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Abstract. We study the time correlation functions of coupled linear Langevin dynamics with and
without inertial effects, both analytically and numerically. The model equation represents
the physical behavior of a harmonic oscillator in two or three dimensions in the presence
of friction, additive noise, and an external field with both rotational and deformational
components. This simple model plays pivotal roles in understanding more complicated
processes. The analytical solution presented serves as a test of numerical integration
schemes, and its derivation is presented in a fashion that allows it to be repeated directly
in a classroom. While the results in the absence of fields (equilibrium) or confinement
(free particle) are omnipresent in the literature, we write down, apparently for the first
time, the full nonequilibrium results that may correspond, e.g., to a Hookean dumbbell
embedded in a macroscopically homogeneous shear or mixed flow field. We demonstrate
how the inertial results reduce to their noninertial counterparts in the nontrivial limit of
vanishing mass. While the results are derived using basic integrations over Dirac delta dis-
tributions, we also provide alternative approaches involving (i) Fourier transforms, which
seem advantageous only if the measured quantities also reside in Fourier space, and (ii)
a Fokker–Planck equation and the moments of the probability distribution. The results,
verified by numerical experiments, provide additional means of measuring the performance
of numerical methods for such systems. It should be emphasized that this article provides
specific details regarding the derivations of the time correlation functions as well as the
implementations of various numerical methods, so that it can serve as a standalone piece
for lessons in the framework of Itô stochastic differential equations and calculus.
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1. Introduction. The efficiency and accuracy of numerical solvers for Itô stochas-
tic differential equations (SDEs), including those that are equivalent to diffusion-type
partial differential equations, are difficult to assess without access to analytical ref-
erence solutions. Only for the simplest linear cases can transient moments and time
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correlation functions be calculated analytically. For nonlinear SDEs, analytical solu-
tions are generally not available; nevertheless, convergence and stability issues have
been discussed [9, 23, 55]. Here we propose an essentially two-dimensional nontrivial,
still linear benchmark problem (see the Langevin dynamics problem (2.13)), inspired
by the challenging problem of the dynamics of macromolecules, which is still exactly
solvable. It includes inertial effects, which are usually neglected as they pose extra
problems and because their physical significance is a priori unclear, or because any
possible related effects are considered “small.”

The benchmark equation we are going to consider arises in several different con-
texts, where linear restoring forces compete with stochastic additive noise, in the
presence of an external field, while the absence of either the restoring force or the
external field are both popular special cases that include, for example, the random
walk [10, 50], diffusion [19, 25, 62], a charged atom in an electric field [27], the motion
of atoms in the presence of gravitational, centrifugal, chemical potential, etc., gradi-
ents [45], RNA unfolding via laser tweezers [46], nanomagnets subjected to magnetic
fields and superparamegnetization [11], Brownian oscillators [11], dielectric and mag-
netic permittivity in dilute solutions of macromolecules [8] or ferrofluids [16], phoretic
forces [31], vibration and photodesorption of diatomic gases [44], and rotational re-
laxation of molecules trapped in a three-dimensional crystal [13]. Including inertial
effects in Brownian dynamics (i.e., the overdamped limit of the Langevin dynamics),
where they are usually neglected, can help understand the origins of departures from
the expected behavior, especially at short times, for tracer nanoparticles experiencing
both inertial and stochastic forces, in microrheology, or to explain the occurrence of
negative storage moduli [4, 5, 49, 67].

Let us introduce one explicit example from the world of polymer physics, dealing
with macromolecules, DNA, and actin filaments and the like, as well as materials,
biochemical, and engineering sciences, which is captured by our benchmark problem.
The dynamics of a single flexible polymer dissolved in Newtonian solvent and flexible
polymers confined in melts are both, to a first approximation, well captured by the
Brownian motion of a linear chain consisting of a number of identical mass points (or
beads), permanently interconnected by harmonic springs and interacting with the sur-
roundings via Gaussian white noise [14, 53]. In that case the harmonic spring results
are based upon the assumptions that each partial chain, thought to reside between
and terminate at the mass points, behaves as an ideal chain that can be mapped
using Kuhn’s approach to a random walk. Assuming that Stokes’ friction hinders
the free motion of the mass points due to frequent collisions with the surrounding
medium, the strength of the additive noise is related to the bead friction coefficient
via a fluctuation-dissipation relation. The rheological, viscoelastic properties of poly-
mers are very different from those of simple liquids, and can be studied by considering
a polymer dissolved in a solution that is not at rest, but subjected to a flow gradient.
While the precise trajectory of the polymer is unavailable because of the stochastic
noise, measurable time correlation functions can be calculated analytically in the weak
sense (see more discussions in subsection 4.1). Since polymeric systems are often over-
damped, the inertia, which is quantified by the mass, is thus typically neglected, and
this is known as the Rouse model [7, 56] (i.e., in the form of the Brownian dynamics).
However, as pointed out in [57], the inertia of the chains might be expected to be
more important for samples in solvents of extremely low viscosity, e.g., “supercritical
solvents,” due to the fact that the dimensionless mass depends inversely upon the
solvent viscosity squared. Upon introducing normal coordinates [14, 15], the differ-
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904 XIAOCHENG SHANG AND MARTIN KRÖGER

ential equations that need to be solved to treat the complete polymer problem with
masses [29], and for polymers subjected to a macroscopic homogeneous flow field [32],
are identical to the equations of motion of a harmonic oscillator with a single mass,
connected with the origin by a spring.

Inertial effects in the context of microbead rheology [26], where the spring coef-
ficient k is due to an optical trap, appear to improve the agreement with data for
dynamical viscosities at high frequencies [66]. The inertial effects are known to be
quite irrelevant under most common conditions, but should increase with the increas-
ing size of the microbead and softness of the surrounding material [63]. It has also
been demonstrated in [24] that including the inertial effects for the study of fluid
suspensions is necessary. Furthermore, in the context of molecular dynamics, the in-
clusion of the inertial effects leads to the possibilities of designing various thermostats,
which are powerful tools for sampling the invariant measure [3, 18, 36].

This article is organized as follows. We present the model Langevin dynamics
and its noninertial special (Brownian) case, and introduce dimensionless quantities
in section 2 to come up with a dimensionless Langevin dynamics suitable for bench-
mark tests. In section 3, we derive the stationary time correlation functions of this
equation both with and without inertial effects. In addition to demonstrating that the
inertial results reduce to their noninertial counterparts in the limit of vanishing mass,
we provide two alternative approaches based on (i) the Fourier transform and (ii) the
Fokker–Planck equation to obtain the stationary time correlation functions. We re-
view, in section 4, various numerical methods used to solve either Brownian dynamics
or Langevin dynamics. The available correlation functions are important measures of
dynamical fidelity that numerical integrators should be able to reproduce. Section 5
presents numerical experiments in both cases, not only verifying the analytical results
but also comparing the performance of those numerical methods. A summary and
outlook is given in section 6.

2. The Model Equation. Consider the linear Langevin dynamics with a single
harmonic oscillator of mass m in the presence of a streaming background medium with
velocity field u, whose equations of motion for its extension, or end-to-end vector q(t),
are given by1

(2.1) mq̈ = −kq− γ (q̇− u) + ση(t) ,

where a dot denotes a derivative with respect to time t, k represents a spring coef-
ficient, and the positive friction coefficient γ and noise strength σ are related via a
fluctuation-dissipation relation

(2.2) σ2 = 2γkBT ,

where kB and T denote the Boltzmann constant and absolute temperature, respec-
tively. The components of the time-dependent vector η(t) represent a “white noise” or
“Brownian motion” term, usually modeled by the mutually independent increments
of a continuous time-stochastic Wiener process [6]. The η(t) thus has a Gaussian
probability distribution whose average and correlation function are given by

(2.3) 〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = I δ(t− t′) ,

1Here we use the standard notation used in modern textbooks for physicists [14] or on Wikipedia,
while the mathematics literature might prefer dηt instead of η(t).
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where 〈·〉 denotes an ensemble average and I is the unity matrix. The δ-distribution
form of the correlations in time means that the force ση(t) at a time t is assumed to
be completely uncorrelated with it at any other time; η has units of s−1/2. For the
purposes of this review, the properties (2.3) fully characterize the noise, and the addi-
tional requirement of a Gaussian probability is nowhere essential. When solving (2.1)
we impose the initial conditions q(−∞) = limt→−∞ q(t) = 0 and q̇(−∞) = 0 as
long as we are interested in stationary time correlation functions such as 〈q(t) · q(0)〉
that are unaffected by the precise initial conditions and are thus symmetric in t in
the absence of the assumed homogeneous streaming velocity field u = κ · q. The
matrix κ (transposed macroscopic homogeneous velocity gradient) is arbitrary, and it
is traceless for the case of incompressible flow. It can be generally decomposed into a
symmetric and an antisymmetric part, representing the pure deformational and pure
rotational parts of the flow field. If, furthermore, we choose a suitable coordinate
system, the still arbitrary κ can be considered to have nonvanishing components only
on its diagonal and on one of the nondiagonal components:

(2.4) κ =

 κxx κxy 0
0 κyy 0
0 0 κzz

 .

The rotational part of the flow field is thus solely specified by the so-called shear rate
κxy, while the deformational component carries all components of κ, i.e., the shear and
three elongational rates. In the absence of u or for a diagonal (irrotational) κ tensor
characterizing elongational flow, (2.1) is identical to three uncoupled equations for
three scalar components, each of which describes a one-dimensional linear Langevin
dynamics with inertia. In what follows we consider a more general case in which the
system is subjected to a mixed flow with shear rate κxy. In this case, the equations
of (2.1) for the components do not decouple anymore, and they instead read, with
q = (x, y, z),

mẍ = −kxx− γ (ẋ− κxyy) + σ ηx ,(2.5a)

mÿ = −kyy − γẏ + σ ηy ,(2.5b)

and there is no need to write down an extra equation for the z-component, as it
remains coupled to neither x- nor y-components. We have also introduced effective
spring coefficients kµ ≡ k − γκµµ, µ ∈ {x, y}, to incorporate potential contributions
from the diagonal of the κ tensor. To improve the neatness of the presentation, we
are going to introduce appropriate abbreviations below. It also turns out that it is
useful to introduce different abbreviations for both the noninertial and the inertial
cases.

For the noninertial (m = 0) case, associated with Brownian or overdamped
Langevin dynamics, we can rewrite (2.5) as

ẋ = κxyy − ωxx+
√

2Dηx ,(2.6a)

ẏ = −ωyy +
√

2Dηy ,(2.6b)

having introduced (no summation convention unless otherwise stated) two character-
istic frequencies ωµ and a diffusion coefficient D:

(2.7) ωµ ≡
kµ
γ

=
k − γκµµ

γ
, D ≡ σ2

2γ2
=
kBT

γ
.

D
ow

nl
oa

de
d 

11
/1

9/
20

 to
 1

47
.1

88
.2

16
.5

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

906 XIAOCHENG SHANG AND MARTIN KRÖGER

2.1. Connections with the Dumbbell Model. The so-called dumbbell model,
where two masses m are connected by a spring with a spring coefficient k, is the sim-
plest model to describe the behavior of a drastically coarse-grained polymer molecule,
whose equations of motion (subject to shear with rate κxy and/or elongational flow
whose rates are captured by anisotropic spring coefficients kx and ky) read

mẍ1 = −kx (x1 − x2)− γ (ẋ1 − κxyy1) + σηx1 ,(2.8a)

mẍ2 = −kx (x2 − x1)− γ (ẋ2 − κxyy2) + σηx2 ,(2.8b)

mÿ1 = −ky (y1 − y2)− γẏ1 + σηy1 ,(2.8c)

mÿ2 = −ky (y2 − y1)− γẏ2 + σηy2 .(2.8d)

Introducing relative (end-to-end) vector components X = x2 − x1, Y = y2 − y1,
center of mass coordinates Cx = (x1 + x2)/2, Cy = (y1 + y2)/2, and noting that√

2 ηx = ηx1
± ηx2

, (2.8) becomes

mC̈x = −γ
(
Ċx − κxyCy

)
+

σ√
2
ηx ,(2.9a)

mC̈y = −γĊy +
σ√
2
ηy ,(2.9b)

mẌ = −2kxX − γ
(
Ẋ − κxyY

)
+
√

2σηx ,(2.9c)

mŸ = −2kyY − γẎ +
√

2σηy .(2.9d)

These two uncoupled sets of equations for X,Y and Cx, Cy are of the form studied
in subsections 3.3 and 3.4, respectively. With the new 1-variables k1µ = 2kµ, γ1 = γ,
and σ2

1 = 2σ2 = 4γkBT = 2γ1kBT1, the end-to-end vector of the elastic dumbbell
behaves like a harmonic oscillator with mass m, unchanged friction coefficient γ,
but modified spring coefficient k1µ = 2kµ and temperature T1 = 2T . Therefore, the
stationary time correlation functions for the end-to-end vector q of the dumbbell
model are identical to those obtained for the nonideal cases upon replacing T by 2T
and kµ by 2kµ. Similarly, the dynamics of the center of mass of the dumbbell is
captured by the results for the ideal (springless) cases upon replacing T by T/2. The
overdamped (noninertial) cases of the dumbbell are thus also treated in subsections 3.1
and 3.2.

2.2. Nondimensionalization. In fact, we could have eliminated one more pa-
rameter by switching to dimensionless time. However, in order to prevent any confu-
sion with the notation, we introduce dimensionless units only for the more advanced
inertial case, where dimensionless units pay off more significantly. To this end we
introduce dimensionless position and time for the inertial (m > 0) case via

(2.10) x∗ ≡
x

qref
, y∗ ≡

y

qref
, t∗ ≡

t

tref
,

where reference quantities qref and tref are chosen as

(2.11) qref ≡
σ
√
m

(γ/2)3/2
=

4
√
mkBT

γ
, tref ≡

2m

γ
.

Upon further introducing dimensionless spring coefficients sµ and a dimensionless
shear rate r as

(2.12) sµ ≡
4mkµ
γ2

=
4mωµ
γ

, r ≡ 2mκxy
γ

,
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x

y

z

spring

external �eld

noise and 
friction

massymassless

free

Fig. 1 Schematic descriptions of a variety of possible conditions associated with the Langevin
dynamics (2.1) in the presence of an external flow field (the shown arrows correspond to
the case of pure shear). From left to right: free, massless, ideal Brownian; spring-connected,
massless, nonideal Brownian; free, inertial, ideal Langevin; and spring-connected, inertial,
nonideal Langevin cases.

the equations of the Langevin dynamics (2.5) take the following simpler and final form
(details in Appendix A), which is our “benchmark” problem suitable for analytical
and numerical inspections:

ẍ = −sxx− 2 (ẋ− ry) + ηx ,(2.13a)

ÿ = −syy − 2ẏ + ηy ,(2.13b)

with unaltered (2.3) and with only three dimensionless parameters sx, sy, and r,
representing the strengths of the effective springs (in the x- and y-directions) and
the shear rate, respectively. We have omitted all asterisks from (2.13), and a dot
here denotes a derivative with respect to the reduced time t∗ = t/tref (2.10). All
results obtained for the reduced quantities can be converted, according to (2.10), to
dimensional results involving all six parameters in (2.5) by multiplying each x, y,
and t by qref, qref, and tref, respectively. In what follows we derive time correlation
functions and other quantities of the linear Langevin dynamics (2.1) with (2.4) under
various possible conditions, as illustrated in Figure 1.

3. Derivation of Time Correlation Functions. In this section, we analytically
derive time correlation functions of the coupled linear Langevin dynamics (2.1) with
and without inertial effects. While stationary time correlation functions exist for
the case of non-purely irrotational flow, as proven in subsection 3.7, nonstationary
correlation functions for the case of irrotational flow occur in subsections 3.1 and 3.3.

3.1. Ideal Brownian Dynamics: m = 0, kx = ky = 0. We first consider the
ideal Brownian dynamics case where both the inertia and effective springs are absent
(i.e., m = 0 and kx = ky = 0). In this case, the system (2.6) describes a freely
diffusing massless particle in the presence of a shear flow field and includes classical
Brownian motion of a particle in a quiescent background medium as a special case
for κxy = 0. Since the zeroth mode in the normal coordinates [14, 15] corresponds to
the center of mass of a chain, we indeed need the results of the springless case treated
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908 XIAOCHENG SHANG AND MARTIN KRÖGER

here, which are essential for transferring the results of a single harmonic oscillator to
those of a bead-spring chain [29, 32] or a dumbbell (see subsection 2.1). To be more
precise, the equations of motion of (2.6) in this case reduce to

ẋ = κxyy +
√

2Dηx ,(3.1a)

ẏ =
√

2Dηy ,(3.1b)

where D is a diffusion coefficient as confirmed by (3.4) below. Since 〈ηµ〉 = 0, we
have 〈ẏ〉 = 0 and 〈ẋ〉 = κxy 〈y〉 on average. Unless otherwise stated, we assume
t ≥ 0 throughout this article, since results associated with t < 0 can be read off by
symmetry arguments. Subject to initial conditions of x(0) = x0 and y(0) = y0, (3.1)
are solved by

x(t)− x(0) =

∫ t

0

ẋ(t′) dt′ =

∫ t

0

[
κxyy(t′) +

√
2Dηx(t′)

]
dt′ ,(3.2a)

y(t)− y(0) =

∫ t

0

ẏ(t′) dt′ =
√

2D

∫ t

0

ηy(t′) dt′ .(3.2b)

Making use of the properties of the Wiener noise (2.3), we obtain the following two-
point nonstationary time correlation function:

〈[y(t1)− y0][y(t2)− y0]〉 = 2D

〈∫ t1

0

ηy(t′1) dt′1

∫ t2

0

ηy(t′2) dt′2

〉
= 2D

∫ t1

0

∫ t2

0

〈ηy(t′1) ηy(t′2)〉dt′2 dt′1

= 2D

∫ t1

0

∫ t2

0

δ(t′1 − t′2) dt′2 dt′1

= 2D

∫ min(t1,t2)

0

∫ min(t1,t2)

0

δ(t′1 − t′2) dt′2 dt′1

= 2D

∫ min(t1,t2)

0

dt′1 = 2Dmin(t1, t2) .(3.3)

Note that result (3.3) may alternatively be obtained without making use of the prop-
erties of Dirac delta distributions, but instead via Itô isometry [51]. The famous mean
squared displacement emerges as a special case of (3.3) with t ≡ t1 = t2,

(3.4)
〈
[y(t)− y(0)]2

〉
= 2Dt ,

which actually confirms D to be a diffusion coefficient, as it is usually defined by (3.4).
We can further proceed by calculating the remaining mean squared displacements
(see Appendices B.1 and B.2 for proofs)

(3.5) 〈[x(t)− x(0)][y(t)− y(0)]〉 = Dκxyt
2

and

(3.6)
〈

[x(t)− x(0)]
2
〉

= 2Dt

[
1 +

1

3
(κxyt)

2

]
+ (κxyy0t)

2
,

which reduces to the equilibrium result (3.4) in the absence of shear (i.e., κxy = 0).
Note that the appearance of the t3 term in (3.6) reflects the anomalous diffusion that
is caused by a velocity change along the flow direction (the x-direction) due to the
Brownian motion of a particle along the velocity gradient (the y-direction), and it was
confirmed experimentally in [52, 61].
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3.2. Nonideal Brownian Dynamics: m = 0, kx, ky > 0. We next consider the
nonideal Brownian dynamics case of the oscillator with effective springs (i.e., m = 0
and kx, ky > 0), subject to boundary conditions x(−∞) = y(−∞) = 0. In this case,
the system (2.6) is formally solved by

x(t) =

∫ t

−∞

[
κxyy(t′) +

√
2Dηx(t′)

]
e−ωx(t−t′) dt′ ,(3.7a)

y(t) =
√

2D

∫ t

−∞
ηy(t′)e−ωy(t−t′) dt′ ,(3.7b)

which may be verified by direct insertion. One has 〈x〉 = 〈y〉 = 0 on average. The
stationary time correlation function 〈y(t1)y(t2)〉 can be obtained as (see Appendix C.1
for a proof)

〈y(t1)y(t2)〉 =
D

ωy
e−ωy|t1−t2| ,(3.8)

implying special cases of

(3.9) 〈y(t)y(0)〉 =
D

ωy
e−ωyt ,

〈
y2
〉

=
D

ωy
.

The remaining stationary time cross-correlation functions are derived in Appendices C.2
and C.3:

〈x(t)y(0)〉 = Dκxy
(ωx + ωy)e−ωyt − 2ωye

−ωxt

(ω2
x − ω2

y)ωy
,(3.10a)

〈y(t)x(0)〉 =
Dκxye

−ωyt

(ωx + ωy)ωy
.(3.10b)

For the stationary mixed moment we thus obtain

(3.11) 〈xy〉 =
Dκxy

(ωx + ωy)ωy
,

and the stationary autocorrelation function in the x-direction becomes, according
to Appendix C.4,

(3.12) 〈x(t)x(0)〉 =
De−ωxt

ωx
+
Dκ2xy (ωxe

−ωyt − ωye−ωxt)

(ω2
x − ω2

y)ωxωy
,

with the stationary second moment

(3.13)
〈
x2
〉

=
D

ωx
+

Dκ2xy
(ωx + ωy)ωxωy

.

In the case of a vanishing shear rate (i.e., κxy = 0), the system (2.6) decouples:
both stationary cross-correlations 〈x(t)y(0)〉 (3.10a) and 〈y(t)x(0)〉 (3.10b) vanish,
and 〈x(t)x(0)〉 (3.12) reduces to 〈y(t)y(0)〉 (3.9). Finally, we list the stationary time
correlation functions in the special case of pure shear, ω ≡ ωx = ωy (i.e., for an
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910 XIAOCHENG SHANG AND MARTIN KRÖGER

oscillator in the absence of elongational flow components), in which neither (3.10a)
nor (3.12) diverges:

〈y(t)y(0)〉 =
De−ωt

ω
=
kBT

k
e−kt/γ ,

(3.14a)

〈x(t)y(0)〉 =
Dκxy (1 + 2ωt) e−ωt

2ω2
=
kBTκxy

2k2
(γ + 2kt) e−kt/γ = 〈y(−t)x(0)〉 ,

(3.14b)

〈y(t)x(0)〉 =
Dκxye

−ωt

2ω2
=
kBTγκxy

2k2
e−kt/γ = 〈x(−t)y(0)〉 ,

(3.14c)

〈x(t)x(0)〉 =
De−ωt

ω
+
Dκ2xy (1 + ωt) e−ωt

2ω3
=
kBT

2k3
(
2k2 + γ2κ2xy + γκ2xykt

)
e−kt/γ .

(3.14d)

More specifically, the stationary moments are read off at t = 0,
(3.15)〈
y2
〉

=
D

ω
=
kBT

k
, 〈xy〉=Dκxy

2ω2
=
kBTγκxy

2k2
,
〈
x2
〉

=
D

ω
+
Dκ2xy
2ω3

=
kBT

k
+
kBTγ

2κ2xy
2k3

.

We can furthermore derive the mean squared displacement in the y-direction,

(3.16)
〈
[y(t)− y(0)]2

〉
= 2

〈
y2
〉
− 2 〈y(t)y(0)〉 = 2Dt+O(t2) ,

which indicates that the mean squared displacement is linear in t only at small times,
which qualitatively differs from what we derived for the noninertial case, (3.4), in sub-
section 3.1. In the limit of vanishing effective springs, however, the mean squared
displacement (3.16) reduces to (3.4), since k−1[1− exp(−αk)] = α+O(k).

3.3. Ideal Langevin Dynamics: m > 0, kx = ky = 0. We next consider the
ideal Langevin dynamics case of a free particle, an oscillator without effective springs
(i.e., m > 0 and kx = ky = 0) [17]. In this case, the dimensionless (2.13) takes the
form

ẍ = −2(ẋ− ry) + ηx ,(3.17a)

ÿ = −2ẏ + ηy ,(3.17b)

for which one is mostly interested in mean squared displacements rather than time
correlation functions, since the latter depend on the initial conditions. In the absence
of shear, both components are independent of each other, and only velocities rather
than coordinates appear in the equations of motion. By comparing (3.17) with (2.6)
and (3.7), we have

ẋ(t) =

∫ t

−∞
[2ry(t′) + ηx(t′)] e−2(t−t

′) dt′ ,(3.18a)

ẏ(t) =

∫ t

−∞
ηy(t′)e−2(t−t

′) dt′ ,(3.18b)

where ẋ and ẏ have the interpretation of the velocities. We can read off the stationary
velocity autocorrelation function and the mean squared displacement, respectively,
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from (3.8)–(3.9) upon inspecting the case of D = 1/2 and ωy = 2 in (3.7b). This
yields

(3.19) 〈ẏ(t)ẏ(0)〉 =
1

4
e−2t ,

and, as shown in Appendix D.1,

(3.20)
〈
[y(t)− y(0)]2

〉
=

1

8

(
2t+ e−2t − 1

)
.

Redimensionalizing (3.19) the more familiar version of the dimensional velocity auto-
correlation function arises:

(3.21) 〈ẏ(t)ẏ(0)〉 =
kBT

m
e−γt/m .

In this ideal (free, springless, k = 0) case, the integrated velocity autocorrelation
function turns out to be the diffusion coefficient,

(3.22)

∫ ∞
0

〈ẏ(t)ẏ(0)〉dt = D ≡ kBT

γ
.

Similarly, redimensionalizing (3.20) yields the dimensional mean squared displace-
ment,

(3.23)
〈
[y(t)− y(0)]2

〉
=

2mkBT

γ2

(
γt/m+ e−γt/m − 1

)
=
kBT

m
t2 +O(t3) .

While this expression is quadratic in t at small times, it reaches 2Dt (the diffusive
regime) for large times (i.e., γt/m � 1). A similar calculation, where the bound-
ary condition plays a role as in subsection 3.1, can be performed to obtain the
mean squared displacement in the x-direction. The mean squared velocity 〈ẏ2〉 =
kBT/m (3.21) is in agreement with the equipartition theorem here, in sharp contrast
with Brownian dynamics, in which 〈ẏ2〉 = 2Dδ(0) involves the diverging Dirac delta
distribution.

3.4. Nonideal Langevin Dynamics: m > 0, k ≡ kx = ky > 0. We finally
consider the most general nonideal Langevin dynamics case with both inertia and
effective springs (i.e., m > 0 and k ≡ kx = ky > 0). For the sake of simplicity we
assume s ≡ sx = sy in this case, and the equations of motion of the dimensionless
system (2.13) read

ẍ = −sx− 2(ẋ− ry) + ηx ,(3.24a)

ÿ = −sy − 2ẏ + ηy .(3.24b)

As demonstrated in Appendix E.1, the solution of (3.24b) subject to the initial con-
ditions of y(−∞) = 0 and ẏ(−∞) = 0 appropriate for the calculation of correlation
functions is given by

(3.25) y(t) =
1

2
√

1− s
[Gy(t, s−)−Gy(t, s+)] ,

where

(3.26) Gy(t, s′) ≡
∫ t

−∞
e−s

′(t−t′) ηy(t′) dt′ ,
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912 XIAOCHENG SHANG AND MARTIN KRÖGER

with the abbreviation

(3.27) s± = 1±
√

1− s .

Similarly, we can also obtain the solution of (3.24a) as

(3.28) x(t) =
1

2
√

1− s
[Gx(t, s−)−Gx(t, s+)] ,

where

(3.29) Gx(t, s′) ≡
∫ t

−∞
e−s

′(t−t′) [2ry(t′) + ηx(t′)] dt′ .

Subsequently, we can derive a variety of dimensionless, stationary time correlation
functions as in subsection 3.2 (details of derivations in Appendices E.2 to E.5):

〈y(t)y(0)〉 =
C+

1 + C−1
8s
√

1− s
,(3.30a)

〈x(t)y(0)〉 =
r (A+ −A−)

8s2(1− s)3/2
= 〈y(−t)x(0)〉 ,(3.30b)

〈y(t)x(0)〉 =
r
(
C−2 − C

+
2

)
16s2
√

1− s
= 〈x(−t)y(0)〉 ,(3.30c)

〈x(t)x(0)〉 =
C+

1 + C−1
8s
√

1− s
+
r2 (B+ +B−)

16s3(1− s)3/2
,(3.30d)

with the dimensionless, reduced time-dependent coefficients

A± =

[
1 +

(
1

2
+ t

)
(1− s)± (2 + t)

√
1− s

]
C±2 ,(3.31a)

B± =
[√

1− s (st+ s+ 1)± (2s− 1)
]
C±2 ,(3.31b)

C±n =
(√

1− s∓ 1
)n

exp
[
−
(
1±
√

1− s
)
t
]
.(3.31c)

More specifically, for t = 0, (3.30) becomes

(3.32)
〈
y2
〉

=
1

4s
, 〈xy〉 =

r

4s2
,
〈
x2
〉

=
1

4s
+
r2(s+ 4)

8s3
.

As in subsection 3.2, in the case of a vanishing shear rate (i.e., κxy = 0 and subse-
quently r = 0), the system (3.24) decouples: both cross-correlations 〈x(t)y(0)〉 (3.30b)
and 〈y(t)x(0)〉 (3.30c) vanish, and 〈x(t)x(0)〉 (3.30d) reduces to 〈y(t)y(0)〉 (3.30a),
which can be rewritten as

(3.33) 〈y(t)y(0)〉 =
1

4s

[
cosh(t

√
1− s) +

sinh(t
√

1− s)√
1− s

]
e−t .

Redimensionalizing (3.33) yields the dimensional, stationary time correlation function

(3.34) 〈y(t)y(0)〉 =
kBT

k

[
cosh (νt) +

γ

2mν
sinh (νt)

]
e−γt/2m ,

where

(3.35) ν =
√
γ2/4m2 − k/m ,
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which is in perfect agreement with the dimensional result of [65]. More specifi-
cally,

〈
y2
〉

can be obtained alternatively via the Gibbs–Boltzmann distribution, given
U(y) = ky2/2 for the harmonic oscillator:

(3.36)
〈
y2
〉

=

∫∞
−∞ y2 exp[−U(y)/kBT ] dy∫∞
−∞ exp[−U(y)/kBT ] dy

=
kBT

k
.

We can furthermore derive the mean squared displacement of

(3.37)
〈
[y(t)− y(0)]2

〉
= 2

〈
y2
〉
− 2 〈y(t)y(0)〉 =

kBT

m

(
1− γ2

4mk

)
t2 +O(t3) ,

which indicates that the mean squared displacement is quadratic in t at small times.

3.5. Connection between Noninertial and Inertial Results. To demonstrate
that the noninertial results of the stationary time correlation functions in subsec-
tion 3.2 are special cases (i.e., in the limit of vanishing mass) of the results with inertia
in subsection 3.4, we have to first write down the time correlation functions (3.30)
using dimensional quantities. To this end we reintroduce the original dimensional
variables m, k, γ, σ, kBT , κxy, and t. This is done by multiplying each time corre-
lation function by q2ref and subsequently replacing t → t/tref and expanding s and r
using the definitions in (2.12). Throughout this subsection, → stands for “going from
dimensionless to dimensional.” By performing Taylor series expansions in m around
m = 0, we obtain some helpful intermediate results:

q2ref
8s
√

1− s
→ kBT

2k
√

1− 4mk/γ2
=
kBT

2k
+O(m) ,(3.38a)

rq2ref
8s2(1− s)3/2

→ kBTγκxy
4k2

+O(m) ,(3.38b)

rq2ref
16s2
√

1− s
→ kBTγκxy

8k2
+O(m) ,(3.38c)

r2q2ref
16s3(1− s)3/2

→
kBTγ

2κ2xy
16k3

+O(m) ,(3.38d)

as well as

(∓s∓)
n → (1∓ 1)

n − 2n(1∓ 1)n−1

γ2/mk
± 2n(1∓ 1)n−2[1± (n−2)]

(γ2/mk)2
+O(m3) ,

(3.39a)

s±t→
γt

2m

(
1±

√
1− 4mk/γ2

)
= ∓kt

γ

(
1 +

mk

γ2

)
+ (1± 1)

γt

2m
+O(m2),(3.39b)

where t on the left-hand side in (3.39b) is the dimensionless time, whereas t on the
right-hand side denotes the dimensional time. For smallm (and n > 0), (3.39) implies

(+s+)n → 2n +O(m) ,(3.40a)

(−s−)n → O(mn) ,(3.40b)

e−s+t → e−γt/m ,(3.40c)

e−s−t → e−kt/γ +O(m) ,(3.40d)
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914 XIAOCHENG SHANG AND MARTIN KRÖGER

where we have kept exp(−γt/m) as it cannot be Taylor expanded; it asymptotically
vanishes in the limit m → 0 as long as γt > 0. We recall from (3.31c) that the
coefficients C±n are given by C±n = (∓s∓)ne−s±t. With the help of (3.40), we find

C+
n = (−s−)ne−s+t → O(mn)e−γt/m ,(3.41a)

C−n = (+s+)ne−s−t → 2ne−kt/γ +O(m) ,(3.41b)

and thus only the coefficients C−n survive in the limit of vanishing m,

lim
m→0

〈y(t)y(0)〉 → lim
m→0

q2ref(C
+
1 + C−1 )

8s
√

1− s
=
kBT

k
e−kt/γ ,(3.42a)

lim
m→0

〈y(t)x(0)〉 → lim
m→0

q2refr(C
−
2 − C

+
2 )

16s2
√

1− s
=
kBTγκxy

2k2
e−kt/γ ,(3.42b)

where (3.38a) and (3.38c) have been used. Equations (3.42a) and (3.42b) coincide
with the results (3.14a) and (3.14c) obtained by a direct calculation with m = 0. To
calculate the remaining two correlations, we begin with two intermediate results that
both follow from (3.31),

A±

C±2
→ 1 +

(
1

2
+

γt

2m

)(
1− 4mk

γ2

)
±
(

2 +
γt

2m

)√
1− 4mk

γ2

= (1± 1)
γt

2m
+

3

2
± 2− (2± 1)

kt

γ
+O(m) ,(3.43a)

B±

C±2
→

√
1− 4mk

γ2

(
2kt

γ
+

4mk

γ2
+ 1

)
±
(

8mk

γ2
− 1

)
= (1∓ 1) +

2kt

γ
+O(m) .(3.43b)

Since m−1C+
n vanishes according to (3.41a) as O(mn−1)e−γt/m, both A+ and B+

vanish in the limit of vanishing mass, and the remaining A− and B− are

A− →
(

3

2
− 2− kt

γ

)
22e−kt/γ +O(m) ,(3.44a)

B− →
(

2 +
2kt

γ

)
22e−kt/γ +O(m) ,(3.44b)

such that we find, with the help of (3.38b), (3.38d), (3.43a), and (3.43b),

lim
m→0

〈x(t)y(0)〉 → lim
m→0

q2refr (A+ −A−)

8s2(1− s)3/2
=
kBTκxy

2k2
(γ + 2kt) e−kt/γ ,(3.45a)

lim
m→0

〈x(t)x(0)〉 → lim
m→0

〈y(t)y(0)〉+ lim
m→0

q2refr
2 (B+ +B−)

16s3(1− s)3/2

=
kBT

2k3
(
2k2 + γ2κ2xy + γκ2xykt

)
e−kt/γ ,(3.45b)

in complete agreement with the results obtained by the direct calculation with m =
0, (3.14b) and (3.14d), respectively.
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3.6. Alternative Approach via Fourier Transform. We have demonstrated
in subsection 3.4 how the time correlation functions for the most general nonideal
Langevin dynamics case can be derived via a direct approach, where the Dirac delta
distribution is eliminated by integrating over it. In this subsection, we outline an
alternative approach utilizing Fourier transforms, which is related to the Wiener–
Khinchin theorem. In this case, we eliminate the Dirac delta distribution by noting
that δ(t) is the inverse Fourier-transformed “one” (see (3.49) below). In what follows
we demonstrate how this alternative approach works only in an example of the sta-
tionary time correlation function of 〈y(t)y(0)〉 (3.30a). Upon substituting t− t′ by t1,
we can rewrite (3.25) more conveniently as

y(t) =
1√

1− s

∫ t

−∞
sinh

[
(t− t′)

√
1− s

]
e−(t−t′) ηy(t′) dt′

=
1√

1− s

∫ ∞
0

sinh
[
t1
√

1− s
]
e−t1 ηy(t− t1) dt1

=

∫ ∞
0

Ωt1 ηy(t− t1) dt1 ,(3.46)

with a weighting function Ω defined as

Ων ≡
e−ν sinh(ν

√
1− s)√

1− s
=

{
(1− s)−1/2e−ν sinh(ν

√
1− s) , s ≤ 1 ,

(s− 1)−1/2e−ν sin(ν
√
s− 1) , s > 1 ,

(3.47)

where we have also mentioned the purely real-valued version for s > 1. Now making
use of the Fourier transform

(3.48) FT{f(p)}(t) =
1√
2π

∫ ∞
−∞

f(p)eipt dp ,

as well as a basic identity that should be regarded as an equality in the sense of
tempered distributions,

(3.49) δ(t) =
1

2π

∫ ∞
−∞

eipt dp =
1√
2π

FT {1} (t) ,

the stationary time correlation function of 〈y(t)y(0)〉 (3.30a) can be recalculated as

〈y(t)y(0)〉 =

∫ ∞
0

∫ ∞
0

Ωt1Ωt2 〈ηy(t− t1)ηy(0− t2)〉dt2 dt1

=

∫ ∞
0

∫ ∞
0

Ωt1Ωt2δ(t− t1 + t2) dt2 dt1

=
1

2π

∫ ∞
−∞

[∫ ∞
0

∫ ∞
0

Ωt1Ωt2e
ip(t−t1+t2) dt2 dt1

]
dp

=
1

2π

∫ ∞
−∞

eipt

p4 − 2p2(s− 2) + s2
dp

=
1√
2π

FT

{
1

p4 − 2p2(s− 2) + s2

}
(t)

=
1

4s

[
cosh(t

√
1− s) +

sinh(t
√

1− s)√
1− s

]
e−t =

C+
1 + C−1

8s
√

1− s
.(3.50)

The remaining stationary time correlation functions in subsection 3.4 can be similarly
obtained, although the calculations are more involved.

D
ow

nl
oa

de
d 

11
/1

9/
20

 to
 1

47
.1

88
.2

16
.5

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

916 XIAOCHENG SHANG AND MARTIN KRÖGER

3.7. Alternative Approach via Fokker–Planck Equation. A complementary ap-
proach to the moments and stationary correlation functions is based on the equivalence
between the Langevin dynamics for a stochastic variable Q(t) and a Fokker–Planck
equation for the probability distribution function f(Q, t). The Fokker–Planck equa-
tion corresponding to the Langevin dynamics in its rather general form

(3.51) Q̇ = a +
1

2
∇ ·D + B · η , ∇ =

∂

∂Q
,

with Q- and t-dependent vector a, and matrices B and D = B · BT, fulfills the
Fokker–Planck equation

(3.52)
∂f

∂t
= −∇ · (af) +

1

2
∇ · (D · ∇f) .

In view of (4.6) the benchmark Langevin dynamics (2.13) is of the form (3.51) with
a = −A ·Q and constant matrices A and B,

(3.53) A =


0 0 −1 0
0 0 0 −1
sx −2r 2 0
0 sy 0 2

 , B =

(
0 0
0 I

)
,

while Q is the four-dimensional vector (q,p = mq̇). With Y(t) = exp[−At] the time
evolution of the mean value is 〈Q〉(t) = Y ·Q0 and the variance Σ = 〈QQ〉− 〈Q〉〈Q〉
fulfills [25]

(3.54) Σ̇ = −
[
A ·Σ + Σ ·AT

]
+ D .

With Σ(t) at hand the solution of the Fokker–Planck equation (3.52) subject to the
initial condition p(Q, 0) = δ(Q−Q0) reads

(3.55) p(Q, t) =
1

(2π)
√
|Σ(t)|

exp

{
−1

2
[Q− 〈Q〉(t)]T ·Σ−1(t) · [Q− 〈Q〉(t)]

}
,

and a stationary solution exists if (3.54) has a solution for Σ̇ = 0, denoted by Σ∞.
From the spectrum of the Fokker–Planck operator, which is the operator on the right-
hand side of (3.52), one can conclude the convergence of arbitrary initial conditions to
a unique equilibrium probability distribution. For the special case s ≡ sx = sy consid-
ered earlier in subsection 3.4, the eigenvalues of A are s± (both twice degenerated),
and the eigenvectors are (−s+/s, 0, 1, 0), 0, (−s−/s, 0, 1, 0), and 0, respectively. The
eigenvalues are real-valued and semipositive for s ∈ [0, 1], and become complex-valued
for s > 1, recalling s± = 1 ±

√
1− s. Solving the linear system of equations (3.54)

(with Σ̇ = 0) for Σ∞, we then obtain

(3.56) Σ∞ =


2s2+(4+s)r2

8s3
r

4s2 0 − r
8s

r
4s2

1
4s

r
8s 0

0 r
8s

1
8

(
2 + r2

s

)
0

− r
8s 0 0 1

4

 .

Since a stationary Σ exists for s 6= 0, the stationary distribution function is given
by (3.55) with Σ(t) being replaced by Σ∞, implying that stationary moments and
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a stationary correlation function exist for s 6= 0. The analogous calculation for the
more general case of sx 6= sy yields that Σ∞ exists as long as all sµ do not vanish.
For t > 0, the stationary correlation functions are given by

〈Q(t)Q(0)〉stat = e−At ·Σ∞ ,(3.57a)

〈Q(0)Q(t)〉stat = Σ∞ · e−A
Tt .(3.57b)

For the spectral density [20],

(3.58) S(ω) =

∫ ∞
−∞
〈Q(t+ τ)Q(t)〉state−iωt dτ = (A + iωI)

−1 ·D ·
(
AT − iωI

)−1
,

the situation is particularly simple as it involves only A and D, but not Σ∞. With
the help of the aforementioned eigensystem of A, we have verified that (3.57a) agrees
with (3.30a).

4. Numerical Methods. In this section, we first briefly introduce the concept of
the order of convergence associated with numerical methods for SDEs, followed by
descriptions of numerical methods used to simulate the linear Langevin dynamics (2.1)
in both the noninertial and the inertial cases. Interested readers are referred to
standard textbooks [28, 36, 48] for a more thorough discussion of mathematical issues
(e.g., ergodicity) of SDEs.

4.1. Order of Convergence. Numerical analysis of SDEs is typically based on
the concept of strong and weak errors. We denote the stochastic solution of an SDE as
X(τ) and its associated numerical approximation, with an integration timestep of h,
in the form of a discrete stochastic process as Xn+1 = Φ(Xn, h), n = 0, 1, . . . , N − 1,
with Nh = T being fixed. A method is then said to have strong order of p if there
exists a constant C1 such that

(4.1) Errstrongh = E|Xn −X(τ)| ≤ C1h
p

for any fixed τ = nh ∈ [0, T ] with h being sufficiently small. The strong order of
convergence (4.1) measures the rate of decay of the “mean of the error” [22], whose
type of convergence is path dependent. Alternatively, one could measure the rate
of decay of the “error of the means,” which is related to the (weak) convergence
in distribution (i.e., in approximating the expectations of the Itô process). Thus, a
method is said to have weak order of p if there exists a constant C2 such that for all
suitable test functions (observables) φ,

(4.2) Errweak
h = |Eφ(Xn)− Eφ(X(τ))| ≤ C2h

p

for any fixed τ = nh ∈ [0, T ] with h being sufficiently small. It should be noted that
methods with high strong order would lead to high weak order; however, the converse
is in general false [36]. Since the focus of this article is on the computation of averages,
the concept of weak order is rendered more appropriate.

4.2. Brownian Dynamics. We consider the linear Langevin dynamics with effec-
tive springs but without inertia described in subsection 3.2 (i.e., (2.6)), which is also
known as Brownian dynamics,

(4.3) q̇ = −kq/γ + u +
√

2D η ,

where u = κ · q is the streaming velocity field with κ being defined in (2.4).
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918 XIAOCHENG SHANG AND MARTIN KRÖGER

4.2.1. The Euler–Maruyama (EM) Method. A simple and popular numerical
method for a system of Itô SDEs is the Euler–Maruyama (EM) method, which reads

(4.4) qn+1 = qn − hkqn/γ + hun +
√

2DhRn ,

where Rn, resampled at each step, is a dimensionless vector whose components are
drawn randomly and independently from a Gaussian probability distribution func-
tion with zero mean and unit variance, 〈RnRm〉 = Iδn,m; thus Rn/

√
h replaces the

continuous η in a time-discrete implementation.

4.2.2. The Limit Method. A simple modification of the EM method (4.4) leads
to the limit method [34]

(4.5) qn+1 = qn − hkqn/γ + hun +
√
Dh/2

(
Rn + Rn+1

)
,

where Rn and Rn+1 are vectors of independent Gaussian white noise with zero mean
and unit variance, and it should be noted that Rn+1 will become Rn in the subsequent
step. It has been shown that such a simple modification could lead to an extra order of
weak convergence [38] as well as substantial improvements in sampling accuracy [34].
Note that although the limit method was first derived from the BAOAB method
introduced in subsection 4.3.2 in the large friction limit [34], it can also be obtained
using postprocessed integrators [64].

4.3. Langevin Dynamics. We also consider the most general case of the linear
Langevin dynamics with both inertia and effective springs described in subsection 3.4.
Rewriting (3.24) in a more general and first order form yields

q̇ = p ,(4.6a)

ṗ = −sq− 2 (p− u) + η ,(4.6b)

where p has the interpretation of the momentum, and (4.6) can be considered as the
adimensional version of (2.1), using the reference quantities (2.11) and dimensionless
parameters (2.12).

4.3.1. The Stochastic Velocity Verlet (SVV) Method. Building on the popular
Verlet method in molecular dynamics, and also due to its ease of implementation,
the stochastic velocity Verlet (SVV) method [47] is a popular scheme for Langevin
dynamics, whose integration steps read

pn+1/2 = pn − hsqn/2− h (pn − un) +
√
h/2Rn ,(4.7a)

qn+1 = qn + hpn+1/2 ,(4.7b)

pn+1 = pn+1/2 − hsqn+1/2− h
(
pn+1/2 − un+1

)
+
√
h/2Rn+1/2 ,(4.7c)

where Rn and Rn+1/2, resampled at each step, are vectors of independent Gaussian
white noise with zero mean and unit variance. Note that a useful alternative for SVV
is the velocity Verlet implementation of Shardlow’s splitting scheme [43, 59], which
outperforms SVV in constant energy and constant enthalpy ensembles, while in the
cases of constant pressure and temperature that we are considering here, SVV has
very comparable performance [33, 42].

D
ow

nl
oa

de
d 

11
/1

9/
20

 to
 1

47
.1

88
.2

16
.5

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LANGEVIN DYNAMICS: ANALYTIC TREATMENT AND NUMERICS 919

4.3.2. The BAOAB Method. Numerical integration methods, particularly the
so-called splitting methods, for Langevin dynamics have been studied systemat-
ically in terms of long term sampling performance by Leimkuhler and cowork-
ers [34, 35, 36, 37, 38]. It was demonstrated that, in terms of sampling configurational
quantities, a particular choice of splitting method, i.e., the “BAOAB” method, relying
on a Trotter factorization of the stochastic vector field of the original (whole) system
into exactly solvable subsystems, is far more advantageous than alternative schemes.
Subsequently, the optimal design of splitting methods on stochastic dynamics was
studied in a variety of applications [39, 40, 41, 58]. We point out that the framework
of long-time Talay–Tubaro expansion [1, 2, 12, 34, 35, 36, 37, 40, 60] can be performed
trivially in order to analyze the accuracy of ergodic averages (i.e., averages with re-
spect to the invariant measure) in those systems. We separate the vector field of the
Langevin dynamics as

(4.8) d

[
q
p

]
=

[
p
0

]
dt︸ ︷︷ ︸

A

+

[
0
−sq

]
dt︸ ︷︷ ︸

B

+

[
0

−2 (p− u) + η

]
︸ ︷︷ ︸

O

,

where we can solve each piece “exactly.” That is, both the “A” and “B” pieces can
be straightforwardly solved, while it is also possible to derive the exact solution to
the Ornstein–Uhlenbeck (“O”) part (see solutions in [58] for more general settings),

(4.9) dp = 2udt− 2pdt+ η ,

as

(4.10) p(t) = u + (p(0)− u) e−2t +
(√

1− e−4t/2
)

R .

The BAOAB method can then be defined as

(4.11) ehL̂BAOAB = e(h/2)LBe(h/2)LAehLOe(h/2)LAe(h/2)LB ,

where exp (hLf ) represents the phase space propagator associated with the corre-
sponding vector field f . More precisely, the integration steps of the BAOAB method,
including the streaming velocity, read

pn+1/2 = pn − hsqn/2 ,(4.12a)

qn+1/2 = qn + hpn+1/2/2 ,(4.12b)

p̃n+1/2 = un+1/2 +
(
pn+1/2 − un+1/2

)
e−2h +

(√
1− e−4h/2

)
Rn ,(4.12c)

qn+1 = qn+1/2 + hp̃n+1/2/2 ,(4.12d)

pn+1 = p̃n+1/2 − hsqn+1/2 .(4.12e)

Note that only one force calculation is required at each step for the BAOAB method
(i.e., the force computed at the end of each step will be reused at the start of the
subsequent step), which is the same as for alternative schemes including the SVV
method.

5. Numerical Experiments. In this section, we conduct a variety of numerical
experiments to compare the performance of the various methods introduced in sec-
tion 4 in the noninertial (Brownian) and inertial (Langevin) cases, respectively.
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5.1. Simulation Details. As described at the beginning of section 3, we restrict
our attention to a single harmonic oscillator of mass m in the presence of a streaming
background medium with velocity field u. For the sake of simplicity, we have excluded
the diagonal contributions from the matrix κ (2.4) in our numerical experiments. In
both cases, the parameter set k = 2, kBT = 0.25, γ = 2, κxy = 1 was used, resulting
in ω = k/γ = 1 and D = kBT/γ = 0.125 in the Brownian case. The mass was
set as unity in the Langevin case, thereby leading to s = 2 and r = 1. For this
choice of parameters, the reference tref of the Langevin dynamics coincides with the
characteristic relaxation time of the inertia-free Brownian case. The initial position
of the particle was set at the origin in both cases, while the initial momentum in the
Langevin case was zero. Unless otherwise stated, the system was simulated for 1000
reduced time units in both cases, but only the last 80% of the data were collected to
calculate the various quantities derived in section 3.

5.2. Results. In order to verify the derivations of the stationary time correlation
functions in both the noninertial (subsection 3.2) and the inertial (subsection 3.4)
cases, we plot the computed (and normalized) time correlation functions against the
analytical solutions in Figures 2 and 3, respectively. It appears that in both cases the
numerical solutions are indistinguishable from the analytical solutions with a small
stepsize of h = 0.01. However, as stepsize increases, the time correlation functions do
start deviating from the analytical solutions, which leads to the investigation of the
accuracy control of average quantities in subsequent figures. We also want to point out
that with the same stepsize h = 0.01 but a smaller shear rate, say, κxy = 0.1, visible
deviations were observed in both cross-correlation functions, i.e., 〈x(t)y(0)〉 / 〈xy〉
and 〈y(t)x(0)〉 / 〈yx〉, while both autocorrelation functions, i.e., 〈y(t)y(0)〉 /

〈
y2
〉

and

〈x(t)x(0)〉 /
〈
x2
〉
, were still indistinguishable from the analytical solutions. Moreover,

the deviations became even stronger if the shear rate was further reduced. This
indicates that both cross-correlation functions are more sensitive to the strength of
the shear rate.

The accuracy control of average quantities is often used to measure the per-
formance of the numerical methods. To this end, the computed absolute errors in
averages 〈y2〉 and 〈x2〉 were plotted in Figures 4 and 5 for both the Brownian and the
Langevin cases, respectively. (We did not observe significant difference between the
methods in both cases in terms of the errors on time correlation functions.) Note that
the average 〈y2〉 is actually proportional to the so-called configurational temperature
(see more discussions in [39, 41]), in this case k〈y2〉 = kBT , which is an important
quantity that numerical methods should preserve. The results of 〈xy〉 were not in-
cluded due to its sensitivity to sampling errors. To be more specific, in the Brownian
case in Figure 4, the limit method is orders of magnitude more accurate than the EM
method in 〈y2〉, while the former still outperforms the latter in 〈x2〉. Although the
limit method does not seem to display a second order convergence to the invariant
measure as expected in the equilibrium case of 〈y2〉, we point out that it might be
very challenging to overcome the impact of sampling errors at such a high level of
accuracy with the reference value being 〈y2〉 = 0.125.

In the case of Langevin dynamics, as can be seen in Figure 5, the BAOAB method
is also orders of magnitude more accurate than the SVV method in 〈y2〉, while the
former slightly outperforms the latter in 〈x2〉. Interestingly, in the equilibrium case
of 〈y2〉, the accuracy of the BAOAB method does not seem to depend on the stepsize
(although it still seems to fluctuate slightly due to the sampling errors at such a high
level of accuracy with the reference value again being 〈y2〉 = 0.125). This behavior is
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Fig. 2 Comparison of various computed (and normalized) stationary time correlation functions of
Langevin dynamics without inertia (i.e., Brownian dynamics), using the limit method with
a stepsize of h = 0.01 against the analytical solutions derived in subsection 3.2 in solid black
lines. The system was simulated for 1000 reduced time units in each case, but only the last
80% of the snapshots were collected to calculate the correlations. Furthermore, 1000 different
runs were averaged to reduce the sampling errors.

actually consistent with the demonstration in [35] that the BAOAB method “exactly”
preserves the average quantity of 〈y2〉 in this particular case.

6. Summary and Outlook. We have derived various time correlation functions
and associated quantities of the linear Langevin dynamics (both with and without
inertial effects) for a harmonic oscillator in the presence of friction, additive noise,
and an external field with both rotational and deformational contributions. We have
demonstrated how, in the nontrivial limit of vanishing mass, the inertial results re-
duce to their noninertial counterparts. While all results were derived explicitly using a
straightforward approach suitable for a classroom, we have mentioned two alternative
approaches based on (i) the Fourier transform and (ii) the Fokker–Planck equation.
In our numerical experiments, for which algorithms were stated in section 4, we have
not only verified various time correlation functions (3.30) derived in this article for
the benchmark (2.13), but also demonstrated the importance of optimal design of
numerical methods. To be more specific, in the Brownian case, we have shown that
the limit method substantially outperforms the popular EM method in equilibrium,

D
ow

nl
oa

de
d 

11
/1

9/
20

 to
 1

47
.1

88
.2

16
.5

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

922 XIAOCHENG SHANG AND MARTIN KRÖGER

Fig. 3 Comparison of various computed (and normalized) stationary time correlation functions of
Langevin dynamics with inertia using the BAOAB method with stepsize h = 0.01 against the
analytical solutions derived in subsection 3.4 in solid black lines. The format of the plots is
the same as in Figure 2.

while the former appears to be still visibly more accurate than the latter in nonequi-
librium. On the other hand, in the case of Langevin dynamics, the BAOAB method is
orders of magnitude more accurate than the SVV method in equilibrium, whereas the
former appears to be only slightly better than the latter in nonequilibrium. While the
benchmark (2.13) involves only dimensionless parameters, we have explicitly stated its
connection with dimensional equations from real world applications. One of these is
the study of the full Rouse model [14, 56] (bead-spring chain, i.e., coupled harmonic
oscillators with masses, whose eigenmodes behave as harmonic oscillators) for the
short-time and high frequency dynamics of unentangled polymeric systems subject to
flows. With the time correlation functions for q obeying (2.1) at hand, all relevant
properties of a bead-spring chain subject to flow can be written down upon replac-
ing m, k, and γ by their mode-dependent counterparts mp, kp, and γp [14], where
p = 0, 1, 2, . . . , N enumerates the N normal modes of a chain with N−1 segments con-
necting N mass points (beads). In the limit of vanishing mass the known solution of
the Rouse model [14] is also recovered this way. The analytical methods applied here
to solve the linear Langevin dynamics characterized by matrices A and B in (3.53)
apply without modification to arbitrary A and B. The numerical methods apply to
both linear and nonlinear problems. These include, for example, the finite extendable
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LANGEVIN DYNAMICS: ANALYTIC TREATMENT AND NUMERICS 923

Fig. 4 Double logarithmic plot of the computed absolute errors in averages 〈y2〉 (left) and 〈x2〉
(right) derived in subsection 3.2 (Brownian dynamics) against stepsize using the EM and
limit methods with ω = 1 and D = 0.125. The system was simulated for 1000 reduced time
units in each case, but only the last 80% of the snapshots were collected to calculate the
static quantities. Furthermore, 100,000 different runs were averaged to reduce the sampling
errors. The stepsizes tested began at h = 0.106 and were increased incrementally by 30% until
substantial errors in correlations were observed. Error bars for the EM and limit methods
are comparable to symbol sizes and thus not presented.

Fig. 5 Double logarithmic plot of the computed absolute errors in averages 〈y2〉 (left) and 〈x2〉
(right) derived in subsection 3.4 (Langevin dynamics) against stepsize using the SVV and
BAOAB methods with s = 2 and r = 1. The format of the plots is the same as in Figure 4.
Error bars for the SVV and BAOAB methods are comparable to symbol sizes and thus not
presented.

nonlinear elastic (FENE) dumbbell or multibead chain models [21, 25, 30]. Their
approximate analytical treatment remains beyond the scope of this contribution; for
a numerical implementation, see, e.g., [54].

Appendix A. Nondimensionalization. In what follows we show that the nondi-
mensionalized version of (2.5) is (2.13). Dimensionless quantities f∗ are introduced
via f = f∗fref, in general, with reference quantities fref carrying the physical di-
mension. Having restored the asterisks dropped and also having rewritten the noise
term as a derivative (although it is not rigorously defined in the usual mathematical
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924 XIAOCHENG SHANG AND MARTIN KRÖGER

sense), (2.13a) reads

(A.1)
d2x∗
dt2∗

= −sxx∗ − 2

(
dx∗
dt∗
− ry∗

)
+

dW∗,x
dt∗

.

Since W2 has the dimension of time, Wref =
√
tref, and (A.1), upon replacing f∗

by f/fref and subsequent multiplication by mqref/t
2
ref on both sides of the equation,

becomes

(A.2) m
d2x

dt2
= −sx

mx

t2ref
− 2

(
m

tref

dx

dt
− rmy

t2ref

)
+mqref

t
1/2
ref

t2ref

dWx

dt
.

Proof. Inserting qref, tref, sµ, and r from (2.11) and (2.12) into (A.2),

m
d2x

dt2
= −4mkx

γ2
mγ2x

4m2
− 2

(
mγ

2m

dx

dt
− 2mκxy

γ

mγ2y

4m2

)
+m

23/2σ
√
m

γ3/2

( γ

2m

)3/2 dWx

dt

= −kxx− γ
(

dx

dt
− κxyy

)
+ σ

dWx

dt
.(A.3)

Appendix B. Ideal Brownian Dynamics: m = 0, kx = ky = 0.

B.1. Time Correlation Function 〈[x(t)− x(0)][y(t)− y(0)]〉.

Proof. Starting from (3.1), with the help of (2.3), we arrive at (3.5) as follows:

〈[x(t)−x(0)][y(t)−y(0)]〉 =

〈∫ t

0

ẋ(t1) dt1

∫ t

0

ẏ(t2) dt2

〉

=
√

2D

∫ t

0

∫ t

0

[
κxy 〈y(t1)ηy(t2)〉+

√
2D 〈ηx(t1) ηy(t2)〉

]
dt2dt1

= 2Dκxy

∫ t

0

∫ t

0

∫ t1

0

〈ηy(t′1)ηy(t2)〉dt′1 dt2 dt1

= 2Dκxy

∫ t

0

∫ t

0

∫ t1

0

δ(t′1 − t2) dt′1 dt2 dt1

= 2Dκxy

∫ t

0

∫ t1

0

∫ t1

0

δ(t′1 − t2) dt′1 dt2 dt1

= 2Dκxy

∫ t

0

∫ t1

0

dt2 dt1 = Dκxyt
2 .(B.1)D
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B.2. Mean Squared Displacement 〈[x(t)− x(0)]2〉.

Proof. Starting from (3.1), with the help of (2.3), we arrive at (3.6) as follows:

〈
[x(t)− x(0)]

2
〉

=

〈∫ t

0

ẋ(t1) dt1

∫ t

0

ẋ(t2) dt2

〉
=

∫ t

0

∫ t

0

[
2D δ(t1 − t2) + κ2xy 〈y(t1)y(t2)〉

]
dt1 dt2

= 2Dt+ κ2xy

∫ t

0

∫ t

0

[
2Dmin(t1, t2) + y20

]
dt1 dt2

= 2Dt+ 2Dκ2xy

(∫ t

0

∫ t

t2

t2dt1dt2 +

∫ t

0

∫ t2

0

t1dt1dt2

)
+ (κxyy0t)

2

= 2Dt

[
1 +

1

3
(κxyt)

2

]
+ (κxyy0t)

2
.(B.2)

Appendix C. Nonideal Brownian Dynamics: m = 0, kx, ky > 0.

C.1. Time Correlation Function 〈y(t1)y(t2)〉.

Proof. Starting from (3.7b), with the help of (2.3) together with the identity
min(t1, t2) = (t1 + t2)/2− |t1 − t2|/2, (3.8) is obtained as follows:

〈y(t1)y(t2)〉 = 2D

〈∫ t1

−∞
ηy(t′1)e−ωy(t1−t′1) dt′1

∫ t2

−∞
ηy(t′2)e−ωy(t2−t′2) dt′2

〉
= 2D

∫ t1

−∞

∫ t2

−∞
e−ωy(t1+t2−t′1−t

′
2) 〈ηy(t′1) ηy(t′2)〉dt′2 dt′1

= 2D

∫ t1

−∞

∫ t2

−∞
e−ωy(t1+t2−t′1−t

′
2) δ(t′1 − t′2) dt′2 dt′1

= 2D

∫ min(t1,t2)

−∞
e−ωy(t1+t2−2t′1) dt′1

=
D

ωy
e−ωy|t1−t2| .(C.1)

C.2. Time Correlation Function 〈x(t)y(0)〉.

Proof. Starting from (3.7b), an intermediate result is

〈y(t1) ηy(t2)〉 =
√

2D

∫ t1

−∞
〈ηy(t′1) ηy(t2)〉 e−ωy(t1−t′1) dt′1

=
√

2D

∫ t1

−∞
δ(t′1 − t2)e−ωy(t1−t′1) dt′1

=
√

2De−ωy(t1−t2)Θ(t1 − t2) ,(C.2)

where Θ denotes the Heaviside step function. Since 〈ηx(t) ηy(t′)〉 = 0, one recov-
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926 XIAOCHENG SHANG AND MARTIN KRÖGER

ers (3.10a) using (C.2),

〈x(t)y(0)〉 =
√

2D

∫ t

−∞

∫ 0

−∞

〈[
κxyy(t1) +

√
2Dηx(t1)

]
ηy(t2)

〉
e−ωx(t−t1)+ωyt2 dt2 dt1

= 2Dκxy

∫ t

−∞

∫ 0

−∞
e−ωy(t1−t2)Θ(t1 − t2)e−ωx(t−t1)+ωyt2 dt2 dt1

= 2Dκxye
−ωxt

∫ 0

−∞
e2ωyt2

∫ t

t2

e(ωx−ωy)t1 dt1 dt2

= Dκxy
(ωx + ωy)e−ωyt − 2ωye

−ωxt

(ω2
x − ω2

y)ωy
.(C.3)

C.3. Time Correlation Function 〈y(t)x(0)〉.
Proof. In full analogy to Appendix C.2, (3.10b) is derived via

〈y(t)x(0)〉 =
√

2D

∫ t

−∞

∫ 0

−∞

〈
ηy(t1)

[
κxyy(t2) +

√
2Dηx(t2)

]〉
e−ωy(t−t1)+ωxt2 dt2 dt1

= 2Dκxy

∫ t

−∞

∫ 0

−∞
e−ωy(t2−t1)Θ(t2 − t1)e−ωy(t−t1)+ωxt2 dt2 dt1

= 2Dκxye
−ωyt

∫ 0

−∞
e(ωx−ωy)t2

∫ t2

−∞
e2ωyt1 dt1 dt2

=
Dκxye

−ωyt

(ωx + ωy)ωy
.(C.4)

C.4. Time Correlation Function 〈x(t)x(0)〉.
Proof. The solution (3.7a) can be written as the sum of two uncorrelated contri-

butions x(t) = x1(t) + x2(t), where x1(t) and x2(t) are given by

(C.5) x1(t) = κxy

∫ t

−∞
y(t′)e−ωx(t−t′) dt′ , x2(t) =

√
2D

∫ t

−∞
ηx(t′)e−ωx(t−t′) dt′ .

While 〈x2(t)x2(0)〉 can be immediately obtained from (3.7b) and (3.9) as

(C.6) 〈x2(t)x2(0)〉 =
De−ωxt

ωx
,

and since the cross-correlation 〈x1(t)x2(0)〉 vanishes for all t as 〈ηx(t)ηy(0)〉 does, the
remaining contribution to 〈x(t)x(0)〉 is

〈x1(t)x1(0)〉 = κ2xy

∫ t

−∞

∫ 0

−∞
〈y(t1)y(t2)〉 e−ωx(t−t1−t2) dt2 dt1

=
κ2xyD

ωy

∫ t

−∞

∫ 0

−∞
e−ωy|t1−t2|e−ωx(t−t1−t2) dt2 dt1

=
κ2xyDe

−ωxt

ωy

[∫ 0

−∞
e(ωx+ωy)t2

∫ t

t2

e(ωx−ωy)t1 dt1 dt2

+

∫ 0

−∞
e(ωx−ωy)t2

∫ t2

−∞
e(ωx+ωy)t1 dt1 dt2

]
=
κ2xyD (ωxe

−ωyt − ωye−ωxt)

(ω2
x − ω2

y)ωxωy
.(C.7)

The sum of (C.6) and (C.7) is the desired expression (3.12) for 〈x(t)x(0)〉.
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Appendix D. Ideal Langevin Dynamics: m > 0, kx = ky = 0.

D.1. Mean Squared Displacement 〈[y(t)− y(0)]2〉.
Proof. Rewriting y(t) − y(0) as an integral, using (3.18b), we arrive at (3.20) as

follows:〈
[y(t)− y(0)]2

〉
=

〈∫ t

0

ẏ(t1) dt1

∫ t

0

ẏ(t2) dt2

〉
=

∫ t

0

∫ t

0

〈ẏ(t1)ẏ(t2)〉dt1 dt2 =
1

4

∫ t

0

∫ t

0

e−2|t1−t2| dt1 dt2

=
1

4

[∫ t

0

e−2t1
∫ t1

0

e2t2 dt2 dt1 +

∫ t

0

e2t1
∫ t

t1

e−2t2 dt2 dt1

]
=

1

8

(
2t+ e−2t − 1

)
.(D.1)

Appendix E. Nonideal Langevin Dynamics: m > 0, k ≡ kx = ky > 0.

E.1. Solution of the System y(t).

Proof. Let

(E.1) G±y (t) = Gy (t, s±) = e−s±t
∫ t

−∞
es±t

′
ηy(t′) dt′ .

Equation (3.25) may be rewritten as

(E.2) 2
√

1− sy = G−y −G+
y .

Differentiating this expression with respect t gives

(E.3) 2
√

1− s ẏ = −s−G−y + s+G
+
y ,

and differentiating once more with respect to t gives

(E.4) 2
√

1− s ÿ = s2−G
−
y − s2+G+

y + (s+ − s−)ηy .

Substituting the above three equations into (3.24b), we have proven (3.25).

E.2. Time Correlation Function 〈y(t)y(0)〉.
Proof. We begin with the intermediate result

〈Gy(t, a)Gy(0, b)〉 =

〈∫ t

−∞
e−a(t−t1) ηy(t1) dt1

∫ 0

−∞
e−b(0−t2) ηy(t2) dt2

〉
=

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈ηy(t1) ηy(t2)〉dt2 dt1

=

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 δ(t1 − t2) dt2 dt1

= e−at
∫ 0

−∞
e(a+b)t1 dt1

=
e−at

a+ b
[<(a+ b) > 0] .(E.5)
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928 XIAOCHENG SHANG AND MARTIN KRÖGER

Given a, b ∈ {s−, s+}, one can verify that the real parts of a+ b are always positive.
Therefore, starting from (3.25) one approves (3.30a) with the help of (E.5):

〈y(t)y(0)〉 =
1

4(1− s)
〈[Gy(t, s−)−Gy(t, s+)] [Gy(0, s−)−Gy(0, s+)]〉

=
1

4(1− s)

[
e−s−t

2s−
− e−s−t

s− + s+
− e−s+t

s− + s+
+
e−s+t

2s+

]
=

1

8s
√

1− s
(C+

1 + C−1 ) .(E.6)

E.3. Time Correlation Function 〈x(t)y(0)〉.

Proof. We need the intermediate results

〈Gy(t1, s
′) ηy(t2)〉 =

〈∫ t1

−∞
e−s

′(t1−t′) ηy(t′) ηy(t2) dt′
〉

=

∫ t1

−∞
e−s

′(t1−t′) 〈ηy(t′) ηy(t2)〉dt′

=

∫ t1

−∞
e−s

′(t1−t′) δ(t′ − t2) dt′

= e−s
′(t1−t2)Θ(t1 − t2)(E.7)

and, with y(t) from (3.25),

〈y(t1) ηy(t2)〉 =
1

2
√

1− s
〈[Gy(t1, s−)−Gy(t1, s+)] ηy(t2)〉

=
1

2
√

1− s
[〈Gy(t1, s−) ηy(t2)〉 − 〈Gy(t1, s+) ηy(t2)〉]

=
1

2
√

1− s

[
e−s−(t1−t2) − e−s+(t1−t2)

]
Θ(t1 − t2) .(E.8)

Using (E.7) and (E.8), with as yet unspecified a and b,

〈
Gx(t, a)Gy(0, b)〉 =

〈∫ t

−∞
e−a(t−t1) [2ry(t1) + ηx(t1)] dt1

∫ 0

−∞
e−b(0−t2) ηy(t2) dt2

〉
= 2r

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈y(t1) ηy(t2)〉dt2 dt1

=
r√

1− s

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2

[
e−s−(t1−t2) − e−s+(t1−t2)

]
Θ(t1−t2)dt2dt1

=
re−at√
1− s

∫ t

t2

∫ 0

−∞
eat1+bt2

[
e−s−(t1−t2) − e−s+(t1−t2)

]
dt2 dt1 .(E.9)

For all the relevant choices of a and b in (E.9), the integrals can be performed as
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follows:

〈Gx(t, s−)Gy(0, s−)〉 =
re−s−t√

1− s

[
t

2s−
+

1

4s2−
− 1

s− − s+

(
e(s−−s+)t

s− + s+
− 1

2s−

)]
,

〈Gx(t, s−)Gy(0, s+)〉 =
re−s−t√

1− s

[
t

s− + s+
+

1

(s− + s+)2
− 1

s− − s+

(
e(s−−s+)t

2s+
− 1

s− + s+

)]
,

〈Gx(t, s+)Gy(0, s−)〉 =
re−s+t√

1− s

[
1

s+ − s−

(
e(s+−s−)t

2s−
− 1

s− + s+

)
− t

s− + s+
− 1

(s− + s+)2

]
,

〈Gx(t, s+)Gy(0, s+)〉 =
re−s+t√

1− s

[
1

s+ − s−

(
e(s+−s−)t

s− + s+
− 1

2s+

)
− t

2s+
− 1

4s2+

]
.

With their help the correlation 〈x(t)y(0)〉 can now be calculated quite conveniently
as

〈x(t)y(0)〉 =
1

4(1− s)
〈[Gx(t, s−)−Gx(t, s+)] [Gy(0, s−)−Gy(0, s+)]〉

=
re−s+t

8(1− s)3/2

√
1− s(

1 +
√

1− s
) [t+

1

2

(
1 +

1

1 +
√

1− s

)
+

1√
1− s

]
− re−s−t

8(1− s)3/2

√
1− s(

1−
√

1− s
) [−t− 1

2

(
1 +

1

1−
√

1− s

)
+

1√
1− s

]
.(E.10)

Multiplying
(
1−
√

1− s
)2 (

1 +
√

1− s
)2

= s2 on both sides gives

s2 〈x(t)y(0)〉 =
re−s+t

8(1− s)3/2
(
1−
√

1− s
)2 [

(2 + t)
√

1− s+

(
1

2
+ t

)
(1− s) + 1

]
− re−s−t

8(1− s)3/2
(
1 +
√

1− s
)2 [− (2 + t)

√
1− s+

(
1

2
+ t

)
(1− s) + 1

]
,(E.11)

so that we finally arrive at (3.30a),

(E.12) 〈x(t)y(0)〉 =
r (A+ −A−)

8s2(1− s)3/2
= 〈y(−t)x(0)〉 .

E.4. Time Correlation Function 〈y(t)x(0)〉.

Proof. Here we need another intermediate result,

〈ηy(t1)Gy(t2, s
′)〉 =

〈∫ t2

−∞
e−s

′(t2−t′) ηy(t1) ηy(t′) dt′
〉

=

∫ t2

−∞
e−s

′(t2−t′) 〈ηy(t1) ηy(t′)〉dt′

=

∫ t2

−∞
e−s

′(t2−t′) δ(t1 − t′) dt′

= e−s(t2−t1)Θ(t2 − t1) ,(E.13)
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as well as, with y(t) from (3.25),

〈ηy(t1)y(t2)〉 =
1

2
√

1− s
〈ηy(t1) [Gy(t2, s−)−Gy(t2, s+)]〉

=
1

2
√

1− s
[〈ηy(t1)Gy(t2, s−)〉 − 〈ηy(t1)Gy(t2, s+)〉]

=
1

2
√

1− s

[
e−s−(t2−t1) − e−s+(t2−t1)

]
Θ(t2 − t1) .(E.14)

Making use of (E.13) and (E.14), one has

〈Gy(t, a)Gx(0, b)〉 =

〈∫ t

−∞
e−a(t−t1) ηy(t1) dt1

∫ 0

−∞
e−b(0−t2) [2ry(t2) + ηx(t2)] dt2

〉
= 2r

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈ηy(t1)y(t2)〉dt2 dt1

=
r√

1− s

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2

[
e−s−(t2−t1) − e−s+(t2−t1)

]
Θ(t2 − t1)dt2dt1

=
re−at√
1− s

∫ t2

−∞

∫ 0

−∞
eat1+bt2

[
e−s−(t2−t1) − e−s+(t2−t1)

]
dt2 dt1

=
re−at√
1− s

[
1

a+ b

(
1

a+ s−
− 1

a+ s+

)]
.

(E.15)

Starting from (3.25) and (3.28), we can then immediately write down

〈y(t)x(0)〉 =
1

4(1− s)
〈[Gy(t, s−)−Gy(t, s+)] [Gx(0, s−)−Gx(0, s+)]〉

=
re−s−t

16
√

1− s

(
1

s−

)2

− re−s+t

16
√

1− s

(
1

s+

)2

.(E.16)

Multiplying
(
1−
√

1− s
)2 (

1 +
√

1− s
)2

= s2 on both sides gives

(E.17) s2 〈y(t)x(0)〉 =
re−s−t

16
√

1− s
(
1 +
√

1− s
)2 − re−s+t

16
√

1− s
(
1−
√

1− s
)2
,

so that we have proven (3.30c),

(E.18) 〈y(t)x(0)〉 =
r
(
C−2 − C

+
2

)
16s2
√

1− s
= 〈x(−t)y(0)〉 .
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E.5. Time Correlation Function 〈x(t)x(0)〉.
Proof. For the sake of completeness and readers’ convenience we provide here the

full proof of (3.30d). We begin, as before, with an intermediate result,

〈Gy(t1, a)Gy(t2, b)〉 =

〈∫ t1

−∞
e−a(t1−t

′
1) ηy(t′1) dt′1

∫ t2

−∞
e−b(t2−t

′
2) ηy(t′2) dt′2

〉
=

∫ t1

−∞

∫ t2

−∞
e−a(t1−t

′
1)−b(t2−t

′
2) dt′2 dt′1 〈ηy(t′1) ηy(t′2)〉

=

∫ t1

−∞

∫ t2

−∞
e−a(t1−t

′
1)−b(t2−t

′
2) δ(t′1 − t′2) dt′2 dt′1

= e−(at1+bt2)
∫ min(t1,t2)

−∞
e(a+b)t

′
1 dt′1

= e−(at1+bt2)
e(a+b)min(t1,t2)

a+ b
[<(a+ b) > 0] ,(E.19)

which corresponds, for t1 ≥ t2 or t1 ≤ t2, to either

(E.20) 〈Gy(t1, a)Gy(t2, b)〉 = e−(at1+bt2)
e(a+b)t2

a+ b
=
e−a(t1−t2)

a+ b
Θ(t1 − t2)

or

(E.21) 〈Gy(t1, a)Gy(t2, b)〉 = e−(at1+bt2)
e(a+b)t1

a+ b
=
e−b(t2−t1)

a+ b
Θ(t2 − t1) .

With the help of (3.25), (E.20), and (E.21),

〈y(t1)y(t2)〉 =
1

4(1− s)
〈[Gy(t1, s−)−Gy(t1, s+)] [Gy(t2, s−)−Gy(t2, s+)]〉

=
1

8s
√

1− s

[
s+e

−s−(t1−t2) − s−e−s+(t1−t2)
]

Θ(t1 − t2)

+
1

8s
√

1− s

[
s+e

−s−(t2−t1) − s−e−s+(t2−t1)
]

Θ(t2 − t1) .(E.22)

Defining GY , which differs from Gy in that ηy(t′) is replaced by y(t′), as

(E.23) GY (t, s′) ≡
∫ t

−∞
e−s

′(t−t′)y(t′) dt′ ,

we have

〈GY (t, a)GY (0, b)〉 =

〈∫ t

−∞
e−a(t−t1)y(t1) dt1

∫ 0

−∞
e−b(0−t2)y(t2) dt2

〉
=

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈y(t1)y(t2)〉dt2 dt1

=
e−at

8s
√

1− s

[
s+

∫ 0

−∞
e(b+s−)t2

∫ t

t2

e(a−s−)t1 dt1 dt2

−s−
∫ 0

−∞
e(b+s+)t2

∫ t

t2

e(a−s+)t1 dt1 dt2

]
+

e−at

8s
√

1− s

[
1

a+ b

(
s+

a+ s−
− s−
a+ s+

)]
.(E.24)
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More specifically, the cases we really need below are

〈GY (t, s−)GY (0, s−)〉 =
e−s−t

8s
√

1− s

[
s+t

2s−
+

s+
4s2−
− s−
s− − s+

(
e(s−−s+)t

s− + s+
− 1

2s−

)
+

b+
2s−

]
,

〈GY (t, s−)GY (0, s+)〉 =
e−s−t

8s
√

1− s

[
s+t

s− + s+
+

s+
(s− + s+)2

− s−
s− − s+

(
e(s−−s+)t

2s+
− 1

s− + s+

)]
+

e−s−t

8s
√

1− s

[
1

s− + s+

(
s+
2s−
− s−
s− + s+

)]
,

〈GY (t, s+)GY (0, s−)〉 =
e−s+t

8s
√

1− s

[
s+

s+ − s−

(
e(s+−s−)t

2s−
− 1

s− + s+

)
− s−t

s− + s+
− s−

(s− + s+)2

]
+

e−s+t

8s
√

1− s

[
1

s− + s+

(
s+

s− + s+
− s−

2s+

)]
,

〈GY (t, s+)GY (0, s+)〉 =
e−s+t

8s
√

1− s

[
s+

s+ − s−

(
e(s+−s−)t

s− + s+
− 1

2s+

)
− s−t

2s+
− s−

4s2+
+

b−
2s+

]
,

where the abbreviation

(E.25) b± = ± s±
2s∓
∓ s∓
s− + s+

was used. We can rewrite the solution (3.28) as the sum of two uncorrelated parts
x(t) = x1(t) + x2(t), with

(E.26) xi(t) =
1

2
√

1− s
[Gxi(t, s−)−Gxi(t, s+)] , i = 1, 2 ,

and

(E.27) Gx1
(t, s′) ≡

∫ t

−∞
e−s

′(t−t′)2ry(t′) dt′ , Gx2
(t, s′) ≡

∫ t

−∞
e−s

′(t−t′)ηx(t′) dt′ .

Since 〈x2(t)x2(0)〉 = 〈y(t)y(0)〉 was calculated above, the remaining contribution to
〈x(t)x(0)〉 is

〈x1(t)x1(0)〉 =
r2

1− s
〈[GY (t, s−)−GY (t, s+)] [GY (0, s−)−GY (0, s+)]〉

=
r2e−s+t

16s(1− s)3/2

√
1− s(

1 +
√

1− s
) [s−t+

s−
s+
−
(√

1− s− 1√
1− s

)]
+

r2e−s−t

16s(1− s)3/2

√
1− s(

1−
√

1− s
) [s+t+

s+
s−

+

(√
1− s− 1√

1− s

)]
.(E.28)

Multiplying
(
1−
√

1− s
)2 (

1 +
√

1− s
)2

= s2 on both sides gives

s2 〈x1(t)x1(0)〉 =
r2e−s+t

16s(1− s)3/2
(
1−
√

1− s
)2 [√

1− s (st+ s+ 1) + 2s− 1
]

+
r2e−s−t

16s(1− s)3/2
(
1 +
√

1− s
)2 [√

1− s (st+ s+ 1)− 2s+ 1
]
,(E.29)

which brings us into agreement with (3.30d),

(E.30) 〈x(t)x(0)〉 =

(
C+

1 + C−1
)

8s
√

1− s
+
r2 (B+ +B−)

16s3(1− s)3/2
.

D
ow

nl
oa

de
d 

11
/1

9/
20

 to
 1

47
.1

88
.2

16
.5

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LANGEVIN DYNAMICS: ANALYTIC TREATMENT AND NUMERICS 933

Acknowledgments. The authors thank Hans Christian Öttinger, Gabriel Stoltz,
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[54] J. Raḿırez, S. K. Sukumaran, B. Vorselaars, and A. E. Likhtman, Efficient on the fly
calculation of time correlation functions in computer simulations, J. Chem. Phys., 133
(2010), art. 154103. (Cited on p. 923)

[55] A. Rodkina and H. Schurz, Almost sure asymptotic stability of drift-implicit θ-methods for
bilinear ordinary stochastic differential equations in R1, J. Comput. Appl. Math., 180
(2005), pp. 13–31. (Cited on p. 903)

[56] P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers,
J. Chem. Phys., 21 (1953), pp. 1272–1280. (Cited on pp. 903, 922)
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