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Abstract

Delusions are the persistent and often bizarre beliefs that characterise psychosis. Previous studies have suggested that their
emergence may be explained by disturbances in prediction error-dependent learning. Here we set up complementary
studies in order to examine whether such a disturbance also modulates memory reconsolidation and hence explains their
remarkable persistence. First, we quantified individual brain responses to prediction error in a causal learning task in 18
human subjects (8 female). Next, a placebo-controlled within-subjects study of the impact of ketamine was set up on the
same individuals. We determined the influence of this NMDA receptor antagonist (previously shown to induce aberrant
prediction error signal and lead to transient alterations in perception and belief) on the evolution of a fear memory over a
72 hour period: they initially underwent Pavlovian fear conditioning; 24 hours later, during ketamine or placebo
administration, the conditioned stimulus (CS) was presented once, without reinforcement; memory strength was then
tested again 24 hours later. Re-presentation of the CS under ketamine led to a stronger subsequent memory than under
placebo. Moreover, the degree of strengthening correlated with individual vulnerability to ketamine’s psychotogenic effects
and with prediction error brain signal. This finding was partially replicated in an independent sample with an appetitive
learning procedure (in 8 human subjects, 4 female). These results suggest a link between altered prediction error, memory
strength and psychosis. They point to a core disruption that may explain not only the emergence of delusional beliefs but
also their persistence.
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Introduction

Associative learning forms the basis for belief formation [1]. It is

driven by prediction error (PE) [1,2], and there is evidence that

altered PE signal drives the formation of delusions, the abnormal

beliefs that characterise mental illnesses like schizophrenia [3–5].

PE represents the mismatch between what we expect in a given

situation and what we experience [6]. It guides learning directly;

we form and strengthen explanatory associations (e.g. between

causes and effects) by minimizing PE [6]. In addition, PE guides

the allocation of attention [7]; we attend to and learn about stimuli

with unpredictable consequences. PE is represented in a range of

neural structures and circuits, most notably the midbrain

dopamine cells in area A10, the striatum and the prefrontal

cortex [8]. In addition to guiding learning about rewards, PEs are

vital to social [9] and perceptual learning [10] as well as the

formation of causal beliefs [1,2]. Based on these normative

observations, we have proposed [3,11–13] that, if PE signals occur

inappropriately, individuals would attend to and learn about

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e65088



stimuli, thoughts and percepts that others would ignore. As a

consequence, they would develop beliefs that do not reflect the

contingencies of the real world – delusions. There is growing

evidence that this may be the case [3–5]: people with delusions

exhibit inappropriate prediction error signals whose magnitude

correlates with delusion severity.

This model accounts for why delusions emerge but not for why

they persist. We argue [13–15] that disturbed PE, as well as

leading to erroneous updating of beliefs (and, hence, the

emergence of delusional ideas) may also be critical in their

persistence [13–15]. While this may appear counter-intuitive,

given that PE is associated with the flexible updating of learned

expectations [6], latterly it has been demonstrated that PE-driven

memory reconsolidation can strengthen memories in the absence

of reinforcement: specifically, the surprising re-presentation of a

retrieval cue can strengthen a memory [16]. Reconsolidation

occurs when memories are recalled into a labile state, integrated

with new information, and consolidated once more [17,18]. This

process depends on PE [19], that is, surprising information returns

related memories into a labile state [20]. Two competing processes

are evoked [21]: on the one hand, there is extinction initiated by a

negative PE signal, engendering competing learning [22] that

overrides the original memory [23]. Extinction memories involve

new learning, not simply forgetting of the old representation (as

demonstrated by the fact that memories of the reinforced situation

can recur spontaneously in rats and humans [23,24]). Negative PE

Figure 1. Study Design. A. Task Design. Target and control conditions for the food-allergy causal learning tasks. Subjects see that bananas cause an
allergy in their patient. Subsequently they see that bananas and mushrooms cause the allergy. Their prior learning about bananas should block new
learning about the mushrooms. In the final phase of training, subjects see the mushrooms causing the allergy; this violates any blocking that took
place in the previous Stage. Blocking trials are compared to control events that are matched for the presence of allergy as well as novelty and
familiarity (Avocado and Chilies). Likewise, at Stage 3, there are trials matched for novelty and familiarity that act as comparators for the blocking
violation events. The figure depicts key trial types. Filler cues were also presented to control for the relative frequency of allergic reactions. Each trial
type was presented 10 times for Stage 1 and 6 times for Stages 2 and 3 with the caveat that no trial type was repeated before all trial types had been
presented. B. Trial Design. On each trial, subjects saw a meal that their patient had eaten for 3 seconds. During this time, they made a prediction
response – pushing one button to predict an allergy and another to predict no allergy. They also held the button down for longer the more confident
they were that they were making the right choice. Next they were shown the effect of that meal on their patient. If he suffered an allergy, they would
see the words Allergic Reaction in red letters with a jagged border for 1 second. If there was no allergy, subjects saw the words No Allergy in green
letters with a green rectangle around it for one second. C. Memory Reactivation and Extinction Task. In a follow up placebo-controlled behavioral study
of ketamine, the same subjects from the scanning study attended the laboratory on three consecutive days twice (separated by at least one month).
On Day 1, they learned that one visual stimulus predicted the delivery of a 90dB loud noise with 70% contingency and another cue never predicted
load noise. The following day (Day 2) they saw the noise predicting cue whilst receiving an infusion of either ketamine or placebo. The next day (Day
3) they returned to the lab and observed the cues again in extinction. After 30 trials of extinction, they were reminded of the loud noise once more
and observed a further five repetitions of each cue in extinction. We tracked skin conductance responses to the cues on Day 1 and Day 3. The
subjects returned to repeat the procedure with different cues and received the other infusion the second time around.
doi:10.1371/journal.pone.0065088.g001

Prediction Error, Reconsolidation and Psychosis
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signals guide this new learning [22]. On the other hand, the

positive PE response to predictive cues [8,25,26] engages an

expectation of reinforcement and leads to the reminder-based

strengthening of the belief [21]. The precise balance between these

processes is driven by the magnitude, sign and timing of the

accompanying PE signal [19].

Given the growing evidence that the psychotic state is associated

with aberrant PE [3,4,27–31], we have suggested that this

extinction-reconsolidation balance may be fundamentally altered

in delusions [14]. That is, altered PE signal leads patients to attend

to and learn about events that healthy individuals would ignore

[3,11–14,31,32]. This accounts for the emergence of delusions,

which form as explanatory schemes [33]. But the same disturbance

means that the delusion will be frequently reactivated, employed to

explain subsequent experiences [34], and strengthened once more

[13,14,35]. This strengthening may share a cognitive basis with

the illusory truth effect, whereby judging the veracity of a statement

enhances later belief in its truth [36]. Patients with delusions are

more susceptible to the illusory truth effect, particularly for

judgments related to their delusions [37]. We hypothesise that in

psychosis, aberrant PE signal encourages inappropriate memory

strengthening and delusion fixity, relative to extinction [14].

Figure 2. Blocking Behavior and its Relation to Brain Responses. A. Behavioral Predictions For Blocked and Control Cues. Subjects predicted
with low confidence about the blocked cue, when exposed to it at Stage 3; confirming that blocking had taken place. Error bars represent SEM. Y-axis
represents subjects’ predictive strength; their degree of confidence (duration of predictive button push response) multiplied by correctness of their
prediction. Hence lower scores reflect uncertain and unstable predictions, which we observed to blocked cues when compared with blocking control
cues (whose causal association with the allergy is more robust). B. Relating Predictions about the Blocked Cue (Stage 3) to Blocking Responses. Subjects
who showed the lowest confidence when predicting what would happen following the blocked cue had the most attenuated right DLPFC response
during blocking trials. X-axis represents the right DLPFC parameter estimates extracted from a contrast image comparing blocking trials with blocking
control trials. Y-axis represents subjects’ behavioral predictions about the blocked cues prior to seeing their predictive outcomes at the first trials of
Stage 3. C. Relating Brain Responses During Blocking to those during Violation. Subjects with the most attenuated DLPFC response during blocking
showed the greatest right DLPFC response when that blocking contingency was subsequently violated. X-axis represents the right DLPFC response to
observing the blocked cue causing the allergic response during Violation (Stage 3), compared with control event. Y-axis represents right DLPFC
response to blocking trials compared with blocking-control trials.
doi:10.1371/journal.pone.0065088.g002

Prediction Error, Reconsolidation and Psychosis
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In short, we suggest that the same disturbance in PE may

account for both the emergence and the persistence of delusions.

We tested this hypothesis using a drug model of psychosis

[38,39]. In a previously published fMRI study, we quantified

individual neural responses to PE [40]. The same participants

were recruited to a placebo-controlled ketamine study, in which

we assayed the psychotomimetic effects of ketamine as well as its

impact upon the re-presentation of an aversive CS conditioned

24 hours previously (see Figure 1). We initially chose aversive

learning and memory reconsolidation because, of the few

reconsolidation studies in human subjects [20,41–44], none have

previously examined appetitive memory. We hypothesized that,

since ketamine engenders aberrant PE signal in response to

unsurprising events [38], it should induce reactivation and

strengthening of memories, and this effect should be directly

relatable to individual variability in PE signal, measured using

fMRI, as well as to the severity of ketamine-induced symptoms.

Given that it could be argued that any effect of ketamine could be

attributed to generalization of the unpleasant psychotomimetic

experience to the reactivated cue, we conducted a follow-up

behavioral study of appetitive conditioning (Study 2) in which an

independent sample of subjects.

We carried out two studies: Study 1, in which we relate PE

brain responses, Ketamine-induced psychopathology and keta-

mine effects on aversive memory reconsolidation, and Study 2, in

which we examine ketamine effects on reactivated appetitive

memories in a separate cohort of subjects. To be clear, the fMRI

study (Study 1a) was not set up to characterize the neural

correlates of memory reactivation or reconsolidation [44,45].

Rather it was conducted to capture individual differences in PE

brain response. Those individual differences then formed the basis

for exploring how variability in PE relates to the effects of

ketamine on memory reconsolidation and the genesis of psychosis-

like symptoms (Study 1b). A relationship between the neural

marker for PE and reconsolidation across our studies would

constitute evidence in favor of our hypothesis: PE disturbance is

key to the formation and maintenance of delusions [14]. Study 2

aimed to clarify the interpretation of Study 1b.

Figure 3. Brain Responses to Blocking and Violation of Blocking. A. Brain responses to Blocking vs. Control Trials. Right DLPFC responses to
blocking trials were significantly attenuated compared with control trials. Parameter estimates extracted from SPM in arbitrary units. Error Bars
represent standard error of the mean (SEM). B. Brain Responses to the Violation of Blocking. Violating the blocking at Stage 3 significantly engaged
right DLPFC. Parameter estimates extracted from SPM in arbitrary units. Error bars represent SEM.
doi:10.1371/journal.pone.0065088.g003

Prediction Error, Reconsolidation and Psychosis
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Methods

The study was approved by the Cambridge Local Research and

Ethics Committee and was carried out in accordance with The

Code of Ethics of the World Medical Association (Declaration of

Helsinki). All subjects gave written informed consent.

Study 1 – Subjects
18 (8 female) right-handed, healthy volunteers (aged 19–28)

were recruited through local advertisement. No subjects reported a

history of psychiatric illness, drug abuse or contra-indications for

MRI. We excluded subjects with any history of alcoholism as well

as current smokers [46]. One subject was excluded upon discovery

of a past history of psychiatric illness. Participants completed other

cognitive tasks under ketamine (examining spatial learning and

memory, bodily agency, instrumental agency and visual percep-

tion) [47,48]. Further observations will be reported elsewhere. For

Stage 1 (fMRI), participants attended for testing on one occasion.

For Stage 2, they attended on a total of six occasions (see below).

Study 1a comprised the fMRI study and 1b the placebo-

controlled ketamine challenge. For each participant these were

separated by a minimum of 4 weeks.

Study 1a – Functional Neuroimaging of PE signal. For

Study 1, the fMRI stage (Study 1a) involved a Kamin blocking task

[49] where initial causal learning blocked subsequent causal

associations from forming to a contingent but redundant stimulus

(see Figure 1). Blocking is a cornerstone of PE driven learning

theories [8]; in the absence of PE, there is no learning about the

blocked cue [50]. However, individuals with psychosis show

attenuated blocking [51] as do healthy subjects treated with

amphetamine [52], consistent with an aberrant PE account of

psychosis [3,13,32,38]. Individuals showing weaker blocking have

‘‘inappropriate’’ PE, driving them to attend to and learn about the

redundant blocked cue. This learning was captured behaviorally

(the degree to which subjects made confident predictions about the

blocked cue) and neurally (the magnitude of brain surprise

response to trials that violate blocking). That is, subjects with

stronger blocking should be more surprised to see the blocked cue

predicting a salient outcome, while those with weaker blocking

should be less surprised. The present procedure has some

similarities with the unblocking effect, previously demonstrated

in rodent conditioning [53] and human causal learning [54] and

used recently in experimental animals to clarify the neural

mechanisms of reward prediction and PE [55]. Although our task

does not involve reward per se, it has previously been used to

emphasize the importance of neural and behavioral PE mecha-

nisms in the formation of causal beliefs about the world in the

absence of explicit reward [1,2]. As in previous work, neural PE

responses to events that violated what had previously been learned

were used as a marker for the strength of previous learning [2].

Figure 4. GSR Responses to Fear Cues Across Study Days. A. Skin Conductance Responses to Cues after Initial Conditioning (Day 1). Subjects
means skin conductance responses to the final 3 trials at the end of initial conditioning on Day 1. Y-axis represents subjects Galvanic Skin Responses
to the cues (ketamine in red, placebo in blue; solid lines represent the to be reactivated cues (CS1) and dashed lines represent CS2 (non-predictive and
non-reactivated). Error bars represent SEM. B. Skin Conductance Responses to Cues in Extinction (Day 3). Subjects showed an elevated skin conductance
response to the ketamine-reactivated cue compared with the cue reactivated under placebo. Error bars represent SEM. Line graph: Y-axis represents
subjects GSR responses to blocks of four extinction trials to cues reactivated under ketamine and placebo. Ketamine data are shown in red, placebo in
blue; solid lines represent the reactivated cues (CS1) and dashed lines represent CS2 (non-predictive and non-reactivated). Error bars represent SEM. C.
Skin Conductance Responses to Cues Following US reminder (Day 3, post extinction). When subjects were re-exposed to the loud noise outcome and
then presented with the cues 5 more times in extinction, responses to the ketamine reactivated cue returned most strongly. Y-axis represents
galvanic skin conductance response. Ketamine data are shown in red, placebo in blue; solid lines represent the reactivated cues (CS1) and dashed
lines represent CS2 (non-predictive and non-reactivated). Error bars represent SEM.
doi:10.1371/journal.pone.0065088.g004

Prediction Error, Reconsolidation and Psychosis
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Furthermore, we assayed brain responses during blocking trials

(compared with control events matched for novelty, familiarity and

contingency with the outcome) as a further metric of aberrant PE

– those subjects who imbue the redundant blocked cue with causal

significance ought to have responses in PE-related regions during

blocking trials – providing a neural metric of their aberrant PE at

the time of the redundant trials.

We used an established causal learning approach, in which

learned expectations are violated to produce a prediction error [2].

We examined Kamin blocking, in which prior learning interferes

with what is subsequently acquired [49]. Subjects were asked to

imagine themselves working as an allergist confronted with a new

patient ‘‘Mr. X’’. Trials comprised presentation of a food picture

(representing a meal eaten by Mr. X), a predictive button push

response by the subject and, following this, an allergic-reaction or

no reaction outcome. Subjects held the button down longer the

more confident they felt in their prediction [2], providing a

sensitive assay of learning as follows:

Predictivestrength~Rx(lengthofbuttonpush)

R is the predictive response (coded by +1 for prediction of an

allergy and –1 for prediction of no allergy). The blocked cue

induces a near zero score, since subjects should not learn about it.

Trial sequence. Training consisted of three phases: Learning;

in which prior expectancies were developed, Blocking; in which

those prior expectancies ‘blocked’ new learning, and Violation;

which provided a metric for the strength of blocking. In brief, the

key trials in Stage 1, Learning, comprised of single foods that caused

or did not cause the allergy. There were also meals presented in

this stage, which comprised of two different foods and were

Figure 5. Responses to Fear Cues and their Relationship to PE Brain Responses. A. Ratings of the Cues after Extinction and their relationship
to Violation Responses. Subjects rated the cue reactivated under ketamine as significantly more arousing than the cue reactivated under placebo.
Those same subjects showed an aberrant striatal response during the violation of blocking indicative of inappropriate learning. Error bars represent
SEM. Bar Graph: Y-axis represents subjects Final Arousal Ratings after the extinction trials, corrected by their initial ratings of the cues at baseline, such
that residual ratings reflect conditioning. Scatterplot: X-axis represents those same Arousal ratings. Y-Axis represents parameter estimates extracted
from right striatum from the contrast of blocking violation trials with their matched control events. B. Skin Conductance Responses to Fear Cues and
their relationship to violation Responses. Subjects showed an elevated skin conductance response to the ketamine-reactivated cue compared with the
cue reactivated under placebo. Subjects who showed the strongest skin conductance responses to cues reactivated under ketamine also showed the
most inappropriate DLPFC response to the violation of blocking, indicating that they had learned inappropriately about the blocked cue. Error bars
represent SEM. Line graph: Y-axis represents subjects GSR responses to blocks of four extinction trials to cues reactivated under ketamine and
placebo. Scatterplot: X-axis represents the GSR to the first extinction trial (Ketamine minus placebo). Y-Axis represents parameter estimates extracted
from right DLPFC from the contrast of blocking violation trials with their matched control events.
doi:10.1371/journal.pone.0065088.g005

Prediction Error, Reconsolidation and Psychosis
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employed as fillers such that subjects were not surprised by the

appearance of meals of two foods during the subsequent blocking

phase. In the Blocking phase, single items from Stage 1 were paired

with novel food items. Having previously learned that a food from

Stage 1 caused the allergy should block new learning to the novel

food. Two separate blocking contingencies were presented,

represented by different foods. In the blocking control condition,

which served as a comparator in our imaging analysis (see below) a

food that previously predicted no allergy was paired with a novel

food and this compound caused the allergic reaction. In the final

Violation phase, one blocked cue was shown causing the allergic

reaction; responses to this cue were compared with those to the

novel blocking control food leading to the allergic reaction (See

Figure 1 for more information). In order to control for novelty,

familiarity and contingency reversal, one of the cues subjected to

blocking at Stage 2 was presented causing no allergy. Other filler

cues were presented to balance for the presence and absence of an

allergic reaction, across trials involving single foods and com-

pounds of two foods. The food stimuli used were identical to those

used in our prior work [2,3,38,56]. As in previous studies, the role

played by the cues was randomized and counterbalanced across

subjects such that variance in salience of the cues and their

contingency with the outcomes were not confounded [2,3,38,56].

We focused our behavioral analyses on confirming that blocking

did indeed occur in our subjects. To this end, we planned a paired

t-test on subjects’ prediction confidence for the first trial of Stage 3

on which they see the blocked cue alone (mushrooms in Figure 1)

compared with their initial prediction the first time they saw the

blocking control cue alone (chilies in Figure 1). Mean predictive

confidence ratings were calculated such that subjects’ responses to

the initial presentations of blocking and control cues for both

contingencies (confirmed and violated) both contributed to the

behavioral analysis. This was legitimate because up until this point

(i.e., before subjects saw the outcome at the first trial of Stage 3),

the novelty, familiarity and contingency with the outcome of these

parallel causal contingencies were identical.

fMRI Data Acquisition
We used a Siemens Trio scanner operating at 3 Tesla. 720

gradient echo T2*-weighted echo-planar images depicting blood

oxygenation level-dependent contrast were acquired for each

subject. The first seven images were discarded to avoid T1

equilibration effects. The remaining images covered the three task

phases that ran continuously, in series; Stage 1 (Learning, 10

repetitions of each trial type) followed by Stage 2 (Blocking, 6

repetitions of each trial type) followed by Stage 3 (Violation, 6

repetitions of each trial type). Images were positioned parallel to

the anterior commissure–posterior commissural line and com-

prised 35 slices, each of 2 mm with a 0.5 mm interslice gap. A

repetition time of 1620 ms was used with an echo time of 30 ms

and 90u flip angle. The scanner had a 192 mm field of view with a

64664 data matrix.

fMRI Data Analysis
fMRI data were analyzed using SPM5 (Wellcome Department

of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.

Figure 6. Relating Cue Responses to Psychotomimetic Response. The relationship between ketamine induced aberrant salience and skin
conductance responses to the cue reactivated under ketamine. Subjects who experienced the most severe aberrant salience also showed the strongest
skin conductance responses to the cue reactivated under ketamine. Plot features the difference in GSR response to the cue reactivated under
ketamine from the cue reactivated under placebo on x-axis, CADSS perceptual subscale score (e.g., endorsing that background noises seemed louder,
colors seem brighter, objects appeared to stick out from the background) on the y-axis.
doi:10.1371/journal.pone.0065088.g006

Prediction Error, Reconsolidation and Psychosis
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uk/spm). Images were realigned, spatially normalized to a

standard template and spatially smoothed with a Gaussian kernel

(8 mm at full width half maximum). The time series in each session

were high-pass filtered (to a maximum of 1/120 Hz) and serial

autocorrelations were estimated using an AR(1) model. The

average haemodynamic response to each event was designated at

the presentation of the outcome. Trials were modeled using a

canonical, synthetic haemodynamic response function used as a

covariate in a general linear model. A parameter estimate was

generated for each voxel for each event. Responses were

parametrically modulated by the subjects’ confidence in their

prediction for that event. Individuals’ contrast images, derived

from the pair-wise comparisons between key events, were then

entered into a second-level group analysis for each of the stages.

Given our a priori hypotheses and prior work [3,38], we used the

PickAtlas tool [57] to confine analyses to a single mask comprised

of a series of regions of interest (ROI), total volume 1805 voxels:

The five ROIs that comprised our mask were: right lateral

prefrontal cortex (rPFC, a sphere of radius 10 mm centered on 50,

30, 28, the centroid generated by averaging across our prior

studies of causal reasoning [2,38,56,58]), left and right striatum

and left and right substantia nigra (defined anatomically using the

tool [57]). Hence, responses and relationships in these regions

were tested simultaneously by applying the mask.

Brain responses to events that violated blocking (i.e. events when

the blocked cue was shown causing the allergy, Mushrooms in

Figure 1) were compared with unsurprising control cues (Chili in

figure 1). Subjects who blocked most should be most surprised by

the blocked cue causing the allergy, indexed as more extensive

frontostriatal activation in response to such trials.

We also identified brain responses to blocking trials (banana and

mushrooms, Figure 1) relative to matched control events (avocado and

chilies, Figure 1). This comparison revealed the brain regions

engaged whilst blocking was taking place.

We aimed to determine the relevance of individual PE-

responsiveness to the effects of ketamine on subsequent memory

expression. Therefore, we computed correlations between phase 3

violation-related activation in the key ROIs (all 5 ROIs were

combined into a single mask, volume 1805 voxels) and the effects

of ketamine on subjective cognitive task performance applying

small volume correction for multiple comparisons [59]. For each

correlation we report the z-score in the particular regions

implicated. All reported findings were associated with false

discovery rate corrected p-values less than 0.05 [60] across the

entire mask which comprised all ROIs. For illustrative purposes

we plot the relationships between brain responses and behavioral

ratings. We are aware of the potential for statistical non-

independence or circularity in correlative analysis [61] and hence

we do not re-compute Pearson’s r-values for the relationship

between the parameter estimates from our fMRI models and the

cognitive measures of interest.

We computed the difference between the magnitude of ratings

and Galvanic Skin Responses (GSR) to the cue reactivated under

ketamine and its counterpart reactivated under placebo for each

subject. Post-reactivation GSR responses were defined as the

average response to the first block of 5 trials in extinction on Day

3. Ratings of valence and arousal were taken at the end of the

extinction session and corrected by the ratings at the end of Day

1.

Figure 7. Relating Cue Responses to Aberrant PE During Blocking. The degree to which subjects inappropriately engage DLPFC during
blocking trials correlated positively with their tendency to stronger GSR responses to ketamine-reactivated cues. This result is internally consistent
with the Stage 3 finding – excessive responses during blocking and attenuated responses during its violation portend further memory strengthening
in the context of ketamine. Plot features the difference in GSR response to the cue reactivated under ketamine from the cue reactivated under
placebo on x-axis, rDLPFC responses during blocking trials (compared with control trials) on the y-axis.
doi:10.1371/journal.pone.0065088.g007
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Study 1b – the effect of ketamine on memory
reactivation

In the drug study (Study 1b, separated from Study 1a by at least

4 weeks), we employed ketamine as means of engendering

psychotogenic aberrant PEs and we assayed the effects of

reactivating a memory in the presence of such signals. As well as

reporting their psychosis-like experiences (captured using a

standard rating scale – see below), subjects completed a

reconsolidation task involving initial Pavlovian conditioning of a

picture stimulus as a predictor of an aversive auditory stimulus

followed by re-presentation of the picture cue 24 hours later

during ketamine or placebo infusion. The day after ketamine or

placebo infusion, we tracked subjects’ responses to the picture cue

in extinction (i.e. in the absence of the aversive auditory stimulus).

The study was a double-blind, placebo controlled, randomized,

within-subjects investigation of the effects of intravenous ketamine

(the order of placebo and ketamine infusions was counterbalanced

across subjects). An un-blinded clinician administered the

infusions, however those administering cognitive tests and

acquiring symptoms ratings remained blind. Subjects attended

on two main study visits, once for drug, the other for placebo

infusion. On the drug day, subjects received a computerized target

controlled infusion of ketamine (200 ng/ml plasma) whilst they

performed a series of cognitive tasks and a clinical interview

exploring the presence, nature and severity of any psychotic

symptoms. On the placebo day, a saline infusion was administered

whilst subjects performed parallel versions of the cognitive tests

and clinical interviews. There was a one-month washout period

between drug and placebo visits to avoid effects related to activity

of ketamine’s metabolites.

Infusion protocol. Intra-venous catheters were inserted into

the forearms, bilaterally, for ketamine infusion and serial blood

sampling. Racemic ketamine (2 mg/ml) was administered by

target-controlled infusion system using of a Graseby 3500 syringe

driver pump (Graseby Medical Ltd, UK) under the control of

Stanpump software (Freely available courtesy of Shafer S. http://

opentci.org/doku.php?id = code:code). Steady state concentra-

tions were implemented by administering a bolus, followed by

Figure 8. Appetitive Memory Reactivation. A. Liking ratings of the liquid predicting cues. Behavioral ratings of the cues on the first extinction trial
(Day 3), following reactivation under ketamine or placebo (Day 2). Subjects liked the cue that had been reactivated under ketamine more than they
liked the other cues and the cues from the placebo session. Error bars represent SEM. B. Anticipatory sucking responses to the liquid predicting cues.
Anticipatory sucking in response to the first presentation of each cue type in extinction (Day 3) following reactivation under ketamine or placebo
(Day 2). Subjects engaged in more anticipatory sucking prior to the cue that was reactivated under ketamine, the day after the ketamine session than
the non-reactivated cues and the cues reactivated under placebo. Error bars represent SEM.
doi:10.1371/journal.pone.0065088.g008
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an infusion whose rate was recalculated every 10 seconds;

designed to replace drug removed by redistribution and

metabolism. The infusion rates required for the bolus and

maintenance infusion rates were determined by an algorithm in

Stanpump, using a pharmacokinetic model for ketamine.

Fear conditioning, Reactivation and Extinction. This

aspect of the procedure required six visits (three for placebo,

three for ketamine). The day before the ketamine or placebo

session (Figure 1, Day 1), subjects underwent aversive condition-

ing; learning about two visual conditioned stimuli (CS1 and CS2,

each presented on 30 occasions). These were pictures of spiders, to

which fear conditioning accrues readily [41,62,63].

On each trial, a cue appeared on screen for 4000 msec. CS1

predicted the delivery of a 750 msec 90dB noise unconditioned

stimulus (US) through noise canceling headphones on 70% of

trials. CS2 never predicted the US. We measured skin conduc-

tance responses from the non-dominant left hand. There was a

mean inter-trial interval of 10 seconds. At the end of conditioning

on experimental Day 1, subjects rated the two cues for valence and

arousal.

On the drug or placebo infusion day (Figure 1, Day 2), subjects

were fitted with the electrodes for recording skin conductance

responses and the headphones for delivery of aversive USs. They

were shown one single instance of CS1. The aversive noise was not

Figure 9. Memory Strengthening or Extinction Failure? A. Skin Conductance Responses. Skin conductance responses to the CS+ at the end of
Day 1 (pre-reactivation, mean of final three trials) and the beginning of Day 3 (post reactivation, trial 1) for both the ketamine and placebo visits. Error
bars represent SEM. B. Sucking Pressure. Anticipatory sucking to the cue predicting pleasant juice at the end of Day 1 (pre-reactivation) and the
beginning of Day 3 (post-reactivation). Error bars represent SEM. C. Expectancy Ratings. Anticipatory liking ratings in response to the cue predicting
pleasant juice at the end of Day 1 (pre-reactivation) and the beginning of Day 3 (post-reactivation). Error bars represent SEM.
doi:10.1371/journal.pone.0065088.g009
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presented. Their skin conductance was not recorded during this

single trial.

The day after the ketamine or placebo session (Figure 1, Day 3),

CS1 and CS2 were presented a further 20 times, and neither cue

predicted the US. Subsequently five un-cued USs were played and

the cues were each presented again five times to quantify

reinstatement of responding [41].

Since memory reconsolidation and extinction appear to be

competing processes [14,21] and differentially sensitive to

reminders of the unconditioned stimulus [41,42], we re-presented

the aversive auditory stimulus followed by further extinction

training through which we quantified the degree to which

responding to the predictive cue could be re-evoked and re-

extinguished, reasoning that reminders of the unconditioned

stimulus should re-evoke responding to the conditioned stimulus

[41]. If a memory cannot be reinstated, then we can be more

confident that its reconsolidation has been blocked [41]. On the

other hand, if responding is reinstated more strongly for the

ketamine-reactivated cue than the placebo-reactivated cue, we can

be more confident that we enhanced memory strength via

reconsolidation [64].

At the end of the procedure, subjects rated the cues for valence

and arousal.

Subjects’ GSR responses were recorded using 9 mm Ag/AgCl

electrodes filled with electrolyte paste and placed on the

hypothenar surface and a BIOPAC MP150 system acquiring at

a frequency of 50 Hz in concert with a PC running Acknowledge

software (version 3.7).

We designated the 2 seconds prior to the onset of an event as a

baseline and recorded the mean galvanic skin conductance

response in microsiemen (mS). For each event, we identified an

8 second period following its onset and recorded the maximum

skin conductance in mS [65]. We subtracted the baseline from the

maximum response for each event thus identifying the skin

conductance response to each event. To confirm acquisition of

differential conditioning, we computed the mean GSR response to

the final 5 CS1 trials and the final 5 CS2 trials on Day 1. For

analysis of the 20-trial extinction session, we calculated a mean

skin conductance score for 4 blocks of 5 trials comprising the 20

extinction trials. To examine reinstatement, we computed GSR

responses to each of the final 5 non-reinforced CS1 and CS2 trials.

Clinical Interview. Subjects’ symptoms were rated using the

clinician administered dissociative states scale (CADSS) [66].

Planned analyses: Linking study 1a with study 1b
We sought to examine the relationship between the neural,

behavioral and clinical datasets to test our hypothesis – that

variation in prediction error signal would correlate with the effects

of ketamine on memory reconsolidation and that subjects’

behavioral responses following the reconsolidation manipulation

would relate to the severity of their psychosis-like symptoms. Given

that multiple experiments were conducted to examine this

hypothesis, the potential for type-I error is high. We avoided this

potential by focusing our correlational analyses on our a-priori

predictions. First, our prior work related PE signal with the

perceptual aberration sub-scale of the CADSS [38], hence, when

relating imaging or behavioral findings to clinical data, we only

examined this subscale. Next, our primary dependent variables

coding the impact of ketamine during reactivation on reconsolida-

tion were three-fold – subjects’ GSR responses during initial

extinction and their ratings of valence and arousal post-extinction.

In order to limit our exposure to type-I error, we planned only to

bring through the variables (of those 3) that were significantly

impacted by ketamine to the regression analysis. We did not relate

the reinstatement data to the neural or clinical data as they were

gathered in order to confirm and inform upon any behavioral

effects that we observed during extinction (i.e. whether or not we

had modulated reconsolidation or blocked extinction). Finally, our

plan was hierarchical; we related the neural and behavioral data

(again, only those variables that were significantly impacted by

ketamine), given any significant associations, we then explored the

link between those behavioral variables and the clinical data

(summarized by the perceptual subscale).

Therefore, the maximum number of potential regression

analyses we could have computed was 6: three separate regressions

of neural data on GSR, Valence and Arousal and three regressions

of CADSS perceptual subscale on GSR, Valence and Arousal. In

practice, given the results we obtained (see below), we computed

four correlations: 2 between brain and behavioral data, and 2

between behavioral and clinical scales. These analyses harnessed

the power of individual differences across subjects, constrained

however, by our prior work [3,38] and hypotheses [14].

Study 2 – Ketamine’s effects on reconsolidation of
appetitive memory

As in Study 1b, this study employed a double-blind, placebo

controlled, randomized, within-subjects design to assess the effects

of intravenous ketamine on memory reactivation and subsequent

reconsolidation, appetitive memory for juice rewards in this case.

Subjects were 8 healthy volunteers who met the inclusion

exclusion criteria for experiment 1 (4 female, aged 19–33).

As before, subjects attended on two main study sessions, once

for ketamine, the other for placebo infusion. On the drug day,

subjects received an infusion of ketamine (200 ng/ml plasma,

administered by an un-blinded clinician exactly as in experiment

1) whilst they performed a series of cognitive tasks (to be reported

elsewhere) and a clinical interview exploring the presence, nature

and severity of any psychotic symptoms. On the placebo day, a

saline infusion was administered whilst subjects performed parallel

versions of the cognitive tests and clinical interviews. There was a

one-month washout period between drug and placebo visits to

avoid effects related to activity of ketamine’s metabolites.

Reconsolidation of appetitive memories. The reconsoli-

dation memory design followed the structure of experiment 1

closely. Subjects attended the laboratory on 6 occasions, 3 for the

drug arm of the study and 3 for the placebo arm. Drug and

placebo were administered in a randomized counterbalanced

order.

On Day 1 the participant sat in front of a computer screen,

holding four reward delivery tubes in their mouth. Three of these

tubes, before reaching the mouth, converged on a 3 to 1 valve,

allowing three different rewarding liquids to be received through

one emerging tube that formed a mouthpiece and ensured the

participant was comfortable during the task.

One of three visual stimuli (conditioned stimulus – CS) was

presented on a computer screen, followed by the delivery of a

liquid reward (unconditioned stimulus – US) corresponding to that

CS. One of three NE-510 OEM High Pressure Syringe Pumps

delivered 0.9 ml of liquid reward per infusion, through each

delivery tube. Visual CS presentation and liquid US delivery were

controlled using in-house computer software.

One cue predicted the delivery of blackcurrant juice drink,

another the delivery of orange juice drink, and the third predicted

water delivery. The first two cue-outcome pairings engendered

positive associations between the previously neutral cues. The

water US served as a neutral outcome. Each cue-outcome pairing

was presented 25 times.
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The final tube attached to the mouthpiece allowed monitoring

of the pressure changes that occurred throughout the trial (to this

end, participants are instructed to use their lips to form a tight seal

round both tubes throughout the task). Pressure measurements

were made with a BiopacTM data acquisition system, which

amplified and digitized the pressure signal that was then recorded

using the ‘AcknowledgeTM 3.9.0’ software package.

During CS presentation, subjects anticipated how much they

would like liquid they were about to receive by selecting a number

between 1 and 9 on a computer keyboard, during presentation of

the CS (1 = dislike, 9 = like very much).

On Day 2, whilst looking at the computer screen, the

participant held the tubes in their mouth as per Day 1. However,

just one trial occurs. The CS that predicted juice reward (either

blackcurrant or orange randomized and counterbalanced across

subjects) was presented and subjects made their anticipatory liking

rating. Pressure changes were not measured.

On Day 3, participants held the tubes in their mouths and were

presented with the CSs as per the learning phase. They were

instructed to rate their anticipated liking of the liquid rewards,

from 1 – 9, as they had in the learning phase. However, no liquids

are delivered. Each CS was presented 15 times. Their anticipatory

sucking during the CSs was also recorded.

Results

Study 1
Study 1a: Behavioral results. Subjects showed clear

evidence of behavioral blocking. They were less likely to predict

an allergy when confronted with the blocked cue, and their

predictions were less confident (t = 7.169, 2-tailed, d.f. = 16,

p,0.0001 (Figure 2A).

Study 1a: fMRI results. Presenting the blocked cue causing

the allergy engendered a PE response in rPFC (x = 42, y = 18,

z = 20. z-score = 2.50. p,0.05) and bilateral head of caudate

(x = 26, y = 16, z = 6. z-score = 2.99, p,0.05; x = 4, y = 14, z = 6.

z-score = 2.23 p,0.05), when compared with control trials

(Figure 3B). Blocking trials were associated with an attenuated

response in rPFC relative to control trials (x = 42, y = 18, z = 20.

p,0.05, Figure 3A). Subjects with the greatest reduction in rPFC

response to blocking (Stage 2) showed the greatest subsequent

evidence of blocking. That is, they showed a reduced tendency to

predict an allergy in response to the blocked cue at Stage 3

(z = 3.96, p,0.05, Figure 2B). As well as the rPFC response to

blocking predicting subsequent behavior, it also predicted the

magnitude of brain response to the subsequent violation of

blocking (z = 3.77, p,0.05 Figure 2C).

In brief, the behavioral and neural responses to blocking

indicated the success of this experimental manipulation and were

strongly consistent with our previous studies indicating a role for

rPFC in error-dependent learning of causal associations. Having

established this, the key question was whether variation across

individuals in this PE response related to the effects of ketamine.

From Study 1a we can extract a measure of variation PE driven

belief formation between individuals. Study 1b had two aims: to

assess the influence of ketamine administration upon processes

related to belief persistence and to confirm that variation in

ketamine effects was related to variation in the belief formation

measure established in Study 1a.

Study 1b – within-subject placebo-controlled study of
ketamine

Study 1b: Ketamine plasma levels. The mean ketamine

plasma concentration across subjects was 259.8 +/285.6 ng/ml.

Study 1b: Psychopathology. Compared to placebo, keta-

mine increased perceptual aberrations (CADSS perceptual sub-

scale score, t = 4.748, d.f. = 14, p,0.0001), which are associated

with delusion-like ideation on ketamine [38,67], and phenome-

nologically similar to the delusional mood that portends delusion

formation [33,68–71].

Study 1b: Cognitive effects of ketamine. Conditioning

(Day 1) Subjects’ skin conductance responses were consistent with

differential conditioning to CS1 versus CS2 on the days prior to

ketamine and placebo infusion. Focusing on mean responses to the

last five trials in which each cue was presented, ANOVA revealed

a main effect of cue (CS1 vs. CS2, F(1,15) = 9.273, p,0.01) but no

difference between the cues that were to be reactivated under

ketamine or placebo (F(1,15) = ,0.557 p.0.4) and the difference

between CS1 and CS2 (i.e. learning) was equivalent for the cues

that were to be reactivated under ketamine and those to be

reactivated under placebo (F(1,15) = 0.111, p.0.7, Figure 4).

Hence, any subsequent effects of drug administration on

reactivated cues cannot be attributed to differential learning about

the to-be-reactivated cues before they were reactivated.

Extinction and reinstatement of conditioned cues
reactivated under ketamine or placebo

Post-Extinction Behavioral ratings. Note that all of these

results relate to the third day of testing, i.e., 24 hours after the

aversively trained cue had been re-presented under either

ketamine or placebo. The difference reported between ketamine

and placebo refers to changes in the impact of these cues arising

from the manipulation 24 hours earlier.

Pleasantness. ANOVA revealed neither a significant main

effect of ketamine, nor a significant drug by task interaction in

terms of how unpleasant the subjects found the cues.

Arousal. ANOVA revealed no significant main effect of

ketamine on arousal ratings. However, there was a significant drug

by task interaction; subjects rated the cue that had been associated

with delivery of the loud noise presented to them under ketamine

as more arousing than an equivalent cue that they had been

presented under placebo (F(1,15) = 4.69, p,0.05; Figure 5);

reactivating an aversive memory under ketamine enhanced the

salience of that memory.

Post reactivation Psychophysiology: Extinction, Reminder
and Reinstatement

We compared GSRs to the cue reactivated under ketamine with

those to its counterpart reactivated under placebo using within

subjects ANOVA. There was a significant main effect of task

(F(3,45) = 4.262, p,0.05); across blocks, responses extinguished.

Crucially, there was a main effect of drug (F(1,45) = 10.87,

p,0.01): Skin conductance responses to the cue reactivated under

ketamine were significantly higher than those to the cue

reactivated under placebo (Figure 4B).

There was no significant effect of ketamine on responses to the

loud noise US-reminders or subsequent habituation (data not

shown). That is, having ketamine 24 hours previous did not alter

subjects’ responses to un-cued loud noises.

Within-subjects ANOVA revealed stronger reinstatement to the

cue reactivated under ketamine manifest as a significant drug by

task interaction, F(1,15) = 2.113, p,0.05, Figure 4C).

Fear memory reactivation and prediction error. Subjects

who rated the cue reactivated under ketamine as more arousing

had a decreased PE response in the right striatum during the

violation of blocking in the causal learning task, assayed 4-weeks

earlier (z = 2.84, p,0.05, Figure 5A).
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Subjects with larger skin conductance responses to the

ketamine-reactivated cue demonstrated an attenuated prefrontal

response to the violation of blocking during causal learning

assayed one month previously (z = 2.86, p,0.05, Figure 5B).
Relating ketamine effects on memory reconsolidation to

ketamine induced aberrant salience. Subjects who experi-

enced most aberrant perceptual experiences (e.g., enhanced

loudness of background noises) as measured by the perceptual

subscale of the CADSS (related to aberrant PE in our prior work

[38], and hence predicted to be involved a priori) showed the most

ketamine-induced strengthening of their fear memories, manifest

as an enhanced skin conductance to the re-presentation of the cue

in extinction the day after the ketamine session (compared with

placebo, r = 0.741, p,0.005, Figure 6).

Post-hoc analysis: Relating Ketamine effects to brain
responses during blocking

Our measure of aberrant PE involved the brain response to the

violation of blocking. As a test of internal consistency, we assayed

the correlation between the memory strengthening effect of

memory reactivation under ketamine and responses during the

blocking trials. Consistent with the aberrant PE learning

interpretation, rDLPFC response to blocking events correlated

positively with enhanced GSR in extinction (z = 2.08, p,0.05,

Figure 7).

The role of ketamine in enhancing persistence of memory for an

aversive US in Study 1b might be due, in part or in full, to aversive

aspects of the ketamine experience somehow enhancing the

expression of CS-US knowledge, rather than the predicted

influence on processes involved in extinction and reconsolidation.

Study 2 therefore was conducted to determine whether the

effects of ketamine upon memory persistence would be observed

for an appetitive US (consistent with a direct influence upon

reconsolidation and extinction processes).

Study 2 – Appetitive learning (behavioral study only)
This follow-up study clarified the effects of ketamine on post-

reactivation memory processing.

Subjects’ anticipatory ratings of pleasantness reflected that by

the end of conditioning on Day 1, they had learned the CS-US

relationships. ANOVA revealed a main effect of cue (F(2,14) =

5.64, p,0.05), but no difference between the cues that were to be

reactivated under ketamine compared to those that were to be

reactivated under placebo 24 hours later (F(1,7) = 0.151, p.0.7)

and the difference between CS1 and CS2 was equivalent for the

cues to be reactivated under ketamine and those to be reactivated

under placebo (F(2,14) = 0.88, p.0.4). In addition, the difference

between anticipatory sucking pressure exerted to CS1 and CS2 was

not significantly different across visits (paired sample t-test on

difference in anticipatory sucking to CS1 and CS2, d.f. = 7,

t = 0.111, p.0.9), suggesting that this metric also indicated

equivalent differential conditioning on Day 1 for ketamine and

placebo.

Hence, subjects learned that the appetitive cues signified valued

juices rather than neutral solution. Furthermore, they did so to an

equivalent extent for cues associated with the ketamine session and

those associated with the placebo visit. Any differences observed

following reactivation could not be attributed to differences in

prior conditioning.

Repeated measures ANOVA of the pleasantness ratings subjects

gave for the cues revealed a trend toward a significant drug by cue

interaction (F(2,14) = 2.715, p = 0.1). When we examined exactly

the same contrast we conducted in our aversive memory

experiment, comparing ketamine reactivation to placebo reacti-

vation, there was a significant interaction (F(1,7) = 6.377, p,0.05):

cues reactivated under ketamine were rated as significantly more

pleasant than those reactivated under placebo in extinction the

following day (See Figure 8A). It is possible that association also

retrieved the non-reactivated control cue during the re-activation

on drug, hence the lack of significant interaction. However, the

differences between ketamine and placebo reactivated positive

cues are consistent with our findings from Study 1.

ANOVA revealed a significant drug by cue interaction

(F(2,14) = 4.074, p,0.05). Subjects applied greater sucking pressure

during the first exposure to the cue reactivated under ketamine

than its placebo reactivated counterpart as well as the un-

reactivated salient and neutral cues (Figure 8B).

Given the relatively small sample size, we did not examine

individual difference regression analyses for Study 2.

Discussion

We observed that individual variability in the PE signal

correlated with the strengthening of memories reactivated under

ketamine and that this strengthening effect was correlated with the

profundity of ketamine-induced perceptual disruptions. Further-

more, we partially replicated the strengthening effect in a new

cohort of volunteers in whom appetitive memories were reacti-

vated (there was only a trend towards drug by task interaction in

the pleasantness ratings. The interaction was significant for the

anticipatory sucking measures). Taken together, these findings

support the hypothesized link between PE, retrieval-based

memory modulation and psychopathology.

Our study demonstrated a clear blocking effect in human causal

learning. During blocking trials, there was the expected [50]

overall suppression of BOLD response in regions previously shown

to be sensitive to PE [2,3,38,56,72]. When blocked cues were

subsequently presented, group average predictive responses

indicated that subjects had not learned to associate these cues

with an outcome. Violation of that attenuated expectation was

expressed neurally as a PE response in key frontostriatal regions

[2]. Participants showing the lowest rPFC response during

blocking trials showed the greatest subsequent behavioral evidence

of blocking and the greatest subsequent neural ‘‘surprise’’ response

when particular blocked cues proved unexpectedly to be predictors

of an outcome (see Figure 2). More importantly, as we discuss

below, variations in PE responding predicted individual vulnera-

bility to the subsequent experiential and mnemonic impact of

ketamine.

We determined the influence of ketamine on reactivated

memories. Re-presentation of a pre-trained aversive cue under

ketamine compared to placebo was associated with elevated

ratings of unpleasantness and GSR when these were tested the

following day. Crucially, individuals showing aberrant PE in the

fMRI study were more susceptible to these enhanced effects. We

argue that this underlines the importance of aberrant PE and

subsequent memory processing in the pathophysiology of

psychotic symptoms. Put simply, the failure of PFC to show an

appropriate response to blocking (study 1a stage 2) and its ensuing

violation (stage 3) are predictive of an enhanced vulnerability to

the memory-altering effects of ketamine.

We considered the possibility that the strengthening of the

reactivated cue occurred because the cue was associated with an

aversive ketamine experience. However a similar (albeit weaker)

effect in an appetitive conditioning in study 2 militates against this

argument. For both aversive and appetitive reactivated cues,

strength of responding (GSR and anticipatory sucking respectively)

increased following ketamine. It is difficult to explain this
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observation in terms of attenuated extinction, since one would

expect consistent responding from Day 1 to Day 3 for the

ketamine reactivated cues and perhaps a decrease in responding

for the placebo reactivated cue, which we did not observe.

It is perhaps surprising that ketamine (a non-competitive

NMDA receptor antagonist with known amnestic effects [73])

appears to enhance reactivated memories. Initial pre-clinical

studies of pharmacological effects on reconsolidation have

demonstrated that NMDA receptor antagonism impairs or

prevents memory reconsolidation. Importantly, however, only

one rodent study employed ketamine as the NMDA blocking

agent that perturbed drug-memory reconsolidation [74], others

employ more potent NMDA receptor antagonists like MK-801 or

PCP. The difference between our work and the rodent work may

also have arisen because we are dealing with different response

systems in human and rodent subjects [75,76]. Behavioral studies

capture numerous measures of conditioning, ranging from

subjective ratings, skin conductance measures and startle responses

to conscious expectancies of subsequent outcomes. In the intact

organism, these measures often cross-validate. However, in a

reactivation-degradation procedure in human subjects, only some

of these measures are disrupted whilst other remain intact [42]:

startle responses are degraded whereas measures related to

conscious awareness are not. Electrodermal conditioning reflects

anticipatory arousal [77–79] and conscious awareness of contin-

gent relationships seems critical for the expression of skin

conductance responses [77–79]. These measures were the focus

of our present research and we did not record startle responses

(perhaps more akin to freezing in pre-clinical models). Further-

more, in considering the fact that a ketamine-induced memory

strengthening is counter-intuitive, it is notable that, ketamine,

when used as an anesthetic in accident victims, may enhance

PTSD symptoms [80], perhaps suggesting that aversive memories

are enhanced, although this claim is controversial [81]. Our data

suggest that both appetitive and aversive memories may be

enhanced, depending on what is brought to mind during the

ketamine experience. This must give us pause for thought when we

consider the increasing interest in using repeated ketamine as an

anti-depressant.

Intriguingly, in Study 1b, subjective and objective measures of

the strength of fear conditioning correlated with variability in

different components of the PE circuit: variation in electrodermal

response to a fear-cue reactivated under ketamine was correlated

with aberrant prefrontal PE responding whereas variation in the

lingering subjective arousal ratings of the fear-cue reactivated

under ketamine correlated with aberrant striatal responding.

These results are perhaps indicative of different roles for PE across

different regions: striatal signals may compute predictive value or

salience, whereas PFC PE may sculpt more complex global

expectations [82]. This distinction echoes that between model-free

and model-based reinforcement learning [83,84]. Both of these

processes are driven by PE [82] and may be important for

symptom generation and maintenance [3,12–15]. These data

provide preliminary support for our model; aberrant PE drives

delusion formation by imbuing stimuli, thoughts and percepts with

a salience that demands explanation. Such an explanation requires

rumination and memory reconsolidation, strengthening it inap-

propriately such that it eventually becomes impervious to

contradictory evidence [14].

Another important point to take into account is that, as well as

blocking NMDA receptors, ketamine engenders glutamate release

[85], which may stimulate AMPA receptors [85] and engage

intracellular signaling cascades that engender synaptogenesis [86].

For example, ketamine increases prefrontal extracellular signal

regulated kinase (ERK) [87], a key regulator of the fate of

reactivated memories [88]. Furthermore, memantine, an NMDA

antagonist like ketamine, has been shown to facilitate aversive

memory reconsolidation even when given two hours prior to

memory reactivation in day-old chicks [89].

Prior work has shown that ketamine increases cortical

excitability [90], increasing AMPA receptor stimulation [91].

Recently, transcranial direct current stimulation, which also

increases cortical excitability, has been shown to enhance the

strength of reactivated memories [92]. Rodent work has confirmed

the crucial role of AMPA receptor mobilization in this post-

reactivation strengthening effect [93]. Our own computational

modeling work suggests that ketamine induces dis-inhibition of

cortical microcircuits resulting in synaptic glutamate spillover

[94,95]. In brain slices, this ketamine induced increase in

glutamate release and EPSCs can be curtailed by propranolol

[96], the beta-adrenergic receptor antagonist that has been shown

to degrade reactivated memories across species [41]. Furthermore,

the aberrant salience experiences and delusion-like ideas (that we

presently relate to excessive PE driven memory reconsolidation)

are ameliorated by lamotrigine, a drug that blocks presynaptic

glutamate release and cortical excitability [97,98]. Taken together,

these data suggest that ketamine-induced psychosis results from

excessive glutamate release which engages aberrant prediction

errors and hence excessive memory strengthening (even if those

memories are false).

We should consider the possibility that ketamine is having a

primary and deleterious effect on extinction, a pathophysiological

process implicated in spontaneous confabulation, another delu-

sion-like phenomenon [99,100], akin to the phenomenology of

some ketamine experiences [12]. Indeed, extinction learning fails

to consolidate in patients with schizophrenia [101]. While this is a

reasonable consideration, a number of aspects of the experimental

design and findings do not support this explanation (see Figure 9).

First, day 1 entailed partial reinforcement and reactivation

involved a brief single presentation of the conditioned stimulus.

Both would shift the balance towards reconsolidation rather than

extinction [19,21]. Second, there was no sign of an extinction

effect for the placebo reactivation condition and, if anything, the

cue appeared to exert a stronger effect at the beginning of the post-

reactivation session (day 3) than it did at the end of learning on the

pre-reactivation session (day 1), see Figure 9. In short, a simple

explanation of these findings in terms of an attenuation of

extinction is unlikely.

Although schizophrenia is associated with amnesia [102],

patients do report hypermnesia for their symptom contents

[103,104], and while these may be false memories [15,105], they

may be vivid enough to engender post traumatic stress disorder

(PTSD) symptoms [106]. It is notable that such delusional false

memories can occur following long-term anesthesia that blocks

NMDA receptors [106]. The present data raise the intriguing

possibility that patients with schizophrenia rely on non-NMDA

mediated forms of synaptic plasticity to represent their world.

These learning mechanisms may produce less veridical but more

robust representations hence the bizarreness and persistence of

psychosis.

There are important caveats to the inferences we draw from

these data and clearly, they warrant various follow-up studies. To

begin with, the imaging effects we report are of small magnitude

and the sample sizes, particularly in study 2, are small.

Furthermore, future studies should include a non-reactivated

control condition, which we included in study 2 but not study 1. It

will be important to characterize PE and reconsolidation in

patients with fixed delusions since an important difference from
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ketamine is that, though the latter induces psychotic percepts and

delusion-like ideas, most subjects retain insight (although not

always [67]). It would also be useful in future studies to examine

the relationship between appetitive conditioning to primary

reward and our causal learning PE signal and important, too, to

assay the degree of arousal subjects report in future appetitive

studies, since this was the dimension modulated by ketamine and

related to striatal PE signal. Preclinical studies are underway in

order to replicate and interrogate this strengthening effect of

ketamine and its possible synaptic mechanisms. A more invasive

approach will permit investigation at the synaptic level and

circumvent the necessarily correlational approach adopted pres-

ently. Of course, correlation is not causation but it is a crucial first

step in demonstrating that processes (in this case, PE, memory

reconsolidation and delusions) are related [107] through shared

variation with individual differences in neural PE signal [108].

Overall, while we can only speculate on the precise underlying

mechanisms, the key observation here is that the same manipu-

lation that can render an individual vulnerable to delusion-like

ideas may also lead to memory persistence. These data are

consistent with a theoretical model of delusions in which

aberrations of a fundamental learning process, PE, can profoundly

and persistently affect an individual’s world view. Thus data thus

provide an empirical basis for a mechanistic understanding of

what has for a long time been considered ‘ununderstandable’ [34]: the

delusions that attend serious mental illnesses like schizophrenia.

They demonstrate, moreover, the potential insights that clinical

psychiatry may gain from developments in neuroscience.
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