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Abstract 

Laser structuring/texturing of freeform surfaces is attracting the attention of researchers and industry 

because it can enable high impact applications and also the technology can offer important 

advantages compared to alternative/conventional processes. So far, laser structuring/texturing has 

been applied mostly on planar surfaces, while employing it for 3D processing it introduces some 

disturbances that affect the processing conditions. In particular, Beam Incident Angle (BIA) and Focal 

Offset Distance (FOD) variations are two important processing disturbances that impact the resulting 

structures/textures on freeform surfaces and also their functional responses. Furthermore, those 

disturbances should be considered as constraints in planning the laser processing operations, i.e. 

when pre-processing 3D models by partitioning into laser processing fields, and also in designing the 

processing strategies. However, such constraints are always material specific for a given parameters’ 

domain and can be time-consuming to determine empirically. In this research, a model for calculating 

the accumulated fluence for generating Laser Induced Periodic Surface Structures (LIPSS) throughout 

the processed freeform surfaces is proposed. It considers the actual spatial intensity distribution of a 

Gaussian beam when processing 3D surfaces in the presence of varying FOD and BIA. It was 

demonstrated that the 3D surface processing leads to variations in their processing conditions, in 

particular changes of beam spot size that affect local fluence thresholds. The comparison of simulation 

and experimental results has shown that LIPSS main characteristics, i.e. their amplitudes and 

periodicity, can be predicted with acceptable accuracy. Also, changes in processing conditions caused 

by disturbances that affect LIPSS performance can be identified. The results of this research can be 

used to determine the BIA and FOD limits/tolerances within which the LIPSS functional response on 

freeform surfaces can be maintained within acceptable levels for any given application.  
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1. Introduction 

Laser structuring/texturing is known as advanced manufacturing process that can enhance surface 

properties without compromising excessively the throughput or costs. It draws the attention of 

researchers and industry because it offers selectivity, relatively high accuracy and flexibility, e.g. for 

3D processing, when compared to alternative/conventional processes. 

Laser Induced Periodic Surface Structures (LIPSS) are a particular type of submicron surface structures 

produced by ultrashort lasers that stand out among others due to their vast applicability and the fact 

that they can be generated on almost any engineering material. Firstly, they were found on 

semiconductors [1] but with the constant advances of ultrashort laser sources they had become a 

viable alternative for surface processing of metals [2]–[4], ceramics [5], metallic glasses [6], glasses [7] 

and polymers [8]. Because of LIPSS specific geometrical characteristics, all these materials benefit from 

added surface functionalities, such as improved wetting properties for self-cleaning  or anti-icing 

applications [9], [10], anti-bacterial surfaces for food industry [11], cell proliferation in medical 

implants [12], friction reduction [13], enhanced antireflection [14], [15] or they act as diffraction 

grating exhibiting structural angle-dependent colours utilised in hologram fabrication or 

counterfeiting applications [16].  

LIPSS appear on the material’s surface as ripple-like structures after irradiation with a polarised 

ultrashort laser beam and their characteristic are dependent on wavelength and processing 

parameters. In particular, laser fluence affects ripples depth while wavelength and incidence angle 

has an impact on periodicity and polarisation vector influences their orientation [17]. Typically, LIPSS 

emerge on a surface when the fluence is much lower than the ablation threshold of a given material 

and a relatively small number of pulses is required. The evolution of LIPSS on processed surfaces is as 

follows. Firstly, random nanostructures are created with features like nano holes, nano cavities or 

nano protrusions. A further increase of accumulated fluence, e.g. by increasing the number of pulses 

and/or their fluence, leads first to High Spatial Frequency LIPSS (HSFL) that then evolve gradually from 

Low Spatial Frequency LIPSS (LSFL) into grooves/bumps and spikes [18]. Currently, LSFL attracts more 

attention as they can be easily controlled, optimised and homogenously produced on large areas and 

thus offer capabilities for functionalising surfaces with required repeatability for a range of 

applications. 

So far, the LIPSS research was mostly focused on their generation and optimisation on planar surfaces 

because of the requirement to assess/characterise their functional response and also due to 

equipment related constraints. However, when the identified processing domains are applied onto 

non-planar surfaces, additional factors start affecting the LIPSS formation and also their functionality. 

These factors are disturbances that alter the processing conditions. The two most prominent ones are 

Beam Incident Angle (BIA) and Focal Offset Distance (FOD). Their influence on LIPSS formation was 

studied and it was reported that BIA mostly affects the LIPSS periodicity while FOD influences the 

average peak to valley amplitudes of generated ripples [19]. The presence of these disturbances can 

change laser processing conditions dramatically, and result in an interrupted LIPSS generation that 

consequently can affect the surface functional response. One way to counteract these undesirable 

effects when processing non-planar surfaces is to process them with a focused laser beam and always 

with normal incidence. However, such approach requires the use of multi-axis laser processing 

systems with simultaneous control of optical and mechanical axes in the beam delivery sub-system. 

Therefore, a more common approach is to maintain BIA and FOD within some pre-defined limits that 

can be determined experimentally and thus to maintain the LIPSS functional response within 

acceptable limits [20]. Then, such “tolerances” can be used to partition freeform surfaces, e.g. by 

employing so-called “freeform surface layering” [21] or by applying tessellation/triangulation 
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algorithms [22], [23], and thus to design and implement optimised processing techniques and 

strategies. 

It is worth mentioning that the procedure for verifying the BIA and FOD tolerances is always material 

specific for a given laser processing domain and can be time-consuming. Therefore, when LIPSS 

surface treatments are employed in industrial applications, there are available simplified models that 

can be used to determine the laser processing domains for a given material and thus to produce areas 

covered consistently and homogenously with LIPSS [24]. However, the results are valid only for planar 

surfaces without taking into consideration dynamic changes in processing conditions. Therefore, there 

is a need for analytical methods that can determine reliably processing tolerances for producing 

functionalised surfaces on non-planar surfaces.  

In this research, a model is proposed for assessing the accumulated fluence when processing non-

planar surfaces that accounts for the disturbances affecting the processing conditions. It considers 

actual spatial pulse intensity distributions in the presence of varying FOD and BIA. Ultimately, by 

simulating the processing conditions considering the effects from these disturbances and material 

optical properties, the LIPSS characteristics can be predicted, i.e. their amplitudes and periodicity. 

Thus, it is possible to judge indirectly about LIPSS functional response on complex surfaces where 

otherwise their properties are difficult to measure. 

 

2. Theory 

 

2.1 Ultrashort laser irradiation with an astigmatic Gaussian beam 

The existing models for ultrashort laser irradiation of materials usually assume an ideal Gaussian beam 

intensity distribution, i.e. a circular profile with symmetrical divergence above and below the focal 

plane, even when non-planar and inclined surfaces are processed [25]–[27]. This assumption can be 

acceptable in conditions where the effects of any processing disturbances can be simplified or even 

neglected. However, this is not the case anymore when a given laser structuring/texturing application 

is more sensitive to FOD and BIA variations. In addition, when laser sources are integrated into systems 

with relatively long beam paths incorporating several components, the beam reaching the substrate 

might be astigmatic. This type of Gaussian beams has two principal directions in the transversal planes. 

Its waists positions do not coincide and thus the beam is not always circular throughout the 

propagation axis and has elliptical cross-sections [28]. There are many applications where the 

presence of processing disturbances cannot be ignored and the actual Gaussian beam should be 

considered in the models. In this way, significant discrepancies in simulation results can be avoided, 

i.e. due to varying local fluence and pulse overlaps. 

It could be assumed that the Gaussian beam is a simple astigmatic one where the ellipses of constant 

intensity and phase are aligned and their orientation stays constant at every point along the beam 

path [29]. The two-dimensional local fluence intensity distribution of such beam on a processed 

surface can be described using the following equation: 

𝐹(𝑥, 𝑦, 𝑧) = 𝐹0 𝑒𝑥𝑝 (
−2

𝜔𝑥
2(𝑧)

𝑥2 +
−2

𝜔𝑦
2(𝑧)

𝑦2) (1) 

where 𝐹0 is the peak fluence expressed as: 
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𝐹0(𝑧) =
2𝑃

𝑓𝜋𝜔𝑥(𝑧)𝜔𝑦(𝑧)
 (2) 

where: 𝑃 is average power and 𝑓 - pulse repetition rate. Beam waists 𝜔𝑥 and 𝜔𝑦 of astigmatic beams 

depend on the position along the laser propagation axis, 𝑧, and they can be calculated as follows: 

𝜔𝑖(𝑧) = 𝜔0𝑖√1 + (𝜆
𝑧 − 𝑧0𝑖

𝜋𝜔0𝑖
2 𝑀𝑖

2)

2

, 𝑖 = 𝑥, 𝑦 (3) 

where: 𝜔0𝑖 is the smallest waist at 𝑧0𝑖; 𝜆 – the laser wavelength, and 𝑀𝑖
2 – the beam quality factor for 

each principal direction. Astigmatism is defined as the difference between the smallest waists’ 

position, i.e. 𝑧0𝑥 − 𝑧0𝑦. If that distance is equal to zero, the beam is not astigmatic. 

Processing of an area bigger than a beam spot size requires laser beam movements in a two-

dimensional domain that is realised by employing 𝑥 and 𝑦 beam deflectors. The area processed with 

multiple pulse trains with different overlaps in 𝑥 and 𝑦 is depicted in Figure 1. For a given scanning 

speed 𝑣 and 𝑓, the distance between pulses along the 𝑥 equals to Δ𝑥 =
𝑣

𝑓
 while along 𝑦 is Δ𝑦 = ℎ , 

where ℎ is the hatch offset between two consecutive 𝑦 trains. Hence, the number of pulses along 𝑥 

and 𝑦 when processing an area 𝐿𝑥x 𝐿𝑦 can be calculated as follows: 

𝑁𝑥 =
𝐿𝑥 − 2𝜔𝑥

∆𝑥
, 𝑁𝑦 =

𝐿𝑦 − 2𝜔𝑦

∆𝑦
 (4) 

It is worth stressing that these equations are valid if an assumption is made that the beam waist is 

constant and the laser beam is always focused on the surface. However, due to the beam astigmatism 

and resulting ellipticity, the smallest beam waists might not always be at the same focal position. 

Figure 1. A schematic representation of an area 𝐿𝑥 x 𝐿𝑦 processed with elliptical beam spots with 

multiple pulse trains with pulse overlaps in 𝑥 depended on the scanning speed (v) and frequency 

(f) while in 𝑦 on hatch offset (h) between two consecutive pulse trains. 

Δx=v/f 

𝜔𝑥  

y 

x 

Δy=h 

L
x
 

L
y
 

𝜔𝑦  
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By combining Eq. 1-4, the accumulated fluence over a 𝐿𝑥x 𝐿𝑦 area can be expressed by using the 

following equation: 

𝐹𝑎𝑐𝑐(𝑥, 𝑦, 𝑧) = 𝑁𝑟

2𝑃

𝑓𝜋𝜔𝑥(𝑧)𝜔𝑦(𝑧)
∑ ∑ 𝑒𝑥𝑝 (−2 ((

𝑥 − Δ𝑥 ∙ 𝑖

𝜔𝑥(𝑧)
)

2

+ (
𝑦 − Δ𝑦 ∙ 𝑗

𝜔𝑦(𝑧)
)

2

))

𝑗𝑖

 (5) 

where: 𝑁𝑟  is the number of passes over the area while 𝑖 and 𝑗 are integers in the ranges of (
−𝑁𝑥

2
,

𝑁𝑥

2
) 

and (
−𝑁𝑦

2
,

𝑁𝑦

2
), respectively, if the origin of the coordinate system is in the centre of the processed 

area. 

 

2.2 The BIA effects on ultrashort laser irradiation model 

As stated in Section 1, laser processing conditions vary when non-planar surfaces are processed, in 

particular due to BIA and FOD variations. BIA, 𝛼, is defined as the angle between the incident laser 

beam and the surface normal at a given point (𝑥, 𝑦, 𝑧). For example, if an inclined planar surface is 

processed, BIA will be maintained the same throughout the area. In this case, to calculate the fluence 

intensity distribution of a single pulse, Eq. 1-3 should be revised. Figure 2 shows a schematic 

representation of a laser beam when processing an inclined surface. As can be seen, the beam 

ellipticity increases with the increase of BIA. The smaller ellipse in the figure depicts the spot size of 

the same beam but when it is focused on a surface normal to the beam. In this case, the BIA variations 

do not affect 𝜔𝑥 but 𝜔𝑦 varies and its value cannot be calculated anymore by using Eq. 3.  In addition, 

the beam waist is now dependent on the local focal offset, Δ𝑧 , and BIA, 𝛼, and this should be 

Figure 2. A schematic representation of an incident laser beam on an inclined surface. For 

comparison, the blue lines and smaller dash-dotted ellipse depicts the beam spot at the focal 

plane. The black lines represent beam waist 𝜔𝑦𝛼 and Δ𝑧 necessary to calculate the local fluence 

𝐹𝑙𝑜𝑐 at a given point. The bigger ellipse depicts the area where intensity is at 1/𝑒2 of 𝐹0 while 

the yellow line is the absolute beam diameter. 
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considered when calculating the local fluence (𝐹𝑙𝑜𝑐 in Figure 2). As a result, 𝜔𝑦𝛼 increases with the 

distance from the pulse centre and thus Eq. 3 should be revised as follows: 

𝜔𝑦𝛼(𝑦, 𝑧, 𝛼) = 𝜔0𝑦√1 + (𝜆
(𝑧 − Δ𝑧(𝑦, 𝛼) − 𝑧0𝑦)

𝜋𝜔0𝑦
2 𝑀𝑦

2)

2

 (6) 

where Δ𝑧(𝑦, 𝛼) = sin(𝛼) ∙ 𝑦.  

Considering Eq. 6, the fluence of a single pulse on an inclined surface can be calculated as follows: 

𝐹(𝑥, 𝑦, 𝑧, 𝛼) =
2𝑃 cos(𝛼)

𝑓𝜋𝜔𝑥(𝑧)𝜔𝑦𝛼(𝑦, 𝑧, 𝛼)
𝑒𝑥𝑝 (−2 ((

𝑥

𝜔𝑥(𝑧)
)

2

+ (
𝑦cos(𝛼)

𝜔𝑦𝛼(𝑦, 𝑧, 𝛼)
)

2

)) (7) 

Examples of pulse intensity profiles are given in Figure 3a. The profiles were calculated based on Eq. 

6 and 7 with 𝜔0 = 20 𝜇𝑚, 𝜆 = 1.03 𝜇𝑚 and 𝑀2 = 1.2 on planar and inclined surfaces, especially with 

Figure 3. (a) The changes of pulse intensity profiles of a laser beam with 𝜔0 of 20 µm when varying BIA, 

(b) The relative changes of same beam waist when increasing BIA from 0 to 80 deg on the left; close up 

from 0 to 40 deg on the right. 

a 

b 
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BIA of 40, 60 and 80 degrees. The point at which the intensity drops to 1/𝑒2 of also affected 𝐹0 at 

given BIA determines 𝜔𝛼 on the processed surface. Figure 3b shows the relative changes of the same 

beam when varying BIA. It is apparent that the changes of the beam profile are less pronounced for 

BIA up to 40 deg while the difference increases up to around 30 % of 𝜔0. In addition, beams with 

different 𝜔0 will follow nearly the same trend for BIA changes. However, when processing a surface 

with a bigger BIA, 𝜔𝛼 increases more rapidly and for BIA = 80 deg the beam waists can be a few times 

bigger compared with that when it is normal to the surface. Therefore, when processing surfaces with 

a varying BIA, the irradiated area by each pulse increases together with the overlap between them. 

Depending on the substrate, fluence values might be altered with BIA because of the absorption 

changes. Absorptivity, 𝐴, of metals can be estimated based on the well-known Fresnel equations with 

the refractive index of materials (𝑛 + 𝑖𝑘) that is wavelength dependent [30]: 

𝐴𝑝 =
4𝑛 cos 𝛼

(𝑛2 + 𝑘2)cos2𝛼 + 2𝑛 cos 𝛼 + 1
  

𝐴𝑠 =
4𝑛 cos 𝛼

𝑛2 + 𝑘2 + 2𝑛 cos 𝛼 + cos2𝛼
 

(8) 

where: p and s denote linear p and s beam polarisations, respectively. If circular polarisation is used, 

absorption is an average of the two components 𝐴𝑐 =
1

2
(𝐴𝑝 + 𝐴𝑠). 

Taking all these into consideration, the absorbed accumulated fluence on an inclined surface of 

ultrashort laser simple astigmatic Gaussian beam can be calculated as follows: 

𝐹𝑎𝑐𝑐(𝑥, 𝑦, 𝑧, 𝛼) = 𝐴 𝑁𝑟 ∑ ∑
2𝑃 cos(𝛼)

𝑓𝜋𝜔𝑥(𝑧)𝜔𝑦𝛼(𝑦, 𝑧, 𝛼)
𝑒𝑥𝑝 (−2 ((

𝑥 − Δ𝑥 ∙ 𝑖

𝜔𝑥(𝑧)
)

2

𝑗𝑖

+ (
(𝑦 − Δ𝑦′ ∙ 𝑗)cos (𝛼)

𝜔𝑦𝛼(𝑦, 𝑧, 𝛼)
)

2

)) 

(9) 

where: Δ𝑦′ = ∆𝑦/cos (𝛼) is the distance between pulses on the surface if they are not compensated 

during laser scanning, in particular when the structuring strategy is based on projections [27]. Also, 

while calculating local distance Δ𝑧 for each pulse, its displacement should be considered, thus 

Δ𝑧(𝑦) = sin(𝛼) ∙ (𝑦 − ∆𝑦′ ∙ 𝑗).  

This model can be further generalised for processing of freeform surfaces. With the increase of surface 

complexity, its geometry plays a more important role in assessing the fluence distribution and 

accumulation. Surfaces can be clustered into developable and non-developable ones. In particular, 

the first are ruled surfaces, such as cylinders or cones, while the latter are compound curved surfaces, 

e.g. spheres, where the curvature is present in two or more directions [31]. When processing such 

surfaces, BIA varies in each direction and depends on the surface tangent at a given point (𝑥, 𝑦, 𝑧) of 

the workpiece. Provided that the local radius of the curvature is significantly bigger than the beam 

waist (R>>𝜔), the fluence distribution of a single pulse on a freeform surface can be simplified to 

determine local BIA in both principal planes. Hence, BIA variations along 𝑥 and 𝑦 directions can be 

calculated as follows:  

𝛼𝑘(𝑘, 𝑧) =
𝜋

2
− tan−1 (

𝑧 − 𝑧𝑐

𝑘 − 𝑘𝑐
) , 𝑘 = 𝑥, 𝑦 (10) 
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where: 𝑥𝑐, 𝑦𝑐 and 𝑧𝑐 is the centre of the curvature, which radius is 𝑅 =

√(𝑧 − 𝑧𝑐)2 + (𝑦 − 𝑦𝑐)2 + (𝑥 − 𝑥𝑐)2. Similar to Eq. 7, the fluence distribution of a single pulse on a 

spherical surface can be described as follows: 

𝐹(𝑥, 𝑦, 𝑧, 𝛼𝑥 , 𝛼𝑦) = 𝐹0(𝑥, 𝑦, 𝑧, 𝛼𝑥 , 𝛼𝑦) 𝑒𝑥𝑝 (−2 ((
𝑥cos(𝛼𝑥)

𝜔𝑥𝛼(𝑥, 𝑧, 𝛼𝑥)
)

2

+ (
𝑦cos(𝛼𝑦)

𝜔𝑦𝛼(𝑦, 𝑧, 𝛼𝑦)
)

2

)) (11) 

Regarding the accumulated fluence, analogous to inclined surface presented before, the contributions 

of all pulses delivered onto the processed area need to be considered. Hence, only an iterative model 

can be used that is adapted to the surface complex geometry and thus assess the influence of any 

processing disturbances, locally.  

 

2.3 Fluence requirements in laser structuring/texturing 

Models for ultrafast laser irradiation with Gaussian beams have already been used to simulate ablation 

[32] and laser structuring [24], [33]. One of their main assumptions is that ablation or structuring 

occurs when the processing fluence is above a certain threshold, 𝐹𝑡ℎ. Furthermore, different types of 

morphologies, i.e. laser induced structures, appear if processing is carried out within a predefined 

fluence range. Previous studies shows that, for multi-pulse structuring, with the increase of the pulse 

number, 𝑁𝑝, impinging a given spot the fluence thresholds can be reduced [34]. This is attributed to a 

material dependent incubation phenomenon and can be expressed in the power-law form: 

𝐹 𝑡ℎ(𝑁𝑝) = 𝐹𝑡ℎ(1)𝑁𝑝
𝑆−1 (12) 

where: 𝑆 ∈ [0,1] is an incubation factor and 𝐹𝑡ℎ(1) is the fluence threshold for a single pulse. The 

incubation model can also describe the relationship between the accumulated fluence threshold, 

𝐹 𝑎𝑐𝑐 𝑡ℎ, and 𝑁𝑝 as a requirement to achieve a certain morphology on the surface [24]: 

𝐹 𝑎𝑐𝑐 𝑡ℎ(𝑁𝑝) = 𝐹𝑡ℎ(𝑁𝑝)𝑁𝑝 = 𝐹𝑡ℎ(1)𝑁𝑝
𝑆 (13) 

However, when beams are being scanned across a given surface area and pulses’ overlap, assessing 

the number of pulses per spot have to be estimated and then used for threshold calculations. Thus, 

the effective number of pulses can be calculated as follows [33]: 

𝑁𝑝 𝑒𝑓𝑓 =
𝜋

2
 
𝜔𝑥𝜔𝑦

∆𝑥∆𝑦
 (14) 

Please note that depending on the chosen scanning strategy and the complexity of workpiece 

geometry, the beam spot size is not constant anymore throughout the processed field, as has been 

shown in Section 2.2. This leads to increased impact of processing disturbances, i.e. BIA and FOD 

variations, and as a result, it will also influence the local fluence threshold variations that have to be 

accounted for when calculating 𝐹𝑎𝑐𝑐. 

 

3. Methodology 

3.1 Experimental setup and materials 

Experimental validation was performed using ultrafast Ytterbium-doped laser source with a pulse 

duration of 310 fs, maximum pulse energy of 10 µJ, a near-infrared wavelength (𝜆) of 1032 nm, and 

maximum average power of 5W. A linearly polarised laser beam was focused with a 100 mm 
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telecentric lens which allows always normal incidence within the field of view. The laser processing of 

surfaces was realized by employing a 3D scan head. Additionally, a motorized rotational axis was 

employed to control BIA. The test workpiece on which LIPSS were created was 1.5 mm thick, mirror 

polished, 304 stainless steel plate. It was cleaned with acetone before the laser processing. The 

complex refractive index of this material for the employed laser source was (2.943 + 3.915i) [35] and 

this value was used in the calculations. 

 

3.2 Beam characterisation 

Beam waist measurements along the beam propagation axis were conducted using a scanning slit 

beam profiler. Each measurement was repeated three times with an increment of 100 µm along 𝑧. 

Results from beam waist measurements are provided in Figure 4. The values were fitted to Eq. 3 using 

least squares method assuming that 𝑧0𝑖, 𝜔0𝑖 and 𝑀𝑖
2 were variables and 𝜆 was constant. The peak 

fluence is the highest at the focal plane where the area the beam spot size is the smallest. The 

astigmatism of the used laser beam was 0.52 mm and the focal plane did not coincide with 𝑧0 along 𝑥 

and 𝑦 axis and were equal to -0.41 mm and 0.11 mm, respectively. The smallest waists, i.e. 𝜔0𝑥 and 

𝜔0𝑦, at these positions were 20.52 and 16.52 µm, respectively, while in the focal plane, 𝜔𝑥 and 𝜔𝑦 

were equal to 22.33 µm and 16.82 µm, correspondingly. Beam propagation factor, 𝑀2, that also 

characterizes the deviation of the ideal Gaussian beam in the fundamental mode was calculated to be 

1.35 and 1.45 in 𝑥 and 𝑦, respectively. That means that the beam’s divergence half-angle differs in 

both directions and was 21.6 mrad and 28.8 mrad. It is worth mentioning that the beam spot size area, 

and thus peak fluence, along the propagation axis was not symmetrical and therefore this could lead 

to different processing conditions below and above the focal plane. Such initial characterization of the 

laser beam can be used in the model that also accounts for disturbances that occur during processing 

of free form surfaces, such as BIA and FOD variations. 

Figure 4. Beam waist measurements along the propagation axis, 𝑧, in two principal directions, i.e. 

𝑥 and 𝑦, and their fitted curves to Eq. 3. The red line represents the changes of beam spot area 

along 𝑧. 
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3.3 Experimental validation 

A field of 4x4 mm was scanned with a linearly p-polarised laser beam in a way that both disturbances, 

i.e. BIA and FOD variations, were present and controlled as depicted in Figure 5. The laser beam was 

focused at one end of the square on the inclined sample and as the laser scanning progressed in 𝑦, 

FOD was increasing with each Δ𝑦 = 6 𝜇𝑚 displacement. As a result, actual Δ𝑦′ on the sample was not 

compensated and differed for each BIA used in this experimental study, i.e. 10, 20, 30 and 40 deg. The 

repetition rate used was 500 kHz while the scanning speed was adjusted to 2000 mm/s and thus to 

maintain a pulse distance of Δ𝑥 = 4 𝜇𝑚. Initially, the LIPSS fluence threshold and the relation between 

fluence and LIPSS depth was determined when disturbances were not present, and this yielded 

constant 𝑁𝑝 𝑒𝑓𝑓 of 24.6. 

 

LIPSS were characterised with an Atomic Force Microscope (AFM). The samples produced without 

disturbances were measured three times in different locations while the validation samples were 

scanned along a straight line in 𝑦′ every 250 µm, until LIPSS were still present. Ripples’ geometric 

characteristics were obtained by using the open source software Gwyddion. From each 20 x 20 um 

(256 x 256 px) AFM scan, five lines, 2.3 µm (30 px) wide, were drawn perpendicular to LIPSS profiles. 

LIPSS amplitudes were expressed as standardised roughness parameter Rtm, that describes an 

average distance between the highest peak and lowest valley in every sampling length. Additionally, 

for each scan 2D Power Spectral Density Function (2D PSDF) was performed based on 2D Fast Fourier 

Transformation (2D FFT) in order to evaluate characteristic spatial frequencies, occurring in LIPSS 

covered surface, from which periodicity was obtained.  

LIPSS periodicities were calculated based on the theory of ripples generation with excitation of surface 

electromagnetic waves. In particular, it incorporates laser incidence on the surface, laser source 

wavelength (𝜆)  as well as the polarisation type and complex dielectric constants of medium, 𝜀1, and  

the processed material, 𝜀2 [36]. Throughout the experiments the p-type polarisation was utilised, 

hence the theoretical LIPSS periodicity was determined as follows: 

Figure 5. A schematic representation of the employed scanning strategy on test samples where 

both disturbances, i.e. BIA and FOD are present and controlled. 
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Λ𝑝 ± =
𝜆

𝑅𝑒√
𝜀1𝜀2

𝜀1 + 𝜀2
± sin 𝛼

 
(15) 

As the equation indicates, LIPSS produced with p-polarisation and with not normal incidence have two 

superimposed periodicities and are referred to + or – as for the sign used in the calculations. Dielectric 

constants employed in the calculations were 𝜀1= (1+0i) and 𝜀2 = (-7.636 + 27.175i) for air and steel, 

respectively [37]. 

 

4. Results and discussion 

4.1 LIPSS characteristics vs. accumulated fluence 

Initial experiments were conducted without the presence of any disturbances on the planar surface 

to study relations between LIPSS geometrical characteristics and the accumulated fluence. Only pulse 

energy was varied and thus, the accumulated fluence was affected by the changes in the peak fluence. 

As can be seen in Figure 6a, LIPSS amplitudes rapidly increase to 150 nm after the fluence threshold 

of approximately 0.11 J/cm2, and then slowly continue to rise with the increase of the peak fluence. 

Above 𝐹0 = 0.5 J/cm2, LIPSS became noticeably irregular and were not considered homogenous 

anymore. In regard to the LIPSS periodicity, Λ, in Figure 6b, it was between 900 and 930 nm on average 

and it can be considered unaffected within the range of peak fluence studied in this research.  

 

For the sake of simplicity, an empirical equation was fitted to the measured data in Figure 6a, that 

described the changes of LIPSS amplitudes with the increase of the peak fluence. Based on the same 

input data, the processing conditions were simulated and previously identified 𝐹 𝑡ℎ was then used to 

assess 𝐹 𝑎𝑐𝑐. In the context of the freeform surface processing, this interdependence can be used to 

predict the processing settings that would lead to a significant decrease of  𝐹 𝑎𝑐𝑐 and thus to the loss 

Figure 6. Dependence of LIPSS amplitudes (a) and periodicity (b) with 𝐹0 increase. Two vertical 

lines in (a) indicate peak fluences used in validation samples fabrication. 

a b 
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of LIPSS surface characteristics, i.e. a significant drop in the peak-to-valley distance. In particular, it is 

critical to identify the gradient between 𝐹 𝑡ℎ and the fluence at which the surface structures can reach 

their optimum characteristics and ultimately functional response. By applying this approach, 

processing tolerances in regard to processing disturbances can be estimated and consequently the 

sizes of processed fields in freeform laser structuring/texturing can be optimized. To validate the 

model, two 𝐹0 were used and they are highlighted in Figure 6a. In particular, 𝐹01 = 0.25 J/cm2 was 

used for the optimised laser setting for producing LIPSS and 𝐹02 = 0.44 J/cm2 where ripples are still 

homogenous and with a higher reserve of fluence in regards to 𝐹 𝑡ℎ.  

 

4.2 Model validation 

As discussed in Section 2.3, the presence of disturbances leads to variations of the local beam waist 

and thus the local fluence threshold varies, too. Therefore, to assess 𝐹 𝑎𝑐𝑐 only the local fluence from 

each pulse above the threshold was taken into account when simulating the process. Another reason 

for this was to avoid very small fluence values to affect final 𝐹 𝑎𝑐𝑐 that do not have any physical effect 

on the laser structuring process. The incubation factor utilized in the process simulation was 𝑆 = 0.86, 

with 𝐹𝑡ℎ(1) = 0.179 J/cm2, which is the typical value for 304 stainless steel if 𝑁𝑝 𝑒𝑓𝑓 < 1000 is used 

[38].  

Figure 7 shows the experimental results in regard to the resulting LIPSS amplitudes and their predicted 

values based on 𝐹 𝑎𝑐𝑐 along 𝑦′. It can be stated that the ripples, especially at the upper end of the 

Figure 7. Experimental measurements of LIPSS amplitudes vs. their predicted values based on 

calculations of 𝐹 𝑎𝑐𝑐 along 𝑦′ for BIA of 10, 20 and 30 deg, and also for initial 𝐹01 of 0.25 J/cm2 

(bottom row) and 𝐹02 of 0.44 J/cm2 (top row).  
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processed square field, where they were mostly influenced by the BIA deviation from normal and not 

as much by FOD, were typically deeper when compared to LIPSS produced with a beam normal to the 

surface. It should be noted that the LIPSS formation mechanism is more complex [39] and therefore 

some aspects were not taken into account in the relatively simple model presented in Section 2. 

However, in spite of this, it was possible to predict the location where the ripples are not anymore 

generated on the surface in all six cases depicted in Figure 7. In particular, this was done by calculating 

the LIPSS amplitudes that decreased with the drop of 𝐹 𝑎𝑐𝑐 caused by processing disturbances. The 

area with LIPSS present on the processed fields decreased with the increase of the BIA while the FOD 

influence was more pronounced. The impact of the initial pulse energy was also visible. LIPSS of similar 

depth could be maintained onto a bigger area for 𝐹02 than 𝐹01.  

Regarding the LIPSS periodicity, Figure 8 shows that mostly both Λ𝑝− and Λ𝑝+ were present, as 

explained in Section 2.3. Despite the changes in processing conditions caused by the disturbances, i.e. 

increase of beam spot size and consequently the decrease of the peak fluence on the processed 

surface, no major Λ variations were observed. This could be attributed to the fact that the pulse energy 

was maintained constant. Moreover, the increase of BIA led to Λ𝑝− with lower values than the 

theoretical ones. This phenomena was already studied by researchers and it was explained with the 

increased influence of the surface roughness induced by the laser pulses that impacted the ripples 

periodicity [40]. In addition, Λ𝑝+ was not always present on the processed fields, e.g. for 𝐹02 and BIA 

of 10 deg, smaller ripples emerged on the surface at 𝑦′ = 2.5 mm, while at 20 deg, it was only at 𝑦′ of 

1.5 mm. Besides, at the upper end of the processed field where 𝐹 𝑎𝑐𝑐 was higher, Λ𝑝− was always the 

more dominant periodicity than Λ𝑝+ and with the decrease of 𝐹 𝑎𝑐𝑐 along 𝑦′ this tendency began to 

shift. The evolution of LIPSS Λ is depicted in Figure 9 that shows three AFM scans from the same field 

processed with 𝐹02 and at BIA of 20 deg. At 𝑦′ of 0.75 mm, only a higher Λ𝑝− could be seen while at 

1.5 mm a mix of both periodicities is detectable. The last image taken at 𝑦′ = 3.5 mm shows only the 

presence of Λ𝑝+. This suggests that these periodicities are also sensitive to changes of 𝐹 𝑎𝑐𝑐. The 2D 

PSDF analysis of each AFM scans for this particular sample is presented in Figure 10 and now Λ 

Figure 8. Measured LIPSS periodicities Λ𝑝− and Λ𝑝+ and their theoretical values (from Eq. 15)  for 

samples produced with 𝐹02 = 0.44 J/cm2 and BIA of 10, 20, 30 and 40 deg.  
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magnitude in regard to  𝐹 𝑎𝑐𝑐 can be analysed. Especially, there is a clear trend that with the increase 

of the distance from the top of the processed field, the significance of  Λ𝑝− decreases. Furthermore,  

the processing conditions when Λ𝑝− becomes inferior to Λ𝑝+ are reached when 𝐹 𝑎𝑐𝑐 is approximately 

6 J/cm2 and below and they are the same for the rest of the tested samples produced with 𝐹02 while 

for 𝐹01 this value was above 2 J/cm2. It can imply that different fluence thresholds need to be 

recognized for these LIPSS characteristics and further research should be conducted to confirm this.  

 

Figure 9. AFM scans of a sample produced with 𝐹02 = 0.44 J/cm2 and BIA 20 deg along 𝑦′ at 0.75 

mm (left), 1.5 mm (middle) and 3.5 mm (right) with their respective profiles. White arrows indicate 

direction of polarisation vector (E) and scanning direction (v). 

Figure 10. Measured PSDF values for sample produced with 𝐹02 = 0.44 J/cm2 and BIA 20 deg along 

𝑦′ and calculated 𝐹 𝑎𝑐𝑐 profile for this processing settings. 
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5. Conclusions 

In this research, an ultrafast laser irradiation model for structuring free form surfaces was proposed. 

A simple astigmatic Gaussian beam was considered in assessing the accumulated fluence during 

structuring surfaces with varying BIA, i.e. inclined and curved ones. It was demonstrated that surfaces 

structured with processing disturbances, such as BIA and FOD, the pulse fluence distribution changes 

and results in modifications of laser processing conditions, in particular beam size variations that affect 

local fluence thresholds.  

Validation samples were produced with varying BIA, i.e. on an inclined surface, where both 

disturbances were present and controlled. It was shown that the LIPSS characteristics, i.e. amplitudes 

and periodicity, can be predicted by modelling the accumulated fluence on a field processed with a 

characterised laser beam. Namely, the LIPSS disappearance or transformations due to the presence 

of BIA and FOD variations can be predicted. Furthermore, changes in LIPSS behaviour can be predicted, 

too, and thus to determine the processing constraints for a given laser parameters’ domain without 

conducting the necessary empirical studies. Such information then can be used to drive the 

partitioning of freeform surfaces into laser processing fields and thus to achieve the required LIPSS 

homogeneity and consistency in their functional response.   
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