 0.01

δCP⊥ +0.062± 0.062± 0.006 +0.21 ± 0.13 ± 0.08 +0.05 ± 0.10 ± 0.02

δCP‖ +0.045± 0.068± 0.015 +0.22 ± 0.12 ± 0.08 −0.02 ± 0.10 ± 0.01

Table 5. Comparison of measurements made by the LHCb, BaBar [8] and Belle [11] collaborations.

The first uncertainty is statistical and the second systematic.

since the detector and production asymmetries cancel in the difference. Assuming ACP to

be zero for the tree-level B0 → J/ψK∗0 decay, ∆ACP is the CP asymmetry in B0→ φK∗0.

The sample of B0 → J/ψK∗0 decays, where the J/ψ meson decays to a muon pair, are

collected through the same trigger and offline selections used for the signal decay mode.

Candidates are placed in the TOS trigger category if the trigger decision is based on the

decay products from the K∗0 meson only. Where the decay products from the J/ψ meson

influences the trigger decision, the candidate is rejected. The raw asymmetries obtained

separately for the two trigger types are

ATOS
J/ψK∗0 = −0.003± 0.016 and ATIS

J/ψK∗0 = −0.016± 0.008 .

After averaging the trigger categories based on their statistical uncertainty, the measured

value for the difference in CP asymmetries is

∆ACP = (+1.5± 3.2± 0.5) % ,

where the uncertainties are statistical and systematic, respectively. Systematic uncer-

tainties arise from the differences between the event topologies of the B0 → J/ψK∗0 and

B0→ φK∗0 decays. Differences in the behaviour of the events in the TIS trigger category

between the signal and control modes lead to an uncertainty of 0.25 %. A further uncer-

tainty of 0.4 % arises from the differences in kinematics of the daughter particles in the two

modes. The double counting of candidates in the overlap region leads to a possible bias on

the central value, estimated to be less than 0.1 %.

9 Conclusions

In this paper measurements of the polarization amplitudes and strong phase differences

in the decay mode B0→ φK∗0 are reported. The results for the P-wave parameters are

shown in table 5; these are consistent with, but more precise than previous measurements.

All measurements are consistent with the presence of a large transverse component rather

than the näıve expectation of a dominant longitudinal polarization.
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It is more difficult to make comparisons for the S-wave components as this is the

first measurement to include consistently the effect of the S-wave in the K+K− system,

and because the K+π− mass range is different with respect to the range used in previous

analyses. The measurements of the polarization amplitude differences are consistent with

CP conservation.

The results of the angular analysis are used to determine triple-product asymmetries.

The measured true asymmetries show no evidence for CP violation. In contrast, large fake

asymmetries are observed, indicating the presence of significant final-state interactions.

The difference in direct CP asymmetries between the B0 → φK∗0 and B0 → J/ψK∗0

decays is also measured,

∆ACP = (+1.5± 3.2± 0.5) % ,

where the first uncertainty is statistical and the second systematic. This is a factor of two

more precise than previous values reported by BaBar and Belle [8, 11] and is found to be

consistent with zero.
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7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
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e Università di Cagliari, Cagliari, Italy
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