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Abstract 10 

Current methods to predict fuel ignition quality usually focus on either cetane numbers or 11 

research/motor octane numbers (CN, RON, MON) and most of them apply to pure compounds. A 12 

machine learning regression based group contribution method (GCM) is proposed to simultaneously 13 

predict CN, RON and MON of pure fuel compounds and mixtures. The GCM extracts the structural 14 

features of fuel molecules to build a molecular structure matrix. Then a mathematical model developed 15 

by machine learning correlates the molecular structure matrix with ignition quality (CN, RON, MON) 16 

matrix. A comprehensive fuel ignition quality database is built for model training which contains 603, 17 

374, 371 compounds for CN, RON and MON respectively. High predictive precision is obtained for 18 

CN, RON, MON (R2 equal to 0.9911, 0.9874, 0.9731) being superior to those obtained by neural 19 
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network. The method is successfully applied to a wide range of compounds including alkanes, alkenes, 20 

alkynes, cycloalkanes, cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, 21 

furans and fuel mixtures. Three key factors contribute to the high predictive capacity: (i) GCM 22 

considers the structural features, functional group interaction and fuel reactivity of fuel molecules; (ii) 23 

the built-in machine learning algorithm automatically optimizes the model function and parameters and 24 

(iii) the fuel ignition quality database provides adequate model training data for different fuel types. 25 

This method provides an effective tool to obtain CN, RON and MON of pure compounds and mixtures 26 

and a fundamental understanding of the impact of fuel molecular structures on the ignition quality. 27 

 28 
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 29 

Highlights: 30 

 CN/RON/MON prediction of pure compounds and mixtures by machine learning based group 31 

contribution method 32 

 Group contribution method extracts the structural features and transforms into molecular 33 

structure matrix 34 

 Machine learning regression model correlates the molecular structure matrix and ignition 35 

quality matrix 36 

 A comprehensive fuel ignition quality database is developed for regression model training and 37 

validation 38 

 39 

Keywords: 40 
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Nomenclature 

 

Symbols 

R2 correlation coefficient 

 

Abbreviations 

ABFIS adaptive network-based fuzzy inference system 

AIChE American Institute of Chemical Engineers 

ASM active subspace method 

ASTM American Society for Testing and Materials 

CAS chemical abstract service 

CCDB carbon-carbon double bond 

CCTB carbon-carbon triple bond 

CFR cooperative fuels research 

CN cetane number 

CNblending cetane number of a specific fuel compound when it is blended with a base fuel 

in particular volume fractions 

CVCC constant volume combustion chamber 

DCN derived cetane number 

FIT fuel ignition tester 

GCM group contribution method 
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GPR Gaussian process regression 

IDT ignition delay time 

IUPAC International Union of Pure and Applied Chemistry 

IQT ignition quality tester 

KAUST King Abdullah University of Science and Technology 

LANL Los Alamos National Laboratory 

LLNL Lawrence Livermore National Laboratory 

MAE mean absolute error 

MLR multiple linear regression 

MSE mean square error 

MON motor octane number 

N/A not applicable 

NMR nuclear magnetic resonance spectroscopy 

NN neural network 

NREL National Renewable Energy Laboratory 

OS octane sensitivity 

PCR principle component regression 

QSPR quantitative structure-property relationship 

RMSE root mean square error 

RON research octane number 

SVM support vector machines 
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SwRI Southwest Research Institute 

TI topological indices 

TPRF toluene primary reference fuels (n-heptane-iso-octane-toluene mixture) 

UOB University of Birmingham 

 43 
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1. INTRODUCTION 44 

Cetane number (CN) and research/motor octane number (RON/MON) are parameters to evaluate the 45 

fuel autoignition quality for compression ignition and spark ignition engine respectively. The CN and 46 

RON/MON are generally in an inverse proportion, the greater the CN, the more prone to autoignition 47 

while the greater the RON/MON, the more resistant to autoignition (anti-knock). Thence, the 48 

CN/RON/MON are the key fuel properties affecting engine combustion and emission performance.  49 

Even though there are mature ASTM standards available for CN [1-4] /RON [5] /MON [6] 50 

measurement, there are still some significant challenges to be solved. First, it is expensive and time 51 

consuming to test the ignition quality by CFR engine or constant volume combustion chamber (CVCC) 52 

recommended by ASTM standards. The measurement of CN/RON/MON by CFR engine demand 53 

500mL/sample 40min/sample (see Table S1 in supporting information) while the CVCC requires less 54 

quantity than CFR engine around 40~370 mL/sample. For those fuels not commercially available, it is 55 

unrealistic and unfeasible for researchers to produce such testable quantity and the higher the produced 56 

purity, the greater the cost. Second, most of the emerging fuels, including advanced biofuels derived 57 

from biomass, lack of measured ignition quality data (CN/RON/MON) and the only information 58 

available is the chemical formula. For example, the Fuel Properties Database [7] developed by 59 

Co-Optimization of Fuels & Engines project [8-10] contain 489 pure compounds, but only 291, 162, 60 

110 compounds have measured CN, RON, MON. Third, there are no accurate method to calculate the 61 

CN/RON/MON of blending mixture. The mixture CN is usually estimated by a linear volume fraction 62 

weighted mixing rule from those pure compounds 
1

n

mix i i
i

CN v CN


   because it gets more 63 

accurate estimations than linear relationship of molar fraction or mass fraction [11-14]. But this model 64 

does not consider non-linear interaction among fuel components which fails to reflect the synergistic or 65 
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antagonistic behavior with respect to its composition [15, 16]. Fourth, the typical testing ranges of 66 

CN/RON/MON by CFR engine are limited to 30~65 [1], 40~120.3 [5], 40~120 [6] as shown in Table 67 

S1 of supporting information. Even though the CFR engine can measure fuels outside the range, the 68 

precision has not been determined. Fifth, the advanced compression ignition engine requires low 69 

reactivity fuels (25<CN<40) [17, 18] but its ignition quality is difficult to be characterized by ASTM 70 

standards due to outside of the calibrated range. 71 

The five challenges confronted by fuel ignition quality characterization lead to the development of 72 

alternative method to predict CN/RON/MON. The commonly used methods include: (1) group 73 

contribution method (GCM); (2) quantitative structure-property relationship (QSPR); (3) neural 74 

network (NN); (4) simulated ignition delay time (IDT); (5) active subspace method (ASM); (6) 75 

topological indices (TI); (7) adaptive network-based fuzzy inference system (ABFIS); (8) principle 76 

component regression (PCR); and (9) multiple linear regression (MLR) as summarized in Table 1. All 77 

these methods (except (4) simulated IDT method) correlate the ignition quality data with molecular 78 

structure being collectively called the QSPR method [19] . In theory, QSPR method can be applied to 79 

pure compounds and blending mixtures given a training database containing mixture data provided 80 

QSPR works on functional groups level instead of molecular level. The QSPR methods differ in terms 81 

of descriptor types and numbers of descriptors as shown in Table 1. The GCM method is one of the 82 

most commonly used QSPR methods that correlates the ignition quality data (CN/RON/MON) with 83 

types & numbers of functional group. NN method updates and adapts the regression model to new 84 

inputs and enables to capture the nonlinear relationship in the system. The neural network inputs can be 85 

molecular descriptors [20-22], functional groups [23, 24], NMR spectroscopy [25]. Topological indices 86 

are developed to deal with complex physicochemical properties which incorporate the branching 87 
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degree, shape and size of molecules [26-28] into consideration. The simulated IDT method is proposed 88 

by Singh et al. [29] and the constant volume IDTs are correlated with RON, MON at equivalent RON 89 

condition (750K, 25bar) and equivalent MON condition (825K, 25bar). There are some issues with this 90 

simulated IDT method: (1) the predictive accuracy of regression model developed by correlating 91 

CN/RON/MON with IDT is inferior to that by correlating CN/RON/MON with molecular structure. 92 

This is because both CN/RON/MON and IDT are the secondary data of molecular structure, the 93 

correlation function between CN/RON/MON and IDT contains uncertainty and measured error to some 94 

extent. (2) The IDT is calculated by chemical kinetic mechanism, thus it is not applicable for fuels 95 

without validated mechanisms. (3) It is unclear if it can be applied to CN prediction. (4) The validated 96 

scope is limited to alkanes, alkenes, aromatics and their mixtures while the applicability to oxygenated 97 

compounds is unclear.  98 

There are three scales (CN, RON, MON) to characterize the fuel ignition quality, CN and 99 

RON/MON apply to high reactivity fuels and low reactivity fuels respectively. The knowledge gap is 100 

how to characterize ignition quality for specific fuel compound in these three scales respectively. The 101 

conversion formula between CN and RON/MON is inaccurate and limited to limited fuel types (see 102 

Table S2 in supporting information), it is necessary to predict theses three parameters simultaneously. 103 

In addition, the ignition quality characterization for fuel mixtures is challenging and it is essential to 104 

build a predictive model based on functional group level rather than molecular level. The scope of the 105 

published predictive models is usually limited to a few compound groups (see Table 1), more chemical 106 

classes especially oxygenates should be incorporated. This study develops a comprehensive 107 

CN/RON/MON database, pure compounds and mixtures are included, to train and verify the predictive 108 

model. A new group contribution method GCM-UOB 2.0 is proposed to extract the structural features 109 
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of different fuel types and their mixtures. This method is applicable to fuel compounds that the 110 

molecular structures are known. Machine learning algorithm is used to optimize the model functions 111 

and parameters to improve predictive accuracy.  112 



 

11 

Table 1. Overview of CN and ON forecasting approaches 113 

Method Target output Model inputs Optimal 

R2 

RMSE No. of 

compounds 

Scope Ref. 

GCM CN/RON/MON 38 functional groups 0.90 N/A 449 Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, 

aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, 

furans 

[30, 

31] 

CN 13 functional groups, IQT ignition delay, vapor 

pressure 

0.98 8.75 162 As above [32] 

QSPR CN 28 functional groups 0.934  6.3 229 Hydrocarbons, alcohols, esters [33] 

CN 150 molecular descriptors 0.978 N/A 147 Alkanes, alkenes, cycloalkanes, aromatics [34] 

CN 13C NMR spectroscopy and 7 group descriptors 0.64 N/A 127 34 pure alkanes, 93 hydrocarbon mixtures [35] 

RON/MON Molecular descriptors: 12 for RON, 23 for MON 0.92 N/A 552 279 for RON, 273 for MON, alkanes, alkenes, alkynes, 

cycloalkanes, cycloalkenes, aromatics, alcohols, esters, 

furans 

[36] 

RON/MON Molecular mass, hydration energy, boiling point, 

molar refractivity, octanol/water distribution 

coefficient, critical pressure, critical volume, 

critical temperature 

0.9419 N/A 65 Alkanes, cycloalkanes [37] 

NN CN 15 QSPR descriptors 0.963. 7.94 N/A Alkanes, alkenes, alkynes, cycloalkanes, aromatics, alcohols, 

aldehydes/ketones, ethers, esters 

[20] 

CN 12 hydrocarbon groups 0.97 N/A 69 Alkanes, cycloalkanes, aromatics [23] 

CN 4 functional groups and boiling point for 

isoparaffins 

0.97 N/A 141 iso-Paraffins and diesel fuels [24] 

CN 10 molecular descriptors 0.934 N/A 349 Alkanes, alkenes, aromatics, alcohols, esters, others (3 

ketones, 1 aldehyde, 8 ethers and 4 acids) 

[21] 

CN 15 molecular descriptors N/A 9.1 284 Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, 

aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, 

furans 

[22] 

RON/MON 15 H types in H NMR spectroscopy 0.99 2.2 251 128 pure hydrocarbons: alkanes, alkenes, cycloalkanes, 

cycloalkenes, aromatics; 123 hydrocarbon blends: n-heptane, 

iso-octane toluene, trimethylbenzene, cyclopentane, 

1-hexene, ethanol 

[25] 
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TI CN Parameters of the general second degree equation 

of hyperbola 

0.99998 N/A 71 Alkanes, cycloalkanes [27] 

 RON/MON Fuel molecules 0.9643 N/A 27 Heptane isomers, octane isomers [28] 

 ON Vector coefficients 0.9966 N/A 78 46 samples of alkanes, 32 samples of cycloalkanes [26] 

Simulated 

IDT 

RON/MON Computed ignition delay curve N/A N/A N/A Alkanes, alkenes, cycloalkane, aromatics, alcohols, ketones, 

esters, acids, furans 

[38] 

  RON: constant volume IDT at 750K, 25bar 

MON: constant volume IDT at 825K, 25bar 

0.9932 N/A N/A Alkanes, alkenes, aromatics and their mixtures [29] 

  Compression ratio dependent variable volume 

IQT 

0.9726 N/A 25 TPRF mixtures [39] 

ASM CN 9 topological indices and 5 carbon-chain related 

descriptors 

0.93 N/A 110 Alkanes, alkenes, cycloalkanes, aromatics [40] 

ABFIS CN 4 evaporation relevant descriptors and 6 

combustion relevant descriptors 

0.986 3.38 496 204 hydrocarbons and 292 oxygenates, no further detail 

available 

[41] 

PCR RON Fourier-transform infrared absorption spectra N/A N/A 34 Alkanes, alkenes, cycloalkanes, aromatics [42] 

MLR CN H NMR spectroscopy 0.95 N/A 125 Alkanes, alkenes, alkynes, cycloalkanes, aromatics, 

hydrocarbon mixtures 

[43] 

 114 
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2. Modeling approach 115 

2.1 Methodological overview 116 

A fuel ignition quality (CN/RON/MON) database is built based on open access database, project reports and 117 

published articles which are described in section 2.2. The fuel molecular structure and functional groups are the 118 

model input and CN/RON/MON is target output respectively. In the first step, the fuel molecular structure & 119 

functional groups information are accessed by chemical CAS (Chemical Abstract Service) number and IUPAC 120 

(International Union of Pure and Applied Chemistry) nomenclature (see section 2.2). In the second step, the 121 

GCM extracts structural features of fuel molecules to form molecular structure matrix (see section 2.3). 122 

Minimum number of feature descriptors are used to capture the fuel molecular structure characteristics to reduce 123 

model size and avoid overfitting. The molecular structure matrix contains n rows (number of samples) and 32 124 

columns (number of structural feature descriptors). The ignition quality matrix contains n rows (number of 125 

samples) and 1 column (target fuel ignition quality of CN or RON or MON). It should be noted that the three 126 

predictive models of CN, RON and MON are trained separately using different datasets (see Table 3), therefore, 127 

only one column exists in the ignition quality matrix. In the third step, a machine learning regression model is 128 

developed to correlate the molecular structure matrix and ignition quality matrix. The ignition quality database 129 

and 23 machine learning algorithms (Linear regression algorithms: ○1 linear, ○2 interactions linear, ○3 robust 130 

linear, ○4 stepwise linear; Regression trees algorithms: ○5 fine tree, ○6 medium tree, ○7 coarse tree, ○8131 

optimizable tree; Support vector machines algorithms: ○9 linear SVM, ○10 quadratic SVM, ○11 cubic SVM, 132 

○12 fine Gaussian SVM, ○13 medium Gaussian SVM, ○14 coarse Gaussian SVM, ○15 optimizable SVM; 133 

Gaussian process regression algorithms: ○16 rational quadratic, ○17 squared exponential, ○18 Matern 5/2, ○19134 

exponential, ○20 optimizable GPR; Ensembles of trees algorithms: ○21 boosted trees, ○22 bagged trees, ○23135 

optimizable ensemble, see Table S3 in supporting information) are used to train the regression models in parallel, 136 
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then the algorithm with minimum root mean square error (RMSE) is selected. 10-fold cross validation is 137 

adopted to validate the model and prevent over-fitting. In the fourth step, the machine learning regression model 138 

developed is first deployed into a MATLAB APP with graphical interfaces and then into PC & Phone APP. Both 139 

the regression model (the model detail is discussed in detail in section 2.4) and the fuel ignition quality database 140 

are embed into a cloud database and a Web APP. The Web APP, Desktop APP and Phone APP are easy for users 141 

to characterize fuel ignition quality without programming knowledge requirement.  142 
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2.2 Fuel ignition quality database development 143 

A fuel ignition quality database is set up for predictive model training and validation and the data sources are 144 

summarized in Table 2. The CN of pure compounds mainly derive from: (i) Co-Optimization of Fuels & 145 

Engines: Fuel Properties Database [7] released by NREL (National Renewable Energy Laboratory); (ii) Octane 146 

and cetane number data tabulation [30, 31] provided by LANL (Los Alamos National Laboratory); (iii) 147 

Compendium of experimental cetane numbers [12] available at NREL; (iv) Cluster of Excellence “Tailor-Made 148 

Fuels from Biomass” [32] managed by RWTH Aachen University. The selection priority of experimental CN is 149 

as follow: ASTM D613 (CFR engine test) [1]>ASTM D6890 (IQT test) [2]=ASTM D7170 (FIT test) [44]. The 150 

CN of hydrocarbon mixtures are mainly derived from journal articles [45-47] and thesis [48]. The RON/MON 151 

of pure compounds are mainly obtained from: (i) Co-Optimization of Fuels & Engines: Fuel Properties Database 152 

[7] released by NREL; (ii) Octane and cetane number data tabulation [30, 31] provided by LANL; (iii) API Tech 153 

Data Book [49] published by AIChE (American institute of Chemical Engineers). The RON/MON of mixtures 154 

are mainly acquired from journal articles [25, 29, 38, 39, 50-53]. Unlike CN, the RON and MON are only 155 

measured by CFR engine according to ASTM D2699 [5] and ASTM D2700 [6], therefore, the data 156 

reproducibility is good in different data source. In summary, the CN, RON, MON datasets contain 603, 374, 371 157 

samples and the numbers of different chemical classes are provided in Table 3. Particularly, the term 158 

“polyfunctionals” refers to multi-functional (aromatic bond, carbon-carbon double bond, carbon-carbon triple 159 

bond, hydroxyl group, carbonyl group, aldehyde group, ether group, ester group) compounds. For example, 160 

2-methoxyethanol (CAS 109-86-4) belongs to “polyfunctionals” since it contains hydroxyl group and ether 161 

group.  162 
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Table 2. Data source of measured CN/RON/MON for pure compounds and fuel mixtures 163 

Items Fuel type Institute Ref. 

CN/RON/MON Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans NREL [7] 

CN/RON/MON Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans LANL [30, 

31] 

CN Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans NREL [12] 

CN Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans RWTH Aachen University [32] 

CN Alkanes, alkenes, alkynes, cycloalkanes, aromatics, hydrocarbon mixtures KAUST [43] 

CN Alkanes, cycloalkanes Russian Academy of Sciences [54] 

CN Alkanes, cycloalkanes, aromatics Hokkaido University [55] 

CN Alkanes, aromatics, hydrocarbon mixtures University of South Carolina [45] 

CN Cycloalkanes, n-heptane-cycloalkane mixtures University of South Carolina [48] 

CN Hydrocarbon mixtures Princeton University, [46] 

CN Hydrocarbon mixtures Stanford University [47] 

RON/MON Alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans AIChE [49] 

RON/MON Alkanes, alkenes, alkynes, cycloalkanes, aromatics ASTM [56] 

RON/MON TPRF mixtures Saudi Aramco [50] 

RON/MON TPRF mixtures University of Cambridge [51] 

RON/MON TPRF mixtures Saudi Aramco [39] 

RON/MON TPRF mixtures KAUST [52] 

RON/MON TPRF-ethanol mixtures University of Melbourne [53] 

RON/MON Hydrocarbon mixtures KAUST [29] 

RON/MON Hydrocarbon-ethanol mixtures LLNL [38] 

RON/MON Alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, ethanol and their mixtures KAUST [25] 

 164 
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Table 3. Number of compounds of different chemical classes in the ignition quality database for model 165 

training 166 

 Number of compounds (measured data) 

Compound class CN RON MON 

Alkanes 74 46 46 

Alkenes and alkynes 35 73 74 

Naphthenes 52 40 35 

Aromatics 56 35 37 

Total oxygenates 266 24 23 

Alcohol 52 13 12 

Aldehydes/Ketones 19 2 2 

Saturated esters 66 3 3 

Unsaturated esters 19 N/A N/A 

Ethers 66 6 6 

Carboxylic acids 5 N/A N/A 

Polyfunctionals 39 N/A N/A 

Fuel mixtures 120 156 156 

Total 603 374 371 

 167 
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2.3 Structural features extraction by group contribution method (GCM) 168 

The group contribution method GCM-UOB 2.0 is based on the authors’ recently published paper (GCM-UOB 169 

1.0) [57]. The GCM-UOB 2.0 adds 9 functional group position descriptors (functional group type 1.1~1.9 in 170 

Figure 1) and 1 fuel reactivity descriptor (functional group type 1.10 in Figure 1) to account for the substituent 171 

positions on the phenyl group (functional group type 1.1~1.6, 1.10), naphthyl group (functional group type 172 

1.1~1.8, 1.10 in Figure 1) and anthranyl group (functional group 1.1~1.10 in Figure 1). The introduction of these 173 

10 functional group descriptors in GCM-UOB 2.0 significantly enhances the distinguishability of aromatics 174 

compared to GCM-UOB 1.0 [57]. Other functional group identifiers and fuel reactivity descriptors are already 175 

existing in GCM-UOB 1.0, so they remain unchanged in GCM-UOB 2.0 and the detail explanation can refer to 176 

ref. [57].  177 

 178 
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FUNCTIONAL GROUP CLASSIFICATION SYSTEM
1.1. Aromatic bond 1-branched
1.2. Aromatic bond 2-branched
1.3. Aromatic bond 3-branched
1.4. Aromatic bond 4-branched
1.5. Aromatic bond 5-branched
1.6. Aromatic bond 6-branched
1.7. Aromatic bond 7-branched
1.8. Aromatic bond 8-branched
1.9. Aromatic bond 9-branched
1.10. Sum of unbranched aromatic bond
1. Aromatic bond
2. Carbon-carbon double bond (CCDB) of aromatic, CH2=CH2 
3. Carbon-carbon double bond (CCDB) of ring, CH2=CH2

4. Carbon-carbon double bond (CCDB) of non-aromatic, non-ring, CH2=CH2

5. Carbon-carbon triple bond (CCTB)
6. Tertiary carbon, >CH-
7. Quaternary carbon, >C<
8. Primary carbon (methyl radical), -CH3 
9. Maximal quantity of secondary carbon in series (non-ring) (methylene), >(CH2)m (non-ring)
10. Secondary carbon (non-ring) (methylene), >CH2 (non-ring)
11. Maximal quantity of secondary carbon in series (ring) (methylene), >(CH2)m (ring)
12. Secondary carbon (ring) (methylene), >CH2 (ring)
13. >CH-, non-Tertiary carbon
14. >C<, non-Quaternary carbon
15. Hydroxyl radical, -OH
16. Ether group (non-ring), –O–(non-ring)
17. Ether group (ring), –O–(ring)
18. Ketone group(non-ring), >C=O(non-ring)
19. Ketone group(ring), >C=O(ring)
20. Aldehyde group, -CH=O
21. Ester group, -C(=O)O-
22. Carboxylic acid, -C(=O)OH

1

2

Benzene
(C6H6)

1,3-Cyclohexadiene
(C6H8)

3

3

1-Hexene
(C6H12)

4

1-Pentyne 
(C5H8)

5

2-Methylbutane
(C5H12)

6

2,2-Dimethylbutane
(C6H14)

7

8
9/10

Cyclopentane
(C5H10)

11/12

2-PrOpanol
(C3H8O)

13

tert-Butanol
(C4H10O)

14

Methanol
(CH3OH)

Dimethyl ether
(C2H6O)

15

16

Furan
(C4H4O)

17

2-Propanone
(C3H6O)

18

Cyclopentanone
(C5H8O)

19

Acetaldehyde
(C2H4O)

Methyl acetate
(C2H6O2)

20

21

Acetic acid
(C2H4O2)

1.1

Toluene
(C7H8)

1.1
1.2

1,2-Dimethylbenzene 
(o-xylene, C8H10)

1,3-Dimethylbenzene
(m-Xylene, C8H10)

1,4-DImethylbenzene
(p-Xylene, C8H10)

1.1

1.3

1.1

1.4

1,3,5-TrImethylbenzene
(C9H12)

1.1

1.31.5

2,6-DiMethylnaphthalene
(C12H12)

1.2

1.6

①

②

③

④⑤
⑥

⑦

⑧

1.9 ⑨

⑩

①

②

③

④⑤

⑥

⑦

⑧

9-Methylanthracene
(C15H12)

1,7-Dimethylnaphthalene
(C12H12)

1.1

1.6

①

②

③

④⑤
⑥

⑦

⑧

1,8-Dimethylnaphthalene
(C12H12)

1.11.8 ①

②

③

④⑤

⑥

⑦

⑧

9,10-Dimethylanthracene
(C16H14)

1.10 ⑨

⑩

①

③

④⑤

⑥

⑦

⑧

1.101.10

1.10 1.10

1.10

Functional group identifier

Functional group position descriptor

Fuel reactivity descriptor

22

179 

 180 

Figure 1. GCM-UOB 2.0 for structural features extraction. The functional groups are listed on the left, and an example of each functional group is circled in the molecular structure on the 181 

right. 182 
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2.4 Training and validation of machine learning regression model 183 

The GCM-UOB 2.0 converts the fuel molecular structure into the molecular structure matrix and it is mapped 184 

to the ignition quality matrix by the machine learning regression model as shown in Figure 2. The functional 185 

relationship between molecular structure and ignition quality is challenging to quantify by a predetermined 186 

regression function, therefore, machine learning algorithms are needed to “learn” information directly from data. 187 

Machine learning regression has two implications: one is using regression model to describe the relationship 188 

between a response variable (output, in this work they are CN, RON, MON respectively) and predictor variables 189 

(input, in this work it the molecular structure matrix); and the other is using supervised learning (e.g. linear, 190 

generalized linear, nonlinear, and nonparametric techniques) to adaptively improve forecasting performance as 191 

increasing sample numbers for learning. The workflow for training regression models is as follow: (1) 192 

regression problem identification and data collection; (2) regression algorithm selection; (3) regression model 193 

training; (4) predictive performance assessment; (5) export regression model to predict new data. Pure 194 

compounds and full database (including both pure compounds and fuel mixtures, see Table 3) are used as model 195 

training dataset respectively. The regression model is developed by MATLAB regression learner module and 23 196 

machine learning algorithms (see Table S3 in supporting information) are used to train the regression model in 197 

parallel. 10-fold cross validation is used to examine the predictive accuracy and prevent overfitting. The 198 

predictive accuracy is assessed by RMSE, mean absolute error (MAE), R-squared (R2) and their equations can 199 

be found in section 4 of supporting information [58]. The Gaussian process regression algorithm obtains the 200 

minimal RMSE for CN/RON/MON and the corresponding models are selected as the optimal models in this 201 

work (the model detail is presented in Table S4 in supporting information).  202 

The proposed method can predict CN, RON, MON of specific fuel compounds only if their molecular 203 

structures are known because it is based on functional group level instead of molecular level. For example, there 204 
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are no measured RON and MON for unsaturated esters in the training dataset (see Table 3), but they are 205 

decomposed into type 4, 8, 9, 10 and 21 functional groups (see Figure 1) to obtain molecular structure matrix 206 

(see Figure 2). The nonlinear relationship between these functional groups and ON is described by machine 207 

learning regression model. Similarly, the proposed method can also apply to predict ON of carboxylic acids and 208 

polyfunctionals even though experimental data is not available in the training dataset. The files of “Fuel ignition 209 

quality database_Prediction” and“Fuel ignition quality database_ Training & Validation” in supplementary 210 

material are the full database and the model training dataset (containing compounds with measured 211 

CN/RON/MON only). They contain the predicted ignition quality for different types of fuel compounds.212 
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 214 

Figure 2. Flow chart of the CN/RON/MON prediction by coupling group contribution method and machine learning predictive model. 215 
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3. RESULTS AND DISCUSSION 216 

This section discusses predictive accuracy of the proposed method and make a comparison with the published 217 

methods and neural network method (based on the same fuel ignition quality database, see section 5 in 218 

supporting information) since it is one of the most commonly used methods for ignition quality prediction. 219 

3.1 Predictive accuracy of CN/RON/MON 220 

3.1.1 Overall performance 221 

The correlation coefficients of measured and predicted CN/RON/MON are shown in Figure 3 and the MAE, 222 

RMSE are demonstrated in Table 4. The regression models in the left and right columns of Figure 3 are trained 223 

by pure compounds dataset and full (pure compounds & mixtures) dataset respectively. The regression models 224 

trained by the full dataset reach higher predictive accuracy than those models trained by the pure compounds 225 

dataset because the former has additional 120, 156, 156 mixtures samples for CN/RON/MON (see Table 3). The 226 

availability of more data results in a better predictive model because the machine learning algorithms adaptively 227 

improve forecasting performance as increasing number of samples. Therefore, the machine learning regression 228 

models trained by full dataset are used in the following discussion by default. The regression models of 229 

CN/RON/MON obtain correlation coefficients of 0.9911, 0.9874, 0.9731 respectively which are superior to the 230 

published predictive methods (CN: 0.64~0.99, RON/MON: 0.92~0.99, see Table 1). Even though RON/MON 231 

predictive models proposed by Jameel et al. [25] can acquire R2 up to 0.99, but oxygenates are excluded in their 232 

validated compounds. This study comprehensively validates against alkanes, alkenes, alkynes, cycloalkanes, 233 

cycloalkenes, aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans and fuel mixtures. The trained 234 

regression models obtain low RMSE of 2.526, 2.454, 2.765 for CN, RON, MON respectively while the 235 

published methods have higher RMSE (CN: 3.38~9.1, RON/MON: 2.2~3.38, see Table 1). The RMSE results 236 

further support that the models trained by full dataset have higher predictive accuracy than those trained by pure 237 

compounds dataset as shown in Table 4. It should be noted that the measured CNs of propane (CAS 74-98-6) 238 



 

24 

[12], tert-butylbenzene (CAS 98-06-6) [30], 2,6-dimethylnaphthalene (CAS 581-42-0) [12], 239 

1,3-diisopropylbenzene (CAS 99-62-7) [30], are -20, -1, -7, -7 (see Figure 3) and their ignition quality are out of 240 

the calibrated range of ASTM D613 (CN: 30~65), ASTM D6890 (DCN: 31.5~75.1), ASTM D7668 (DCN: 241 

30~70). Therefore, their CNs are indirectly measured by blending cetane number method (also known as 242 

equivalent blending octane number). The CNblending parameter represents the autoignition quality of a specific 243 

fuel compound when it is blended with a base fuel in particular volume fractions. The test fuel usually composes 244 

of 10 vol.%, 20 vol.% or 30 vol.% of the binary mixture and the CN of test fuel is obtained by extrapolation [13, 245 

15, 59, 60]. 246 
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 247 

Figure 3. Parity plots for (a)-(b) CN, (c)-(d) RON, (e)-(f) MON between measured and predictive values by machine learning 248 

regression model. The regression models in the left and right columns are trained by pure compounds dataset and full (pure 249 

compounds & mixtures) dataset. 250 

y = 0.9674x + 0.7039
R² = 0.9816

-25

0

25

50

75

100

125

150

175

-25 0 25 50 75 100 125 150 175

P
re

d
ic

te
d

 c
et

an
e 

n
um

be
r

Measured cetane number

Pure compounds

Y=X

Fit

CN_Pure compounds 
training dataset_Regression

(a)

y = 0.9675x + 1.227
R² = 0.9911

-25

0

25

50

75

100

125

150

175

-25 0 25 50 75 100 125 150 175

P
re

d
ic

te
d

 c
et

an
e 

n
um

be
r 

Measured cetane number

Pure compounds & Mixtures

Y=X

Fit

CN_Pure compounds & Mixtures 
training dataset_Regression

(b)

y = 0.8816x + 12.883
R² = 0.9151

0

25

50

75

100

125

150

175

0 25 50 75 100 125 150 175

P
re

di
ct

ed
 r

es
ea

rc
h

 o
ct

an
e 

nu
m

be
r 

Measured research octane number

Pure compounds

Y=X

Fit

RON_Pure compounds 
training dataset_Regression

(c)

y = 0.9643x + 3.1176
R² = 0.9874

0

25

50

75

100

125

150

175

0 25 50 75 100 125 150 175

P
re

d
ic

te
d 

re
se

ar
ch

 o
ct

an
e 

nu
m

be
r

Measured research octane number

Pure compounds & Mixtures

Y=X

Fit

RON_Pure compounds & Mixtures 
training dataset_Regression

(d)

y = 0.7785x + 22.346
R² = 0.7307

0

25

50

75

100

125

0 25 50 75 100 125

P
re

d
ic

te
d

 m
ot

or
 o

ct
an

e 
n

um
be

r

Measured motor octane number

Pure compounds

Y=X

Fit

MON_Pure compounds 
training dataset_Regression

(e)

y = 0.9524x + 3.789
R² = 0.9731

0

25

50

75

100

125

0 25 50 75 100 125

P
re

di
ct

ed
 m

ot
or

 o
ct

an
e 

nu
m

b
er

Measured motor octane number

Pure compounds & Mixtures

Y=X

Fit

MON_Pure compounds & Mixtures 
training dataset_Regression

(f)



 

26 

Table 4. Statistical analysis of predictive performance for the machine learning regression models 251 

Property Training dataset R-squared MAE RMSE 

CN Pure compounds (483) 0.9816 1.891 3.580 

Pure compounds & Mixtures (603) 0.9911 1.460 2.526 

RON Pure compounds (217) 0.9151 4.543 6.795 

Pure compounds & Mixtures (373) 0.9874 1.386 2.454 

MON Pure compounds (215) 0.7307 6.500 9.922 

Pure compounds & Mixtures (371) 0.9731 1.567 2.765 

 252 
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3.1.2 Subgroup performance 253 

Box-and-whisker plots in Figure 4 serve two functions: First, to assess the dispersion degree of forecast error 254 

for different compound groups. Second, to recognize the outliers that may contain great experimental error. The 255 

outliers are those more/less than 3/2 times of the upper/lower quartile. The maximum and minimum are the 256 

greatest and least values excluding outliers. The upper and lower quartiles denote 25% of data greater and less 257 

than the mean value. Median line and mean marker denote 50% of data greater than this value and mean of the 258 

selected data. 259 

Figure 4 (a) ~ Figure 4(c) support that the predictive accuracy of CN mixture regression model is superior to 260 

those of RON and MON because the predictive residuals of CN are more concentrated around zero. The 261 

CN/RON/MON for different compound groups are successfully predicted by the machine learning regression 262 

models as most of correlation coefficients exceed 0.98 (see Table 5). The predicted performances of CN and 263 

MON of naphthenes are relatively low (R2 of CN: 0.9599 and R2 of MON: 0.9504) which indicate that 264 

additional functional group position descriptors for cycloalkanes should be added into the functional group 265 

classification system (see Figure 1) to increase the distinguishability. The R2 of RON and MON for olefins and 266 

alkynes are low (R2=0.9279 and 0.8839 for RON and MON respectively, see Table 5) because both have 11 267 

outliers (see Figure 4). The gaps between upper and low quartiles of alkynes in RON and MON are abnormally 268 

disperse as shown in Figure 4 (b) and Figure 4 (c) because there are only 4 measured RONs and 2 measured 269 

MONs. It is necessary to further study the ignition quality of alkynes to enrich the training database and increase 270 

the model predictive capacity. The ketones, esters, ethers, furans also need more measured RON and MON as 271 

well. The proposed method has good predictive capacity on fuel mixtures that the R2 of CN, RON, MON reach 272 

0.98, 0.9982, 0.9908 respectively as shown in Table 5. Given that the ignition quality database contains 120, 156, 273 

156 samples of CN, RON, MON, more mixture CN data is required to further improve its predictive accuracy. 274 

All outliers recognized by the proposed method are provided in the supporting information, both the 275 
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measured and predictive ignition quality data are also enclosed. But the outliers probably come from 276 

measurement error rather than the predictive error and repeatability and reproducibility tests are needed for these 277 

compounds. For example, the CN value of 3,3-dimethylpentane reported by Lapidus et al. [54] is -10.3, then the 278 

CN predictive residual is abnormally high (29.59) as shown in Figure 4 (a) and Figure 4 (d). The predictive CN 279 

by machine learning regression model and the neural network model (see section 5 in supporting information) of 280 

3,3-dimethylpentane are 19.29 and 20.36 respectively. Therefore, the nominal CN of 3,3-dimethylpentane 281 

should be around 19~20.5 instead of -10.3 reported by Lapidus et al. [54]. Another example, the RON of 282 

6-methyl-2-heptene reported by Kubic et al. [30, 31] is 71.3, but the predictive values by machine learning 283 

regression model and neural network model (see section 5 in supporting information) are 87.27 and 87.19 284 

respectively. The reported RON of 6-methyl-2-heptene may contain huge measurement error and uncertainty.  285 

 286 
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 287 

Figure 4. Predictive residuals for typical compound groups and within specified ranges for (a), (d) CN; (b), (e) RON; (c), (f) 288 

MON. 289 
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Table 5. Comparison of correlation coefficients of different compound groups between current study and published methods 290 

R-squared CN     RON   MON   

Compound class Current Saldana et al. 

[33] 

Kubic et al. 

[31] 

DeFries et al. 

[35] 

Dahmen et al. 

[32] 

Current Kubic et al. 

[31] 

Albahri 

[61] 

Current Kubic et al. 

[31] 

Albahri 

[61] 

Paraffins 0.9866 N/A 0.91 0.73 0.53 0.9902 0.94 0.86 0.9765 0.95  0.87 

Olefins and alkynes 0.992 N/A 0.90 N/A -0.48 0.9279 0.90 0.53 0.8839 0.65  -1.55 

Naphthenes 0.9599 N/A 0.81 N/A 0.25 0.9839 0.85 0.75 0.9504 0.89  -0.40 

Aromatics 0.9946 N/A 0.87 0.44 0.58 0.9896 0.76 -3.28 0.9722 N/A N/A 

Oxygenates 0.993 N/A 0.85 N/A 0.41 0.9821 0.62 N/A 0.9767 0.56 N/A 

Alcohol 0.9977 N/A N/A N/A N/A 0.9945 N/A N/A 0.9433 N/A N/A 

Aldehydes/Ketones 0.9973 N/A N/A N/A N/A 1 N/A N/A 1 N/A N/A 

Saturated esters 0.9956 N/A N/A N/A N/A 0.9977 N/A N/A 0.9991 N/A N/A 

Unsaturated esters 0.9881 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Ethers 0.9905 N/A N/A N/A N/A 0.9414 N/A N/A 0.9943 N/A N/A 

Carboxylic acids 0.9996 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Polyfunctionals 0.9937 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Fuel mixtures 0.98 N/A N/A N/A N/A 0.9982 N/A N/A 0.9908 N/A N/A 

Overall 0.9911 0.934 0.90 0.64 0.53 0.9874 0.93 0.55 0.9731 0.91 -1.16 

 291 
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3.2 Method application: impact of fuel molecular structure on ignition quality 292 

The machine learning regression based method enables to provide an insight into the impact of fuel molecular 293 

structure on ignition quality. Fuels with measured RON/MON are usually short carbon chain (C2~C10) 294 

molecules and the isomerization implements significant influence on the values. On the opposite, the fuels with 295 

measured CN are usually long carbon chain molecules (C4~C28), the impact of isomerization on CN weakens 296 

as increasing carbon chain length. RON metric is adopted to characterize the ignition quality for alkanes, 297 

alkenes, naphthenes, aromatics, alcohols, ethers, esters in section 3.2.1~3.2.7 because changing branching 298 

degree has more pronounced effect on ON than CN. CN is used to characterize the ignition quality of esters in 299 

section 3.2.8 since more experimental data are available.  300 

3.2.1 Comparison of ignition quality for different fuel types 301 

The straight chain alkane, alkene, alcohol, ether, aldehyde, ketone and ester with 5 carbon atoms are taken as 302 

an example to understand the ignition quality of different fuel types. Results in Figure 5 demonstrate that the 303 

predicted RONs of different group compounds rank from high to low as: ester (109.42) > ketone (106.35)> 304 

alkene (95.06) > ether (90.75) > alcohol (78.29) > alkane (60.21) > aldehyde (57.28). Only n-pentane (61.8 vs 305 

60.21) and 1-pentanol (78 vs 78.29) exist measured RON and they are in good agreement to the predicted values. 306 

Therefore, the proposed method provide an effective tool to predict and compare the ignition quality of 307 

traditional and emerging fuels even for those no experimental data available. Results also indicate that all 308 

oxygenated chemical compounds, except aldehyde, have higher RON than the counterpart straight chain alkane. 309 

The RONs of unsaturated alkenes are greater than the corresponding straight chain alkanes as well [56, 62]. The 310 

order of RON discussed above may vary with carbon chain length, branching degree, functional group positions. 311 
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 313 

Figure 5. RON of different fuel types, numbers with red frames and red backgrounds are measured values and predictive values. 314 
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3.2.2 Impact of alkanes structural features on ignition quality 315 

Alkanes are the main constituents of commercial diesel and gasoline and it the best studied class of 316 

compounds [63-65]. The complete RON picture of C1~C8 alkanes as a function of carbon atom numbers is 317 

shown in Figure 6. The pink lines direct toward bottom right corresponding to increase carbon chain length. The 318 

blue lines direct toward upper right indicate adding methyl group into fuel molecule other than terminal position. 319 

The green lines direct vertical upwards corresponds to centralization of fuel molecules. The ignition quality of 320 

alkanes can be affected in three ways by modifying the molecular structure: First, increasing carbon chain length 321 

decreases RON. For example, the predicted RONs of 2-methylpropane (102.67), 2-methylbutane (92.5), 322 

2-methylpentane (72.36), 2-methylhexane (42.7), 2-methylheptane (21.83) decrease as increasing carbon chain 323 

length. Second, increasing branching degree raise the RON. The impact of increasing branching/centralization 324 

degree on RON for octane isomers is visualized in Figure 7. For example, the predicted RONs of n-octane 325 

(8.53), 2, 5-dimethylhexane (68.56), 2, 3, 4-trimethylpentane (103.27), tetramethylbutane (118.54) increase 326 

progressively as increasing branching degree. Third, increasing centralization degree (moving methyl group 327 

toward the center of the molecule) increases RON. From example, the predictive RON of n-octane (8.53), 328 

2-methylheptane (21.83), 3-methylheptane (27.06), 4-methylheptane (31.6) as the methyl group moving toward 329 

center position. The impact of increasing branching/centralization degree on ignition quality is opposite to 330 

lengthening carbon chain length [56, 62]. 331 
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Figure 6. RON of C1~C8 alkanes, numbers with red frames and red backgrounds are measured values and predictive values. 334 
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Figure 7. Impact of branching/centralization on RON of C8 alkanes, numbers with red frames and red backgrounds are measured 337 

values and predictive values. 338 
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3.2.3 Impact of alkenes structural features on ignition quality 339 

Alkenes are unsaturated hydrocarbons and good octane components of gasoline [66]. The influence of the 340 

position of carbon-carbon double bond on the straight chain alkenes is examined by comparing with the 341 

corresponding alkanes as shown in Figure 8. The results are summarized below: First, the RON decreases 342 

consistently as increasing carbon chain length similar to n-alkanes but the decline is less severe. As a 343 

consequence, the alkenes lighter than 1-butene have lower RON than the corresponding alkanes while those 344 

heavier than 1-butene have higher RON. Therefore, replacing C4 or above straight chain alkanes with 345 

corresponding straight chain alkenes can increase the RON which is useful for advanced gasoline compositions 346 

design [56]. Second, the RON increasing magnitudes vary with the double bond position in the straight chain 347 

alkenes and the centralization of double bond increases the RON. In other words, the closer the carbon-carbon 348 

double bond to the center of molecule, the greater the RON. For example, the predicted RONs of 1-nonene 349 

(30.83), 2-nonene (42.39), 3-nonene (50.85) and 4-nonene (56.96) increase progressively as the double bond 350 

moving toward molecular center as shown in Figure 8. 351 

The RONs of branched chain aliphatic alkenes and the counterpart alkanes are plotted in Figure 9. The green 352 

arrows direct from alkanes to alkenes. The introduction of double bond to form a branched chain alkenes do not 353 

always lead to a higher RON than the corresponding branched alkanes which depends on the position and 354 

centralization degree of the double bond. For example, the predicted RONs of 2-methyl-2-hexene (92.36) is 355 

higher than 2-methylhexane (42.71) while the 2,3-dimethyl-2-butene (98.1) is lower than 2,3-dimethylbutane 356 

(103.92) as shown in Figure 9. In general, the RON of branched chain alkene and the corresponding alkane does 357 

not exist a clear relationship.  358 



 

37 

0

10

20

30

40

50

60

70

80

90

100

110

120

2 3 4 5 6 7 8 9 10 11 12

R
es

ea
rc

h 
oc

ta
ne

 n
um

be
r

Carbon atom numbers in molecules

Alkanes

1-Alkenes

2-Alkenes

3-Alkenes

4-Alkenes

5-Alkenes

Ethene Propene
1-Butene

1-Pentene

1-Hexene

1-Heptene

1-Octene

1-Nonene

1-Decene
1-Undecene

97.3
98.18

101.8
101.78 98.8

97.26

87.9
88.38

76.4
76.22

54.5
55.9

39
39.43

N/A
30.83

N/A
27.59

N/A
26.88

2-Butene

2-Pentene

2-Hexene

2-Heptene

2-Octene

2-Nonene

2-Decene

2-Undecene

101.6
103.46

92.7
93.36

N/A
42.39

N/A
31.53 N/A

27.97

90
95.06

73.4
81.75

N/A
67.14

3-Hexene

3-Heptene

3-Octene

3-Nonene

3-Decene

3-Undecene

94
95.9

90
88.14

72.5
71.63

N/A
50.85

N/A
34.77

N/A
28.28

4-Octene

4-Nonene

4-Decene

4-Undecene

N/A
72.6

N/A
56.96

N/A
40.51

N/A
30.6

5-Decene

5-Undecene

N/A
46.18

N/A
34.84

Ethane

Propane

n-Butane

n-Pentane

n-Hexane

n-Heptane

114.9
113.61 111

108.69

94
91.17

61.8
60.21

29
29

0
3.64

359 

 360 

Figure 8. RON of C2~C11 straight chain alkenes, numbers with red frames and red backgrounds are measured values and predictive values. 361 
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Figure 9. RON of C4~C8 branched chain alkenes, numbers with red frames and red backgrounds are measured values and predictive values. 364 
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3.2.4 Impact of naphthenes structural features on ignition quality 365 

Only few measured RON/MON available for alkyl cycloalkanes [56], thus it is not possible to summarize the 366 

regularity due to the lack of experimental data and the generation of predicted data is required. Ignition quality 367 

studies on cyclic hydrocarbons are also presented as critical compression ratio [62] and aniline equivalent [67]. 368 

The predicted RONs of alkyl cyclopropane, alkyl cyclopentane, alkyl cyclohexane are plotted for various carbon 369 

atom numbers in Figure S2, Figure S3 in supporting information and Figure 10 and the generalizations are 370 

summarized. First, the RON increases as decreasing the ring size of cycloalkanes provided that they have 371 

identical substituted groups. For example, the predicted RON of methylcyclohexane (74.05), 372 

methylcyclopentane (88.45), methylcyclopropane (95.09) increases progressively as the ring size decrease as 6, 373 

5, 3. Second, the addition of straight chain side group into the cycloalkane ring decreases the RON. The RON 374 

reduces as increasing side chain length and increases as branching side chain. For example, the predicted RON 375 

drops from 74.05 of methylcyclohexane to 13.13 of butylcyclohexane as increasing side chain length while the 376 

RON of tert-butylcyclohexane increases to 95.84 as branching side chain. Third, the distribution of one single 377 

side chain into several separated side chains increases the RON and the side chain position affects the RON. The 378 

more closer and compact of the substituents, the greater the RON of the molecule. The fuel molecule reaches the 379 

greatest RON as the two side chains connect on the same ring carbon. For example, the predicted RONs of 380 

ethylcyclohexane (46.93), 1,4-dimethylcyclohexane (68.43), 1,3-dimethylcyclohexane (71.36), 381 

1,2-dimethylcyclohexane (80.16), 1,1-dimethylcyclohexane (87.64) increase progressively as two side chains 382 

become closer. Polysubstituted cycloalkanes of 1,2,3,5-tetramethylcyclohexane (85.63), 383 

1,2,3,4-tetramethylcyclohexane (86.05), 1,1,3,5-tetramethylcyclohexane (89.64), 384 

1,1,4,4-tetramethylcyclohexane (100.14) follow the same rule. In summary, reducing the ring size of 385 

cycloalkane, separating single substituent into multiple side chains and further compacting the substituted 386 

groups on the ring are the main methods to increase ON of naphthenes.  387 
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Figure 10. RON of C6~C10 alkyl cyclohexanes, numbers with red frames and red backgrounds are measured values and predictive values. 390 
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3.2.5 Impact of aromatics structural features on ignition quality 391 

Aromatic hydrocarbons are the second most constituents in commercial gasoline (comprising up to 35vol.%) 392 

[66], but it is challenging to rate its ON because they are resistant to autoignition and some of them exceed the 393 

ON calibrated range (RON: 120.3, MON: 120, see Table S1 in supporting information) [56]. As a consequence, 394 

the measured RONs of aromatic hydrocarbons may be subjected to greater experimental error and uncertainty. 395 

Generating predicted data help to extrapolate the ON scale for high anti-knock fuel compounds like aromatics. 396 

The impact of the substituents of phenyl group on the RON is shown in Figure 11 and four important 397 

generalizations is obtained. First, for phenyl group with one substituent, increasing side group carbon chain 398 

length reduces the RON while the branching side chain plays an opposite role. For example, the predicted RONs 399 

of toluene (117.33), ethylbenzene (107.62), propylbenzene (101.17), butylbenzene (97.91) decrease 400 

progressively as increasing substituent carbon chain length while the RONs of butylbenzen (97.91), 401 

isobutylbenzene (99.34), tert-butylbenzene (104.43) increase as substituent branching. Second, for phenyl group 402 

with two substituents, the RON of compounds ranks in order from highest to lowest: para-isomers ≈ 403 

meta-isomers > ortho-isomers [56, 62]. For example, the predicted RONs of p-xylene, m-xylene and o-xylene 404 

are 141.49, 140.79 and 118.2 respectively. Third, for phenyl group with three substituents, the better the 405 

symmetry of the substituents, the greater the RON of the fuel molecule. As shown in Figure 11, the predicted 406 

RONs of 1, 2, 3-trimethylbenzene (117.15), 1, 2, 4-trimethylbenzene (142.68), 1, 3, 5-trimethylbenzene (163.65) 407 

increase consistently as substituents becoming more symmetric. Fourth, the distribution of the carbon atoms of a 408 

single substituted group into multiple substituted groups increases the RON. For example, the predicted RONs 409 

of propylbenzene (101.17), 1-ethyl-3-methylbenzene (105.54), 1, 3, 5-trimethylbenzene (163.65) increase 410 

progressively as increasing number of side groups. From the perspective of developing high anti-knock gasoline, 411 

short side chain aromatics (such as toluene) or multiple short side chains aromatics (dimethyl benzene, trimethyl 412 

benzene and tetramethyl benzene) significantly increases gasoline anti-knock quality. 413 
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Figure 11. RON of C6~C11 aromatic hydrocarbons, numbers with red frames and red backgrounds are measured values and predictive values. 416 
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3.2.6 Impact of alcohols structural features on ignition quality 417 

Ignition propensity of alcohols vary significantly with different molecular structures (i.e. carbon number and 418 

substitutions), however, the regularity is not well understood [68]. C1~C5 alcohols usually blend with 419 

commercial gasoline due to low reactivity [69] while C8 and larger alcohols can blend with diesel due to less 420 

resistant to autoignition. The RONs of C1-C5 alcohols are shown in Figure 12 and the generalized regularities 421 

are summarized. First, the RONs of straight chain alcohols reduce as increasing carbon chain length similar to 422 

alkanes. For example, the predicted RONs of methanol (121.3), ethanol (110.83), 1-propanol (102.82), 423 

1-butanol (94.81), 1-pentanol (78.3) reduce progressively as increasing carbon chain length. Second, the 424 

isomerization of straight chain alcohols boosts the RON but high branching degree does not always result in 425 

high RON. For example, the predicted RONs of 1-butanol (94.81), 2-methyl-1-propanol (106.53), 2-butanol 426 

(108.19) increase progressively as increasing branching degree, but the RON of tert-butanol drops down to 427 

106.84 as increasing chain branching degree.  428 
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Figure 12. RON of C1~C5 alcohols, numbers with red frames and red backgrounds are measured values and predictive values. 431 



 

46 

3.2.7 Impact of ethers structural features on ignition quality 432 

The oxygen atom in an ether (R1-O-R2) interrupts and divides the carbon chain into two alkyl chains (R1 and 433 

R2), therefore, the impacts of ethers structural features (increasing one side/both sides carbon chain, changing 434 

branching degree or forming ring) on RON are demonstrated in a different manner as shown in Figure 13. The 435 

data implications are summarized below: First, the RON decreases progressively with increasing carbon chain 436 

length for both symmetric and asymmetric ethers, but the former have greater RON than corresponding 437 

asymmetric ethers with the same number of carbon atoms. In other words, the RONs of straight chain ethers 438 

increase as oxygen atom moving toward the center of fuel molecule. For example, the predicted RONs of 439 

dimethyl ether (111.25), diethyl ether (100.57), dipropyl ether (89.69), dibutyl ether (79.45), dipentyl ether 440 

(70.54) decrease progressively as prolonging chain length at both sides. These symmetric ethers have higher 441 

RONs than the corresponding asymmetric ethers of methyl propyl ether (97.67), methyl pentyl ether (84.03), 442 

methylheptyl ether (72.05) and 1-methoxydecane (59.23). Second, increasing the carbon chain branching degree 443 

raises the RON. For example, the predicted RONs of methyl pentyl ether (84.03), 2-methoxypentane (95.53), 444 

1-methoxy-2-methylbutane (98.42), 2-methoxy-3-methylbutane (107.06), tert-amyl methyl ether (109.79) 445 

increase progressively as increasing branching degree. However, the GCM-UOB 2.0 cannot distinguish the 446 

butane, 1-methoxy-3-methyl-, 2-methoxypentane, 3-methoxypentane because they have the same number of 447 

functional group types of 6, 8, 9, 10, 16. The distinguishability of functional group position descriptor and fuel 448 

reactivity descriptor in current GCM should be further improved.  449 

The symmetric long carbon chain (C8 or above) ethers and the short carbon chain (C4 or less) ethers can be 450 

used as CN improver and ON booster respectively. All studied ethers in Figure 13 do not have measured 451 

CN/RON/MON data except dimethyl ether, therefore, more experimental data is needed to enrich the ignition 452 

quality database and refine the machine learning regression model.  453 
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Figure 13. RON of typical ethers, numbers with red frames and red backgrounds are measured values and predictive values. 456 
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3.2.8 Impact of esters structural features on ignition quality 457 

The long chained fatty acid methyl esters (FAME) are the major constituents of biodiesel and its ignition 458 

quality is different from straight chain alkanes due to the presence of ester group and asymmetric structure. The 459 

ignition quality of C4~C18 saturated esters, unsaturated esters-2, unsaturated esters-5 and other unsaturated 460 

esters is characterized by CN (see Figure 14) since no measured RON/MON data is available. Three important 461 

generalizations are obtained from this illustration: First, the CN increases with increasing carbon chain length 462 

which applies to both saturated and unsaturated esters. For example, the predicted CNs of methyl butanoate 463 

(8.80), methyl pentanoate (13.72), methyl hexanoate (21.47), methyl heptanoate (32.77), methyl octanoate 464 

(36.93), methyl nonanoate (43), methyl decanoate (48.84), methyl undecanoate (59.64), methyl laurate (64.13), 465 

methyl palmitate (83.91), methyl stearate (85.51) increase progressively as increasing chain length. Unsaturated 466 

esters have similar behavior. The predicted CNs of methyl propanoate (12.34) vs methyl butanoate (8.80), 467 

methyl acrylate (7.45) vs methyl-2-butenoate (6.55), methyl-5-hexenoate (18.91) vs methyl-5-heptenoate (17.63) 468 

do not exactly follow this rule. These abnormal predicted CNs mainly cause by insufficient model training due 469 

to lack of measured data and more experimental data is needed. Second, the addition of carbon-carbon double 470 

bond into ester molecules decreases CN compared to the corresponding saturated esters. Both moving double 471 

bond toward center of molecule and increasing the number of double bonds reduce CN. For example, the 472 

predicted CNs of methyl laurate (64.13), methyl-2-dodecenoate (46.59), methyl-5-dodecenoate (35.51) decrease 473 

as introduction and centralization of double bond. The predicted CNs of methyl oleate (57.2), methyl linoleate 474 

(42.5), methyl linolenate (40.44) reduce progressively as the number of double bond increases from one to three. 475 

Third, the short chained methyl esters have lower reactivity than corresponding alkanes which are the preferred 476 

octane booster for high performance gasoline. For example, methyl propanoate, methyl acrylate have particular 477 

high RON as 114.58, 119.54 as shown in Table S7 of supporting information.  478 

Algae and waste fish oil have been identified as a feedstock to produce large amount of FAME which has the 479 
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potential to relieve the food vs fuel issue for biodiesel production [70]. These materials contain significant 480 

amounts of highly polyunsaturated FAME (more than two double bond) and the proposed method is used to 481 

predict the CN. Methyl 5(Z),8(Z),11(Z),14(Z)-eicosatetraenoate (CAS 2566-89-4) and methyl 482 

4(Z),7(Z),10(Z),13(Z),16(Z),19(Z)-docosahexaenoate (CAS 2566-90-7) are typical algal oils compositions 483 

which contain 4 and 6 unsaturated double bonds respectively. The predicted CNs by this method are 29.675 and 484 

26.9932 respectively which approach the measured DCN of 29.57 and 24.35 [70, 71]. It proves that the 485 

proposed method has good extrapolation capacity. 486 

 487 
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Figure 14. CN of C4~C19 esters, numbers with red frames and red backgrounds are measured values and predictive values. 490 
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3.3 Method application to fuel mixtures 491 

The proposed method can not only predict the CN, RON, MON of pure compounds, but can also 492 

apply to fuel mixtures. In this section, TPRF mixture (n-heptane-iso-octane-toluene) is taken as an 493 

example to demonstrate the predictive capacity since sufficient experimental data are available. The 494 

measured and predicted CN/RON/MON/OS and predicted error (measured value-predictive value) of 495 

TPRF are provided in Figure 15. The proposed method accurately reproduces CN/RON/MON of TPRF 496 

and the correlation coefficients reach 0.9933, 0.9984, 0.991 respectively as shown in Figure 16. The 497 

extremely low MAE and RMSE in Table 6 also indicate that the proposed method successfully captures 498 

the non-linear relationship between mixing proportion and ignition quality as well as molecule 499 

interaction. The predicted OS is the difference between predicted RON and predicted MON and its R2 500 

is relatively low as 0.8849 because there is an outlier of 20.80mol.%n-heptane-79.20mol.%toluene 501 

(measured OS=2, predicted OS=10.072). These RON and MON may contain significant measurement 502 

error and uncertainty. This is an example of using the proposed method to diagnose the abnormal 503 

experimental data. Another ternary mixture of n-heptane-dibutyl ether-ethanol is tested by the proposed 504 

method to obtain the CN/RON/MON/OS information. n-Heptane and dibutyl ether are chose because 505 

the former is a typical diesel surrogate and the latter is an alternative biofuel with high cetnae number 506 

and soot suppression performance [72, 73]. Ignition quality is varied by adjusting the ethanol 507 

proportion. The predicted CN/RON/MON/OS of n-heptane-dibutyl ether-ethanol mixture is shown in 508 

Figure 17. There are no published experimental and predicted data available for this mixture and it is 509 

the first time to report its ignition quality. Further ignition quality test of this ternary mixture by CFR 510 

engine test is necessary to verify the predicted values.  511 
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 512 

Figure 15. Comparison between measured, predicted values and errors of (a)~(c) CN, (d)~(f) RON, (g)~(i) MON, (j)~(l) OS of TPRF mixtures. 513 
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 514 
Figure 16. Parity plots for (a) CN, (b) RON, (c) MON, (d) OS of TPRF mixtures between measured and predictive values by machine learning regression model. 515 
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 516 

Figure 17. Predicted (a) CN, (b) RON, (c) MON, (d) OS of n-heptane-dibutyl ether-ethanol mixtures by machine learning regression model. 517 
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Table 6. Statistical analysis of predictive performance of TPRF mixtures for machine learning regression 518 

models 519 

Property Fuel mixtures (No. of measured data) R-squared MAE RMSE 

CN TPRF (30) 0.9933 0.395 0.732 

RON TPRF (87) 0.9984 0.4 0.655 

MON TPRF (87) 0.991 0.869 1.368 

OS TPRF (87) 0.8849 0.661 1.139 

 520 
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4. CONCLUSIONS 521 

A machine learning regression based group contribution method is proposed to simultaneously 522 

predict CN/RON/MON of pure fuel compounds and mixtures. The proposed method is applicable to a 523 

wide range of group compounds including alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, 524 

aromatics, alcohols, aldehydes/ketones, ethers, esters, acids, furans and fuel mixtures. High predictive 525 

precision is achieved and the overall R-squared for CN/RON/MON are 0.9911, 0.9874, 0.9731 526 

respectively which are superior to traditional neural network method of 0.934, 0.9627, 0.9634. 527 

The method has the following advantages over the published methods: (i) It can predict the 528 

CN/RON/MON simultaneously and avoid using the inaccurate conversion formulas between CN and 529 

RON/MON. (ii) GCM is applicable to both pure compounds and fuel mixtures and the latter is always 530 

a great challenge for ignition quality characterization. (iii) Abnormal experimental CN/RON/MON can 531 

be easily discovered by box-and-whisker chart analysis. (iv) It can generate insight into the impact of 532 

fuel molecular structure on the ignition quality even lack of experimental data. 533 

The success of the method can be majorly attributed to three key factors: 534 

1. The improved group contribution method GCM-UOB 2.0 takes into account structural features, 535 

functional group interaction and fuel reactivity by using functional group identifier, functional 536 

group position descriptor and fuel reactivity descriptor. It significantly improves the 537 

distinguishability of aromatics containing phenyl group, naphthyl group, and anthranyl group. 538 

2. The embedded machine learning algorithm automatically optimizes the model functions and 539 

parameters which results in higher predictive accuracy than neural network method.  540 

3. The comprehensive fuel ignition quality database developed by this work provides a good 541 

foundation for model training and validation. This is based on the requirement of machine 542 
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learning theory of the bigger the data, the better the model. 543 

This method provides an effective tool to obtain CN/RON/MON of both pure compounds and fuel 544 

mixtures and a fundamental understanding of the influence of fuel molecular structure on ignition 545 

quality. The latter provides a design rules of future higher performance diesel and gasoline, ultimately 546 

leads to improved engine efficiency, reduction of carbon footprint and pollutant emissions.  547 
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