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Antigen-Specific Immunotherapy for
Treatment of Autoimmune Liver
Diseases
Naomi Richardson, Sky T. H. Ng and David C. Wraith*

Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham,

Birmingham, United Kingdom

The liver is a critical organ in controlling immune tolerance. In particular, it is now clear

that targeting antigens for presentation by antigen presenting cells in the liver can induce

immune tolerance to either autoantigens from the liver itself or tissues outside of the liver.

Here we review immune mechanisms active within the liver that contribute both to the

control of infectious diseases and tolerance to self-antigens. Despite its extraordinary

capacity for tolerance induction, the liver remains a target organ for autoimmune

diseases. In this review, we compare and contrast known autoimmune diseases of the

liver. Currently patients tend to receive strong immunosuppressive treatments and, in

many cases, these treatments are associated with deleterious side effects, including a

significantly higher risk of infection and associated health complications. We propose

that, in future, antigen-specific immunotherapies are adopted for treatment of liver

autoimmune diseases in order to avoid such adverse effects. We describe various

therapeutic approaches that either are in or close to the clinic, highlight their mechanism

of action and assess their suitability for treatment of autoimmune liver diseases.
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IMMUNOLOGY OF THE LIVER, AN OVERVIEW

The liver is a complex immune-rich organ with a propensity toward tolerance, central to its role in
blood filtration and toxin removal. This characteristic is most striking in cases of successful liver
transplantation in which patients can be safely weaned off immunosuppression and in multi-organ
transplants where transplanting liver alongside other organs including lung and heart prevents
multi-organ rejection (1–4).

As the liver receives both arterial blood and blood from the gut via the portal vein, it
is regularly exposed to both dietary and microbial antigens, which could establish excessive
and prolonged inflammation, tissue damage and fibrosis if unregulated. Therefore, diverse
populations of immune cells, stromal cells and hepatocytes work in synergy to resolve
localized inflammation and avoid unnecessary immune responses to innocuous stimuli
(5, 6). The liver microenvironment is well-adapted to maintain homeostasis due to its
unique populations of antigen-presenting cells (APC) with tolerogenic characteristics,
feedback mechanisms to control inflammation, high density of innate immune cells
and richness of suppressive soluble mediators (summarized in Figure 1 and Table 1).
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FIGURE 1 | Cells of the liver sinusoid environment and their functions help maintain a state of homeostatic tolerance in the liver. Non-parenchymal resident liver cells

including Kupffer cells (green), hepatic stellate cells (HSCs; blue), liver sinusoidal endothelial cells (LSECs; red) and dendritic cells (myeloid mDC and plasmacytoid

pDC; purple) are situated within, or in close proximity to, liver sinusoids forming an early detection system to identify pathogens and maintain barrier function. They

contribute to the maintenance of a high anti-inflammatory TGF-β and IL-10 cytokine milieu under steady-state conditions and in the face of common bacterial and

food antigens to which the liver is continuously exposed. The liver also contains high numbers of innate-like immune cells such as NK cells (gray), and δT cells (not

shown). NK cells act as pro-inflammatory agents, and promote the recruitment of effector immune cells, but are also key regulators of fibrosis. Both non-parenchymal

antigen-presenting cells and hepatocytes (brown) offer a reduced antigen-presentation capacity and lower levels of costimulation than other antigen-presenting cells

elsewhere in the body. This helps promote an environment of low T cell (orange) activation under normal conditions and maintain a state of “active” tolerance, whereby

if required, inflammation and T cell activation is readily engaged.

For example, cells of the hepatic sinusoids are continuously
exposed to Gram-negative bacterial endotoxin e.g.,
lipopolysaccharide (LPS), which is detectable in portal vein
blood but not systemic circulation (32). These cells when
engaging with LPS via Toll-like receptor 4 (TLR4) are adapted
to have an increased activating threshold to avoid hyper-active
signaling and to better remove LPS from the blood stream (33).

Innate Immune Cells in the Liver
The liver is enriched for innate immune cells which help
trigger strong activating signals for inflammation in situations
where tolerance is unsuitable, e.g., pathogen infection. Around
50% of liver resident lymphocytes are NK cells (Figure 1,
gray), notably higher than in most tissues (34). Similarly,
numbers of unconventional T cells, NK-T and γδT cells, are
increased in the liver to recognize lipid antigens and bacterial
pathogens, respectively (35, 36). Activated NK and NKT cells
produce significant amounts of cytokines, including strongly
inflammatory TNF-α and GM-CSF in response to viral and
bacterial pathogens, to shift the balance from tolerance to
inflammation. Activated liver NK cells produce IFN-γ and exert
cytotoxicity due to TRAIL receptor binding and in response to
IL-18 released by Kupffer cells (7, 8). Intriguingly, cytotoxic NKs
also contribute to prevention of fibrosis by IFN-γ dependent
arrest and apoptosis of hepatic stellate cells (HSCs) as well as
directly killing activated HSC (37, 38). The role of γδT cells in
the liver is currently less well-defined, but they are known to

accumulate in both human fibrotic liver and experimental liver
injury models and are producers of IL-17 (39, 40).

Antigen-Presentation in the Liver
The liver is home to a wide range of APC with a tolerogenic bias,
including liver sinusoidal endothelial cells (LSECs; Figure 1, red),
resident myeloid and plasmacytoid dendritic cells (mDCs and
pDCs; Figure 1, purple), Kupffer cells (KCs; Figure 1, green) and
hepatic stellate cells (HSCs; Figure 1, blue). Antigen-presentation
and costimulatory capacity of resting APC in the liver is generally
low, contributing to the liver’s state of active tolerance.

Dendritic Cells
Mouse and human liver resident DCs are tolerogenic under
steady-state conditions, as they display a more immature
phenotype with significantly lower expression of MHC Class II
and CD80/CD86 than DCs found elsewhere (9). When activated
by TLR4 ligands, liver DCs produce substantial amounts of anti-
inflammatory prostaglandin E2 (PGE2) (11) and IL-10 whereas
blood DCs produce almost exclusively inflammatory cytokines.
Therefore, liver DCs are less capable to provide sufficiently
strong signals required to activate T cells. Instead, DC-T cell
interactions generate more CD25+FoxP3+ Tregs and IL-4
producing Th2 cells by an IL-10 dependent mechanism (9). IL-
10 also downregulates the expression of CCR7 on circulating
DCs preventing their re-circulation to secondary lymphoid
tissue (13).
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TABLE 1 | Summary of tolerogenic functions exerted by non-parenchymal liver cells and hepatocytes and their physiological effects.

Cell type Mechanisms Effects References

NK Become cytotoxic in response to IL-18

and TRAIL receptor ligation

Direct and indirect killing of activated HSCs (7, 8)

DCs (myeloid and

plasmacytoid)

Expression of low MHC-II and

costimulatory molecules CD80/CD86 and

CD40, low secretion of IL-12

Poor T cell priming - induction of anergy or deletion of antigen-specific

T cells. Poor differentiation of naïve CD4+ T cells to Th1 effector cells

(9, 10)

Secretion of IL-10 Bias toward generation of CD25+FoxP3+ Tregs and Th2 cells

Reduced production of pro-inflammatory cytokines TNF-α, IL-6 and

ROS by monocytes

(9)

Production of PGE-2 Inhibition of T cell proliferation and induces apoptosis, induction of

regulatory dendritic cells

(11)

Expression of PD-L1 Inhibition of T cell activation and induction of apoptosis of activated T

cells

(12)

Tregs Production of IL-10 Downregulation of CCR7 on liver DCs preventing their recirculation to

secondary lymphoid tissues

(13)

LSECs Production of PGE2 and IL-10 Inhibition of T cell proliferation, decreased pro-inflammatory cytokine

production, increased Treg generation

(14, 15)

Cross-presentation of antigen to CD8+ T

cells

CD8+ T cells are rendered unresponsive, preferential deletion when

PD-1/PD-L1 engaged

(16, 17)

Expression of PD-L1 Inhibition of T cell activation and induction of apoptosis of activated T

cells

(18)

Expression of FasL Allospecific T cells crossing LSEC barrier undergo apoptosis (19)

Expression of low MHC-II and

costimulatory molecules CD80/CD86 and

CD40

Poor T cell priming - naïve CD4 do not effectively differentiate to Th1

effector cells. Th1 and Th17 cells lose effector potency in contact with

LSECs

(18)

Kupffer cells Production of IDO, PGE2, TGF-β and IL-10 Reduced production of pro-inflammatory cytokines TNF-α, IL-6,

increased Treg generation

(20)

Low expression of MHC-II, CD80, CD86,

and CD40

Poor direct T cell priming - naïve CD4 do not effectively differentiate to

effector cells

(21)

Production of prostaglandins Inhibit dendritic cells priming of T cells, reduced Th1 and Th17 output (21, 22)

Scavengers of antigen at steady-state Induce/maintain T cell tolerance to antigen by expansion of IL-10

producing Tregs and arrest of CD4+ Tconv

(22)

HSCs Expression of PD-L1 and TRAIL when

activated

Inhibition of T cell activation and induction of TRAIL-mediated apoptosis (23, 24)

Production of TGF-β and retinoic acid Increased Treg differentiation (25, 26)

Hepatocytes MHC-II expression with very low

expression of costimulatory molecules

Poor T cell priming - induction of anergy or deletion of antigen-specific

T cells

(27, 28)

Expression of PD-L1 Inhibition of T cell activation and induction of apoptosis of activated T

cells

(29, 30)

Activation of Notch signaling pathway on

Th1

Diverts Th1 CD4+ T cells to synthesize IL-10 (31)

Liver Sinusoidal Endothelial Cells
LSECs express both MHC-I and MHC–II, and are as capable at
antigen-uptake as DCs (41). They can, therefore, prime CD4+ T
cells and cross-present antigen to CD8+ T cells, a function which
is modulated by liver IL-10 (14). In both cases, the interaction
between LSEC and T cell is biased toward tolerance. Naïve CD4T
cells primed by LSECs do not receive high costimulation, or an
IL-12 stimulus from neighboring tolerogenic DCs and, therefore,
do not effectively differentiate to Th1 effector cells (42–44). Th1
and Th17 cells when in contact with tolerogenic LSECs are unable
to produce high levels of IFN-γ and IL-17, respectively (18).
LSECs constitutive expression of PDL-1 when cross-presenting
antigen to CD8+ T cells renders these T cells unresponsive and
establishes a PDL-1 dependent antigen-specific T cell tolerance in

the liver (16, 17). Futhermore, as T cells transmigrate across the
LSEC barrier to enter the liver parenchyma, the LSECs are able
to detect allospecificity and induce T cell death both directly and
indirectly via the Fas/FasL pathway (19, 45).

Kupffer Cells
KCs are liver-resident, immobile macrophages located within
the sinusoidal lumen. They are hugely abundant, constituting
80% of the body’s entire macrophage population and around
35% of non-parenchymal cells within the liver (5). KCs have
been found to be essential mediators of homeostatic tolerance
in the liver. KCs express significantly lower levels of MHC-
II and costimulatory molecules compared to dendritic cells,
meaning that they are incapable of sufficiently priming T

Frontiers in Immunology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1586

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Richardson et al. Liver Autoimmune Diseases: Specific Immunotherapy

cells on their own. Notably, they can block dendritic cell
priming of antigen-specific T cells in a prostaglandin-dependent
manner in vitro (21). Under steady-state conditions, KCs
survey the sinusoids for dead cell debris, pathogens and
particulates to phagocytose and this surveillance role can both
establish tolerance or rapid response to pathogen depending
on the physiological context. KCs phagocytose and present
non-pathogen derived antigenic particulate matter and generate
a skew in liver CD4+ T cells toward non-responsiveness
(22). Heymann et al. shed light on the efficacy of KCs to
induce tolerance by tracking OVA-loaded liposomes using
intra-vital microscopy. KCs were the primary cell type within
the liver to internalize labeled particulates and promoted
the expansion of CD25+FoxP3+ OVA-specific Tregs in vivo.
Both KC depletion and liver inflammation prevented tolerance
induction (22).

Their essential sentinel role is further highlighted in mouse
models lacking in KCs, where mice are fatally unable to clear
a range of bacterial infections (46–48). When encountering
pathogen, KCs rapidly release pro-inflammatory cytokines TNF-
α, IL-6, and IL-1, promoting the recruitment of granulocytes
and neutrophils to clear pathogens (46, 49). Following initial
pro-inflammatory function, KCs then express the suppressive
mediator IDO and release PGE-2, IL-10, and TGF-β to quench
localized inflammation (21, 42, 50).

Targeting KCs to induce antigen-specific tolerance is a
promising avenue when considering immunotherapeutic particle
delivery for treatment of autoimmune diseases, but would
require administration in contexts without liver inflammation.
It may therefore not be the most appropriate method for
addressing liver autoimmune diseases without prior immune
suppressive treatment.

Hepatic Stellate Cells
HSCs can also act as APCs and present antigens via MHC-
I, MHC-II and CD1d (51). They are powerful producers of
TGF-β and retinoic acid within the liver, helping to maintain
a generalized immunosuppressive milieu at homeostasis and
promoting Treg differentiation and residence within the
liver (25, 26). However, when HSCs become activated in
the presence of pathogens or strong inflammatory signals,
they rapidly metabolize stored Vitamin A and differentiate
into myofibroblasts, secreting extra-cellular matrix proteins.
Therefore, HSC are key drivers of hepatic fibrosis and associated
deterioratio to cirrhosis (52).

Hepatocytes
Hepatocytes themselves possess tolerogenic properties, as they
are MHC-II expressing in the absence or very low expression
of costimulatory molecules (27, 28). In mice, hepatocytes in
inflammatory conditions can activate a Notch and IFN-γ
dependent pathway to divert Th1 CD4+ T cells to synthesize IL-
10 (31). PD-L1 is also inducible in hepatocytes by viral infection
and by type 1 and type II interferons, mediating apoptosis of
activated T cells (29).

At present, it is unclear exactly which of these tolerance-
promoting mechanisms fail in the pathogenesis of autoimmune

liver diseases, and at which time in disease progression.
The consequence of these homeostatic mechanisms failing,
however, can be devastating for liver function, impairing tissue
regeneration and causing fibrosis. In the case of autoimmune
liver diseases, immunological targeting of liver self-antigens
catalyzes a system of inflammation and chronic liver disease. It
will be important to understand which mechanisms break down
in the process of developing autoimmune liver disease, in order
to best intervene with tolerance promoting treatments.

AUTOIMMUNE LIVER DISEASE

Autoimmune liver disease (AILD) can be divided into 3 distinct
clinical diseases, autoimmune hepatitis (AIH), primary biliary
cholangitis (PBC) and primary sclerosing cholangitis (PSC). They
are distinguished by themolecular and cellular targets of immune
pathology alongside the location of observed liver damage
(Figure 2). Biliary dominant PBC and PSC affect cholangiocytes
lining bile ducts. PBC destroys small, interlobular bile ducts while
PSC targets larger bile ducts and is characterized by inflammatory
fibrosis in the intrahepatic and extrahepatic biliary tree (53, 54).
In AIH, the target is hepatocytes themselves, leading to interface
hepatitis and significant lymphocyte infiltration primarily around
the portal tracts (55). All 3 diseases will develop to severe liver
fibrosis without medical intervention.

DISEASE CHARACTERISTICS AND
EPIDEMIOLOGY

AIH is a chronic progressive liver-disease that mainly affects
women (70–80% cases) and can be diagnosed in adults and
children of any age or ethnicity (56). As symptoms and
biochemical indicators are widely heterogenous between
patients, the International Autoimmune Hepatitis Group
(IAIHG) developed a scoring system based on specific criteria to
improve early diagnosis (57, 58). Early diagnosis is imperative as
cirrhosis is already present at diagnosis of a third of AIH patients
and liver cirrhosis is the primary risk factor associated with
development of hepatocellular carcinoma (56). AIH is a rare
disease affecting between 16 and 20 cases per 100,000 (59–62)
but appears to be increasing in prevalence. A long-term Danish
study observed an almost 2-fold increase in the annual incidence
rate of AIH between 1994 and 2012 (63).

PBC affects around 35/100,000 individuals, and is most
common in women (9:1 female: male) and those over 50 years
old (64). Reports have also indicated increasing prevalence of
PBC over time (65). In around 10% of PBC patients, there will
be overlap disease with features of AIH (66).

PSC is lowest in prevalence, and most commonly found in
Northern Europe with 5.5–8.5 patients per 100,000 individuals in
the UK, which has increased by about 50% since 1991 (67, 68).
Unlike AIH and PBC, PSC is more common in men than in
women (3:1) and although disease can occur at any age it has a
peak incidence around 40 (69).
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FIGURE 2 | Summary of autoimmune liver diseases: tissues affected, and key features of disease (yellow boxes). Blood borne factors which challenge the

maintenance of immune tolerance are listed as inputs (red arrow). Genetic, environmental and lifestyle factors which could affect the maintenance of tolerance are

listed as inputs (blue box and arrow).

GENETIC ASSOCIATIONS

There is evidence for genetic factors playing a role in
pathogenesis of all 3 AILD disease classes, with both major
histocompatibility complex HLA genes and non-HLA genes
showing disease associations (70). Exactly how HLA confers
increased disease risk is unknown, but is presumed to be
related to how antigens are presented and recognized by the
immune system.

AIH-1 usually presenting in middle age has been linked to
HLA-DRB1∗0301 and HLA-DRB1∗0401 with co-expression of
these risk alleles indicating a double-dose effect (71–73). AIH-
2 affects around 10% of AIH patients, exhibits a more aggressive
phenotype and has been related to the presence of HLA-DRB1∗07
and DRB1∗03 in cohorts in the UK and Brazil (74). AIH-2
is most commonly diagnosed in childhood and has even been
recorded in infants, suggesting a potentially different etiology
to AIH1 (75). Around 20% of AIH patients suffer concomitant
autoimmune diseases, most commonly thyroiditis (also HLA-
DR3), inflammatory bowel disease (IBD), Type 1 diabetes (also
HLA-DR4/HLA-DR3) and Addisons disease (HLA-DR4) (76).

PBC susceptibility is highly associated with HLA-DRB1∗08 in
Europe and North America (77). In contrast HLA-DRB1∗11 and
HLA-DRB1∗13 were found to be protective toward PBC (78).

PSC is generally associated with HLA-DRB1∗0301 in
Norwegian and British patients (79). In patients with both PSC
and inflammatory bowel disease, PSC is also associated with
HLA-DRB1∗13 but only with individuals with IBD (80).

GWAS studies have also identified association between
specific polymorphisms within regulatory genes and AIH, PBC,
PSC development. Notably for AIH and PBC but not for
PSC, these include CTLA-4 and TNF-α genes (81–86) which
are identified in similar studies of wide ranging autoimmune
disorders (87, 88). TNF-α is located in the HLA-DR/DP locus;
therefore, its appearance in GWAS studies of autoimmune
diseases is unsurprising. However, at present it is unclear whether
its influence is merely by association via linkage disequilibrium,
or whether its function and downstream signaling actively
contributes to the strong correlation of certain HLA haplotypes
to autoimmunity. A further interesting correlation between
TNF-α and CTLA-4 noted that single nucleotide polymorphism
(SNP) rs1800629 of the TNF-α gene, leading to increased
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TNF-α production, amplified the CTLA4 SNP risk associated
with rs231725, and that the combination of both SNPs was
significantly more common in PBC patients compared to healthy
controls (84). Studies in PBC have also identified common
variant in IL-12 and IL-12R which indicate a role for aberrant
IL-12 signaling in disease pathogenesis (89).

The specific triggers that lead to development of AILD are
as yet poorly understood, due to the complex nature of genetic
and environmental (drug and foreign pathogen) influences. It
is thought that environmental stressors on a background of
genetic predisposition in the form of HLA haplotypes and
general tolerogenic “fitness” (Tregs and feedback loops) could
help establish chronic autoimmune liver injury. AILD patients
commonly present other autoimmune diseases, suggesting that
immune dysregulation is not isolated to the liver in these cases.

AUTOANTIGENS AND AUTOANTIBODIES

Characteristic of all autoimmune diseases, AIH and PBC have
autoantibodies present in patient’s circulation. In both diseases,
there are a some well-defined autoantibodies that are used
to diagnose patients; however, the autoantigens that these
antibodies are specific for is less well-defined. In contrast, PSC
patients do not possess defined liver-specific autoantibodies.
The strongest biomarker associated with PSC is elevated serum
alkaline phosphatase levels, indicative of cholestasis (69, 90).
PSC is usually diagnosed by MRI imaging of the biliary tree to
identify cholestasis and/or strictures (69, 91, 92). Up to 80% of
PSC patients also present with inflammatory bowel disease (IBD),
indicating a general gastrointestinal inflammatory phenotype
(93). Taken alongside the fact that PSC is more common in
men and has less strong HLA associations, the lack of known
autoantibodies calls into question whether the disease is strictly
autoimmune, or whether it is autoinflammatory in nature (94).

Suspected AIH patients are scored according to International
AIH Group published criteria to determine a diagnosis of
AIH (57, 58). For clinical and research purposes, patients are
grouped into AIH-1 or AIH-2 by the presence of different
autoantibody profiles to liver antigens. The definitive clinical
distinction between AIH subtypes is challenging, and age-
matched patients usually follow similar trajectories and treatment
protocols regardless of patient autoantibody profiles (95).

The vast majority (≈75%) of AIH-1 patients are positive
for anti-nuclear antibodies (ANA) and/or anti-smooth muscle
antibodies (SMA) (62, 63). However, these autoantibodies
are not limited to AIH-1 patients and the autoantigens
responsible are not well-defined (96, 97). ANA can react
to histones, ribonucleoproteins ds-DNA and chromatin (98).
SMA also have a range of specificities, predominantly to
F-actin (99, 100). The remainder of patients who lack
ANA or SMA antibodies, but present with liver disease
pathology in accordance with the IAIHG diagnosis criteria, may
possess other defined autoantibodies including anti-perinuclear
neutrophil cytoplasmic antibodies (pANCA), anti-liver cytosol
(LC-1), anti-soluble liver antigen/liver-pancreas (SLA/LP) and/or
asialoglycoprotein receptor (ASGPR). Of note, SLA/LP is present

in around 30% of AIH patients and has been identified in
both adults and children (101–103). SLA/LP autoantibodies are
specific to the autoantigen SLA/LP/tRNP(Ser)Sec (104, 105) and
is therefore the only defined autoantigen implicated in AIH-1.

AIH-2 is rarely seen as a newly-diagnosed disease in adult
cohorts but is reported to represent around 30% of pediatric AIH
patients (106). AIH-2 has a less varied autoantigen profile and
is diagnosed predominantly by the presence of anti-liver kidney
microsomal antibody (LKM-1) and to a lesser extent anti-liver
cytosol antibody (LC-1), specific to the liver proteins cytochrome
P450 2D6 (CYP2D6) and formiminotransferase cyclodeaminase
(FTCD), respectively (74, 107). Both T cell and B cell epitope
mapping studies of CYP2D6 have been published, providing
evidence that CYP2D6-reactive lymphocytes circulate in AIH-2
patients but not in healthy people (74, 108). Again, neither LKM-
1 or LC-1 autoantibodies are restricted to AIH-2 – notably LKM-
1 antibodies are detected in 5–10% of chronic HCV patients
(101, 109) with an identified homologous sequence betweenHCV
and CYP2D6 judged to be the cause (102).

The success of antigen-specific immunotherapies in re-
establishing tolerance is reliant on having strong knowledge of
the autoantigens underpinning immune pathology. Therefore,
with our current understanding of AIH disease, it is likely that
the most appropriate immediate targets for AIH-2 are CYP2D6,
FTCD and for AIH-1 SLA/LP/tRNP(Ser)Sec. To be applicable
to the majority of AIH-1 patients, however, detailed antigen
profiling of AMA and SMA targets is required but has proved
to be extremely challenging thus far.

PBC is diagnosed by the presence of highly-specific
anti-mitochondrial antibodies (AMA) against the pyruvate
dehydrogenase complex (PDCE2) (110–112). Over 90% of
PBC patients are positive for AMA antibodies (113). PDCE2 is
expressed at detectable levels on biliary epithelial cells in PBC
but not in healthy individuals (114, 115). A minority of PBC
patients are AMA negative, however, histological analyses of the
bile ducts reveal no difference in pathology and presentation of
PDCE2 between AMA positive and AMA negative PBC patients
(114). Interestingly, PBC is also associated with prior urinary
tract infections which are most frequently caused by E.coli (116–
118). It is thought that E.coli induces B and T cell cross reactive
responses to human PDCE2 by molecular mimicry (115).

In the case of AIH and PBC the presence of reliable
autoantibodies to known autoantigens, and lymphocytes specific
to these autoantigens found in patients provides vital evidence
that supports targeting autoreactive cells in patients could have
therapeutic benefit.

CURRENT TREATMENTS

The clinical options to treat AILDs are limited once diagnosis
is confirmed. The current front-line treatments center on broad
immunosuppressive agents and ursodeoxycholic acid (UDCA) –
a biliary protective drug of which the mechanism of action is still
poorly understood.

In AIH, randomized controlled trials from the 1970’s helped
establish the mainstay treatment options of corticosteroids
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(PRED) and azathioprine (AZA) (119–121). Today, 50 years
later, the treatment plan is almost identical to these early trials.
This is sufficient to obtain biochemical disease remission and to
prevent further liver damage in around 80% of AIH-1 patients
(122). However, this level of immunosuppression commonly
causes side effects including Cushingoid features, weight gain
and gastrointestinal issues. For the vast majority of patients
immunosuppressive therapy is lifelong, bringing a range of side
effects, including osteoporeosis (especially problematic in middle
aged women), diabetes mellitus, an increased risk of infections
and risk of both hepatocellular and extra-hepatic cancers (123).
Despite treatment, de novo cirrhosis occurs in around 14% of
patients increasing the likelihood patients progress to transplant
or hepatocellular carcinoma (124, 125). Adolescents often display
poor treatment regime compliance, leading to the highest rate of
relapse of any age group; therefore, an approach which causes
fewer side effects, would be particularly welcome in this cohort
(126). A recent trial using the corticosteroid budesonide with
AZA indicated improved efficacy to PRED and a much improved
adverse effect profile (127). So far, this is yet to be translated to a
change in clinical treatment practices for AIH.

The primary course of treatment for PBC is UDCA
(128). UDCA slows PBC disease progression by protecting
cholangiocytes and hepatocytes from damage (129). UDCA
significantly improves transplant free survival (130, 131);
however, up to 40% of patients treated with UDCA have an
insufficient response to treatment (132, 133), therefore in the
long term, a liver transplant is often required. Even with a
liver transplant, PBC recurs in around 30% of patients after
10 years (134–136). A recent development in approved PBC
treatment is administration of obeticholic acid, particularly
in patients refractory to or intolerant of UDCA. Obeticholic
acid significantly improved liver function tested by alkaline
phosphatase levels in patients with insufficient UDCA responses,
with 69% of treated patients achieving a 20% reduction in ALP
vs. only 8% of patients treated with UDCA alone (137, 138).

There are no effective treatments for PSC that have been
proven to improve transplant free survival. There is no clear
evidence that UDCA can treat PSC despite multiple clinical trials
(139, 140). Trials applying other immunosuppressants to PSC,
including prednisolone, budesonide, azathioprine, cyclosporin,
methotrexate, mycophenolate, and tacrolimus have not shown
efficacy (141). Drugs that antagonize the effects of anti-TNF-α
such as pentoxifylline, etanercept and anti TNF-α monoclonal
antibodies are also ineffective (141). Patientsmay undergo several
of these pharmacological interventions in an attempt to quench
biliary pathology, yet for most the only long-term option is
liver transplantation. The mean time from diagnosis to liver
transplantation/death is 9–12 years (90, 142). Unfortunately, PSC
is expected to reoccur in 20–25% of patients over a 5–10 year
period (136, 143, 144).

There is certainly an unmet need for improved treatment
options with increased efficacy in hard to treat groups particularly
pediatric AIH patients, refractory PBC patients and PSC
patients. With the current understanding of the features of
PSC, it is not clear that its pathogenesis is autoimmune, thus
without the identification of autoantibodies and autoantigens

relevant to PSC it will not be possible to generate antigen-
specific immunotherapies for these patients. For AIH and PBC
patients, however, there is sufficient evidence that antigen-
specific immunotherapies could have real therapeutic value, and
in contrast to systemic immunosuppressive drugs these should
have a more specific mechanism of action that does not threaten
the general health and immune capacity of the patient. The
need for antigen-specific immunotherapies becomes ever more
important as the world faces highly infectious agents such as
the SARS-CoV-2 virus: such pathogens clearly endanger anyone
taking immunosuppressive drugs.

ANTIGEN-SPECIFIC IMMUNOTHERAPY

Antigen-specific immunotherapy has been practiced in the field
of allergy for more than 100 years (145, 146). Recently, there
has been increasing interest in the development of antigen-
specific approaches for specific immunotherapy of autoimmune
conditions (schematic summary in Figure 3). This follows
evidence that treatment of experimental animals with antigens
can lead to amelioration of disease (146). Currently these
approaches target CD4T cell recognition of self-antigens. This
is because CD4T cells control the generation of all of the tissue
damaging mechanisms associated with autoimmunity including
pathogenic autoantibodies, antigen-driven inflammation and
self-antigen specific CD8T cells. It is not the focus of this
review to discuss the mechanisms of action underpinning each
approach aiming to induce antigen-specific tolerance; as these
has been described comprehensively recently elsewhere (147,
148). We have briefly summarized within Table 2 the proposed
mechanisms of action for each approach in development or in
the clinic.

Allergic desensitization involves administration of increasing
and repeated doses of allergen, often a crude extract of the
allergen material. Early attempts to treat autoimmune diseases in
a similar way were not successful with intact antigen inducing
pathogenic autoantibodies (166, 167) or driving tissue damaging
cytotoxic T cells (168). To ensure safety and efficacy, autoantigens
must be modified in such a way as to protect the recipient
from exacerbation of the autoimmune response or they must
be fragmented so as to avoid engagement with pathogenic
autoimmune mechanisms. A preferred approach is to use short
fragments of antigens (synthetic peptides) designed to modulate
CD4T cells but lacking either the structural integrity to engage
pathogenic B cells or the peptide sequences to engage CD8 T cells.

It is important to appreciate that the mammalian adaptive
immune system is poised to respond to foreign antigens but in
the steady-state is adapted to limit autoimmune responses to
the individual’s own antigens. Responsibility for distinguishing
between self and foreign antigens falls primarily on dendritic
cells (169). In the steady-state, these cells are capable of
binding the many fragments of self-antigens that are contained
within the lymphoid pool (170). Steady-state dendritic cells
presenting self-antigens are tolerogenic. It is only when these
cells encounter foreign antigens in the context of microbial
pattern-associated molecular patterns (e.g., LPS, bacterial DNA
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FIGURE 3 | Summary of antigen-specific immunotherapy approaches in preclinical/clinical development.

etc.) that they present antigen in an immunogenic rather than a
tolerogenic fashion.

There are now a variety of clinical trials in progress that target
steady-state/immature dendritic cells either in vivo or in vitro.
The in vitro approach involves the generation of myeloid-derived
dendritic cells treated with immunosuppressive agents, such as
vitamin D3, to maintain a tolerogenic phenotype. The cells are
then treated with peptides from self-antigens and reinjected into
the patient (171–173). Alternatively, antigens can be coupled
to dendritic cell targeting antibodies (e.g., anti—Dec205) for in
vivo targeting (174). Our own work has focused on designing
peptides that target steady-state dendritic cells directly. Early
studies showed that some but not all known CD4T cell epitopes
induce tolerance when injected into experimental mice (175).
Peptides must bind directly to MHC Class II and adopt the same
conformation as the naturally processed epitope (176). Those
peptides that do not mimic the naturally processed epitope fail to
induce tolerance in relevant T cells. This implies that tolerogenic
peptides bind directly to MHC Class II on or in steady state
dendritic cells without further processing. Recent work from our
laboratory has shown that such antigen-processing independent
epitopes (apitopes) selectively bind to peptide receptive MHC
class II molecules on steady-state dendritic cells but not to
MHC Class II on the surface of B cells or monocytes. This is
explained by the distinct, peptide-receptive nature of MHC Class
II molecules on steady-state dendritic cells (177). Furthermore,
tolerogenic peptides are detectable on steady state DCs up to 5
days after administration (178). We have shown that apitopes
induce tolerance by induction of anergy in self-antigen reactive
T cells and the expansion of antigen-specific Tr1 cells (179–182).

Alternative approaches for targeting “tolerogenic” APCs in
vivo include combining antigen with liposomes, red blood

cells or nanoparticles (Summarized in Table 2). These target
different antigen-presenting cells in lymphoid organs or the liver
depending on the size of the material or nanoparticle. This
determines their modus operandi.

There is increasing evidence that nanoparticles of different
sizes transit to and are taken up by different APCs according
to their size. Berkland et al. have shown that particles > 200 nm
are retained in the liver while those < 4 nm are rapidly excreted
(183). This evidence would pair well with evidence from Kupffer
cell studies that these cells establish tolerance by phagocytosing
particulate material and presenting antigenic fragments (21, 22).
Such small particles rapidly drain from sites of injection into
blood and lymph and particles of 4–10 nm penetrate lymph node
cortex where they can interact with steady-state DCs. In contrast,
particles > 100 nm are retained in the sub-capsular space where
they will be processed by macrophages.

Santamaria et al. have developed artificial APCs (Navacims)
based on nanoparticles coated with MHC Class II and antigenic
peptide (159). The mechanism of action is in principle the
same as apitope immunotherapy, both establish immunological
tolerance by inducing IL-10 expressing CD4T cells through
a negative feedback mechanism (159, 160, 181, 184, 185).
The resulting Tr1 cells are characterized by the expression of
the immunosuppressive genes such as IL10 and co-inhibitory
receptors (186, 187). The Tr1 cells induced by Navacims,
however, also express inflammatory cytokines such as TNF-α,
IL5, and GM-CSF (188). In contrast, Tr1 cells derived from
apitope immunotherapy do not express TNF-α, IL5, or GM-CSF
(182). Their recent studies serve as a valuable proof of concept,
as antigenic peptides identified by in silico binding predictions
from PDC-E2 loaded onto IAg7 MHC-nanoparticles are able to
ameliorate PBC-like liver damage.
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TABLE 2 | This table summarizes the current status of pre-clinical and clinical developments of antigen-specific immunotherapies for autoimmune diseases.

Company Delivery approach Proposed mechanism of action Impact on T cell response Efficacy in experimental

models

Clinical trials progress

Anokion Antigens modified with

polymeric forms of either

N-acetylgalactosamine or

N-acetyl-glucosamine

Target hepatic antigen-presenting cells Induce CD4+ and CD8+

T-cell deletion and anergy

EAEA, T1D Enrolling patients for KAN-101

trial in coeliac disease

Apitope

International NV

Synthetic peptides designed as

antigen processing independent

CD4+ T cell epitopes (apitopes)

injected in saline i.d. or s.c.

Highly soluble peptides traffic to and

selectively bind to MHC II antigens on

steady-state DC in lymphoid organs

Induction of anergy and

generation of regulatory T

cells (primarily Tr1)

EAE and Graves’ disease

models (149, 150)

Phase Ia in SPMS (149)

Phase Ib in RRMS (151)

Phase II in RRMS (151)

Phase I in Graves’ disease (152)

Cellerys Red blood cells (RBC) coupled

with peptides from myelin in MS

RBC target macrophages and Kupffer

cells in spleen and liver

Increase in Tr1 cell response

to antigen with reduced

IFN-γ

Phase 1 in RRMSB

Cour/takeda Antigen encapsulated in PLG

[poly(lactide-co-glycolide)]

nanoparticles

Ag-PLG internalized by splenic marginal

zone macrophages and liver phagocytic

cells via scavenger receptors (MARCO)

Increase in Foxp3 Treg cells,

dependent on CTLA-4,

PD-1 and IL-10

EAE, T1D and coeliac

disease models (153–155)

Phase I trial of gliadin-PLG in

patients with coeliac disease

(unpublished)

Dendright/Janssen

Biotech Inc

Antigen with calcitriol in

liposomes

Liposomes (105–135 nm) target

steady-state DC in draining lymph nodes

Increase in Foxp3 Treg cells Autoimmune arthritis and

experimental Goodpasture’s

vasculitis (156)

Phase I in ACPA+ rheumatod

arthritisC

Imcyse T cell epitopes modified by

addition of a thioredox motif

(CXXC), injected in Alum

adjuvant

Promotes cytotoxic activity in T cells

through increasing expression of

granzyme B and FasL

Cytotoxic cells delete B cells

in cognate recognition

T1D (157) Phase I with 3 staggered doses

of modified pro-insuln peptide in

T1D (unpublished)

Novo nordisk Plasmid DNA encoding

proinsulin and co-expressing

IL-10 and TGF-β

Promotes treg cells Promotes Treg cell

differentiation

T1D with vector expressing

GAD antigen (158)

Parvus Nanoparticles coated with MHC

II proteins and antigenic

peptides

Bind directly to CD4+ effector cells Drives differentiation of Tr1

cells from Th1 precursors in

mice

EAE, CIA, T1D and

autoimmune liver diseases

(159, 160)

In pre-clinical development for

T1D and autoimmune liver

diseases

Selecta PLG nanoparticles containing

rapamycin co-administered with

antigen

Nanoparticles found in dendritic cells in

spleen and LSEC and Kupffer cells in the

liver where they mediate

down-regulation of CD80, CD86, class II

MHC and upregulation of PDL-1

Promotes Treg cell

differentiation

EAE and anti-drug

antibodies (161, 162)

Phase II study in gout designed

to block the anti-drug antibody

response to PegadricaseD

Tolerion DNA encoding self-antigen CpG islands in DNA replaced with GpG

to reduce immunogenicity of antigen

delivery

Promote immune regulatory

response to self-antigen

BHT-3021 prevents T1D in

mouse model (163)

Phase I trial completed and

phase II enrolling (164)

Topaz Ferromagnetic nanoparticles

coupled to T cell epitopes

Nanoparticle-based autoantigen delivery

to liver sinusoidal endothelial cells

Induction of Foxp3+ Treg

cells in the liver

EAE (165) First patient enrolment in phase I

trial of TPM203 in Pemphigus

Vulgaris

Where either pre-clinical or clinical trials have been published these are referenced. Additional results are discussed in relevant conference abstracts and company websites.
Ahttps://anokion.com/wp-content/uploads/2019/09/ECTRIMS_Poster_9.13.19.pdf.
BMULTIPLE SCLEROSIS JOURNAL Volume: 25 Special Issue: SI Supplement: 2 Pages: 894–894 Meeting Abstract: 339 Published: SEP 2019.
Chttps://acrabstracts.org/abstract/a-phase-i-randomized-double-blind-placebo-controlled-single-center-single-dose-escalation-to-investigate-the-safety-tolerability-and-pharmacodynamics-of-subcutaneously-administered-den-

181-in-a/.
Dhttps://selectabio.com/immtor/gouttherapy/phase2results.
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These Navacims, MHCII-based nanomedicines displaying
epitopes from mitochondrial, endoplasmic reticulum, or
cytoplasmic antigens associated with primary biliary cholangitis
or autoimmune hepatitis can suppress disease progression in
various murine models in an organ- rather than disease-specific
manner (160). The improvement in liver score was shown
to be IL-10 and TGF-β dependent. However, none of these
liver disease models fully recapitulates the human condition.
Furthermore, the T cell epitopes restricted by murine MHC class
II molecules are unlikely to resemble those binding HLA-DR and
DQ molecules i.e., relevant to human disease

However, Navacims do not work prophylactically to prevent
disease onset, this is in contrast to apitope immunotherapy which
is effective before as well as after disease onset (160, 179, 182).
The bystander suppression demonstrated by loading the artificial
APCs with PDC-E2 peptides and supressing the response against
the CYP2D6 antigen and vice versa is intriguing and suggests
that bystander suppression can influence different autoimmune
conditions within the same tissue (189).

FUTURE PROSPECTS FOR
ANTIGEN-SPECIFIC IMMUNOTHERAPIES
FOR AUTOIMMUNE LIVER DISEASES

At this stage, it is too early to compare the safety and efficacy
of the various approaches shown in Table 2. It is likely that
different approaches will prove more or less effective for control
of different immune pathologies and diseases. It is of paramount
importance, however, to apply three tests to these approaches.

1. What is the mechanism of action? It will be critical to fully
understand the mechanism by which these approaches induce
antigen-specific tolerance both in experimental models and
in patients.

2. Which approaches induce bystander suppression? For
diseases like Graves’ disease, we know precisely what the
target antigen is. However, for most autoimmune diseases
we do not know which antigen is targeted by the immune
system to initiate the disease. For many others, antibodies
specific for self-antigens are associated with disease but may
or may not have a role in immune pathology. Furthermore,

in most autoimmune conditions, epitope spreading leads to
the generation of an immune response to a range of antigens
within the same tissue (190). In order to account for epitope
spreading, we and others have shown that certain immune
regulatory mechanisms, such as Tr1 cells, mediate bystander
suppression (191). By targeting antigen A within a tissue
and eliciting immunosuppressive regulatory T cells, we can
control the immune response to antigens B, C, D etc. within
the same tissue.

3. Which approach permits repeated antigen administration?
Apitope has now conducted clinical trials in multiple sclerosis
and Graves’ disease. In both cases, protection from immune
pathology was observed but the patients treated did not
enter a permanent state of tolerance (149, 151). Protection
was seen for up to 1 month after the last dose of peptide
which correlates well with the duration of tolerance observed
in euthymic mice (192). It may well be that humans have
evolved to require continued exposure to antigens in order to
maintain tolerance. For this reason, it is likely that repeated
administration of the different tolerogenic materials described
in Table 2 will be required. A successful therapeutic approach
must avoid induction of anti-drug antibodies or non-specific
immune suppression.

There is already substantial progress in the quest for specific
immunotherapies for autoimmune liver diseases. With this
in mind, our laboratory is designing putative disease-altering
apitopes from the dominant human autoantigens associated with
PBC and type 2 AIH.
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