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Reduced left atrial cardiomyocyte PITX2 
and elevated circulating BMP10 predict 
atrial fibrillation after ablation
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S. Nashitha Kabir,1 Moritz F. Sinner,5,6 Robin Wesselink,7 Andrew P. Holmes,1 Davor Pavlovic,1  
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BACKGROUND. Genomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). 
To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial 
PITX2 affects recurrent AF after AF ablation.

METHODS. mRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left 
atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole 
LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to 
predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted 
protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and 
clinical parameters to predict recurrent AF after catheter ablation in 359 patients.

RESULTS. Reduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were 
associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2–(ΔΔCt) 
increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 
is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 
1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 
[CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other 
cardiovascular biomarkers in predicting recurrent AF.

CONCLUSIONS. Reduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of 
the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after 
ablation.

TRIAL REGISTRATION. ClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of 
Clinical Research Projects EK494-16.

FUNDING. British Heart Foundation, European Union (H2020), Leducq Foundation.
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Introduction
Since it was first described in an Icelandic population (1), genome-wide association studies have consistently 
identified several common gene variants in a small region on chromosome 4q25 that are strongly associated 
with atrial fibrillation (AF) (2). These common gene variants are also associated with recurrent AF after AF 
ablation (3–6). PITX2, the gene located closest to this region, encodes for a transcriptional factor that regu-
lates left-right asymmetry in the heart and other organs during development (7). In addition, Pitx2 suppresses 
left atrial automaticity and formation of  “sinus node–like structures” in the left atrium (8) and contributes 
to formation of  the pulmonary vein myocardium (9). In the adult heart, PITX2 expression remains largely 
restricted to the left atrium, where the cardiac isoform PITX2c is found (10). In fact, Pitx2 emerges as one 
of  the most differentially expressed left atrium–specific genes in mice (10, 11) and in patients (10), while the 
Pitx2-regulated gene Bmp10 is confined to right atrium (11, 12). In mice, reducing Pitx2 or Pitx2c creates a 
predisposition to AF without marked structural changes in the atria (10, 13–15) via shortened atrial repolar-
ization (13, 15), a more depolarized resting membrane potential (15), and potentially via disrupted calcium 
handling (14, 16). Gene expression analyses highlight that Pitx2c controls expression of  ion channels and 
desmosomal genes (12, 16, 17). These alterations in gene expression are brought about by an altered balance 
in the atrial network of  transcription factors (18, 19). Taken together, these findings suggest that reduced left 
atrial PITX2 could predispose patients to recurrent AF after AF ablation. Due to limited access to left atrial 
tissue in patients whose primary condition is AF, and due to the lack of  a more widely accessible marker for 
left atrial PITX2, it remains unclear whether this biologically plausible association exists in patients.

To assess the role of  left atrial PITX2 in recurrent AF in patients, we examined whether left atrial 
PITX2 is associated with recurrent AF in patients undergoing thoracoscopic AF ablation. As left atrial 
PITX2 concentrations cannot be easily measured in patients, we also sought to identify a blood biomarker 
that is regulated by left atrial PITX2. Based on a literature review, a gene expression screen, and validation 
through molecular biology experiments in mice with reduced Pitx2, we found that genetic reduction of  
Pitx2 prominently increases Bmp10 in the left atrium. As BMP10 is a heart-restricted, secreted protein, we 
subsequently quantified BMP10 plasma concentrations in patients undergoing AF ablation as a surrogate 
for left atrial PITX2 and assessed its value in predicting recurrent AF after catheter ablation.

Results
Whole tissue left atrial PITX2 is uninformative for the prediction of  recurrent AF after thoracoscopic ablation. PITX2 
and PITX2c mRNA concentrations were quantified in 83 whole left atrial appendage tissue samples (Figure 
1A). PITX2 and PITX2c showed a widely variable distribution in expression in left atrial appendage whole 
tissue samples (Figure 2, A and B). PITX2 concentrations were similar in patients with (median [Q1, Q3] 
11.28 [3.70, 16.96]) and without AF recurrence (7.81 [3.96, 16.72], P = 0.704; Figure 2C). PITX2c concen-
trations also did not differ in patients with (0.53 [0.16, 1.50]) and without AF recurrence (0.44 [0.18, 1.19], 
P = 0.543; Figure 2D). Left atrial appendage whole tissue PITX2 and PITX2c expression levels did not con-
tribute to prediction of  AF when considered with clinical characteristics. Morphological analysis of  patient 
left atrial appendage tissue biopsies revealed tissue heterogeneity with marked fatty deposits and fibrosis in 
some specimens, and high myocardium content in others (Figure 2E).

Left atrial cardiomyocytes are the main source of  PITX2 in patients. To assess the role of  left atrial 
cardiomyocyte PITX2 in recurrent AF, we quantified PITX2 mRNA in cardiomyocyte and non-cardio-
myocyte nuclei from another set of  52 left atrial appendage samples using a pericentriolar material–1 
(PCM1) cardiomyocyte enrichment protocol (Figure 3A) (20). Cardiomyocyte quantity was assessed 
by DAPI staining and flow cytometry (Figure 3B). Approximately one-quarter of  all nuclei were PCM1 
positive (i.e., cardiomyocyte nuclei; Figure 3C) with marked variability (range 10%–60%), in line with 
the macroscopic appearance (Figure 2E). PITX2 expression was largely confined to cardiomyocytes, 
and very low levels were detected in non-cardiomyocyte nuclei (0.48 [0.19, 0.85]; Figure 3D) in com-
parison with cardiomyocyte PITX2 expression (4.43 [2.49, 8.39], P < 0.001; Figure 3D). Furthermore, 
expression of  the endothelium-specific marker vWF was only detected in non-cardiomyocyte nuclei 
(15.88 [13.12, 19.92], cardiomyocyte 0.44 [0.28, 0.58], P < 0.001; Figure 3E), confirming the quality 
of  the PCM1 enrichment preparations.

Low left atrial cardiomyocyte PITX2 predicts recurrent AF after thoracoscopic AF ablation. Although the 
number of  samples was limited, left atrial appendage cardiomyocyte PITX2 concentrations were lower in 
patients with recurrent AF compared with patients without recurrence (Figure 4A, P = 0.082; Table 1).  

https://doi.org/10.1172/jci.insight.139179
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Multivariate analysis considering 4 clinical parameters shown to predict recurrent AF after ablation (21) and 
PITX2 concentration with a forward selection process selected PITX2 as the variable most strongly associated 
with AF recurrence (OR 0.840, 95% CI 0.695, 1.014), whereby every 2–(ΔΔCt) increase in PITX2 expression lev-
els reduced the odds of  recurrent AF by 16%. Although the confidence intervals encompassed the unity val-
ue of  1, the Hosmer-Lemeshow goodness-of-fit test indicated that the model was an adequate fit (P = 0.685).  

Figure 1. Flow diagram of patients included in the study, and analysis plan.
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Stratification of  PITX2 mRNA concentrations into quartiles revealed that the frequency of  recurrent AF 
increased with decreasing PITX2 concentration (Figure 4B). While these analyses support the hypothesis 
that reduced left atrial cardiomyocyte PITX2 concentrations are associated with recurrent AF in the first 
year after thoracoscopic AF ablation, they call for independent validation in a less-selected group of  patients.

Bmp10 is increased in murine left atria with reduced Pitx2c. To identify heart-restricted, secreted proteins 
modulated by PITX2, we carried out unbiased RNA-Seq using left atria from WT and Pitx2c+/– mice (n = 
3 paired mice; Figure 5A). This revealed Cd207, Bmp10, Cxcl13, Myoc, Vsig4, A930005H10Rik, and Mrap as 
the top 7 genes with differentially increased expression in left atrium of  Pitx2c+/– mice. Bmp10 was selected 
for further quantification due to its restriction to cardiac tissue and based on its known biology as a secreted 
protein (22). Bmp10 mRNA, quantified by qPCR, was expressed at 32-fold-increased levels in the left atria 
of  Pitx2c+/– mice compared with their WT littermates (WT 0.03 [0.01, 0.04], Pitx2c+/– 3.20 [2.86, 3.60], P 
= 0.002; Figure 5B) and at low to undetectable levels in left ventricular tissue of  either genotype (WT 0.05 
[0.01, 0.09], Pitx2c+/– 0.01 [0.01, 0.02], P = 0.060; Figure 5B). This result is consistent with prior reports (11, 
12). Accordingly, Bmp10 protein concentrations were increased in the left atria of  Pitx2c+/– mice (WT 1.00 
[1.00, 1.00], Pitx2c+/– 2.34 [1.43, 3.05], P = 0.059; Figure 5C), while there was no change in Bmp10 protein 
concentrations in left ventricles (WT 0.40 [0.22, 0.78], Pitx2c+/– 0.34 [0.16, 0.45], P = 0.462; Figure 5C;  

Figure 2. Expression of PITX2 or PITX2c in whole left atrial tissue does not predict recurrent atrial fibrillation. 
Left atrial appendage samples were digested and assessed for levels of PITX2 (A; PITX2 median [Q1, Q3] 8.67 [3.90, 
16.78]) and PITX2c (B; 0.47 [0.16, 1.20]) using qPCR. Results are expressed as an average normalized to 2 housekeep-
ing genes (GAPDH and POLR2A) (n = 94). Expression levels of PITX2 (C; PITX2 No AF Rec 7.81 [3.96, 16.72]), Rec AF 
11.28 [3.70, 16.96]; P = 0.704) and PITX2c (D; PITX2c No AF Rec 0.44 [0.18, 1.19], Rec AF 0.53 [0.16, 1.50]; P = 0.543) 
were stratified by clinical outcomes of having recurrent AF within 1 year after ablation surgery. AF Rec, patients with 
recurrent AF, n = 23; No AF Rec, patients without recurrent AF, n = 71. (E) Example biopsies of left atrial appendage 
tissue, highlighting tissue heterogeneity. Scale bar: 10 mm.
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see Supplemental Figure 1 for full Western blot gel; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.139179DS1). BMP10 was mainly expressed in cardiomyocytes obtained 
from human left atrial appendages (non-cardiomyocytes 0.00 [0.00, 0.00], cardiomyocytes 0.70 [0.45, 1.95], 
P = 0.032; Figure 5D). These findings suggest that BMP10 is repressed by PITX2 in the adult left atrium. 
Importantly, unlike markers such as N-terminal pro–B-type natriuretic peptide (NTproBNP), plasma con-
centrations of  BMP10 appear relatively unaffected by other cardiovascular conditions such as heart failure 
(22). Hence, elevated plasma BMP10 concentrations were used as a surrogate for reduced atrial PITX2.

Elevated blood BMP10 protein concentrations are associated with recurrent AF after AF ablation. In the AFLMU 
cohort (see Methods; Figure 1B and Table 2), patients with and without recurrences did not significantly dif-
fer in terms of  hypertension, heart failure, diabetes, stroke/transient ischemic attack (TIA), or BMI status.  

Figure 3. Assessing PITX2 levels in patient left atrial cardiomyocytes. (A) Overview of tissue processing and PITX2 
gene expression and analysis protocol. Nuclei were isolated from patient left atrial appendage samples, and cardio-
myocytes (CM) were enriched using an anti-PCM1 antibody. Both PCM1-enriched (CM Nuclei) and -depleted (Non-CM 
Nuclei) fractions were harvested. (B) Quantity of nuclei was assessed by staining using DAPI and determined by flow 
cytometry. (C) The percentage of nuclei in either non-CM or CM fractions was calculated (Non-CM 76.09 [66.06, 90.22], 
CM 23.91 [9.78, 33.94]; n = 52). (D) Levels of PITX2 (Non-CM 0.48 [0.19, 0.85], CM 4.43 [2.49, 8.39]; P < 0.001; n = 52) 
and (E) vWF (Non-CM 15.88 [13.12, 19.92], CM 0.44 [0.28, 0.58]; P < 0.001; n = 8) in both Non-CM and CM fractions 
were measured using qPCR. The results are expressed as an average normalized to 2 housekeeping genes (GAPDH and 
POLR2A). Statistical significance was calculated by using Mann-Whitney U test.
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In univariate analysis adjusted for age, sex, type of  AF, and left atrial diameter, BMP10 conferred the 
highest relative risk among 12 tested biomarkers (HR per quartile increase 1.334, 95% CI 1.142, 1.558; 
Figure 6A). Patients with recurrent AF had significantly higher BMP10 levels (1.93 [1.66, 2.26], n = 153) 
compared with patients without recurrent AF (1.68 [1.51, 1.97], P < 0.001, n = 206; Figure 6B).

BMP10 was then combined with 4 established clinical characteristics predictive of  recurrent AF 
(age, sex, AF pattern, left atrial diameter) in a Cox regression with forward selection (entry criterion, P 
= 0.05) to determine the most parsimonious multivariate model. The best combination of  variables for 
achieving a significant prediction for recurrent AF consisted of  (in order of  entry) BMP10, left atrial 
size, and type of  AF (Figure 6C). This model had an area under the ROC curve (AUC) of  0.689 [0.633, 
0.744]. To adjust for overoptimism, the model was bootstrapped (1000 samples), with very little bias 
detected (Supplemental Figure 2). We also considered all 12 biomarkers in the model with forward 
selection. The best combination of  variables remained the same as above — BMP10, left atrial size, 
and type of  AF, with the addition of  FGF23 (Table 3). The addition of  FGF23 marginally improved 
the performance of  the model (AUC 0.693 [0.638, 0.748]). Sensitivity analyses using LASSO for data 
reduction yielded the same predictors as forward selection in all instances (see Supplemental Methods, 
“LASSO for data reduction,” and Supplemental Table 1). To reduce variability in the Cox regression 
modeling secondary to the range of  follow-up durations (median [Q1, Q3] 358 [173, 392] days), we 
included a sensitivity analysis using logistic regression, which removes the time component of  the 
model (Supplemental Methods, “Logistic regression”). The sensitivity analysis results showed trends 
nearly identical to those observed in our main analysis.

When patients were stratified into quartiles by BMP concentrations, the highest quartile had the 
largest proportion of  patients with recurrent AF (χ2 P < 0.001, Figure 6D; see Supplemental Figure 2 
for other cardiovascular biomarkers) and the lowest survival probability compared with other quartiles 
(log-rank P < 0.001; Figure 6E). Thus, increased BMP10 blood levels confer the highest relative risk 
of  recurrent AF, both univariately (adjusted and unadjusted) and in the presence of  other well-known 
cardiovascular biomarkers and established clinical predictors.

Discussion
Main findings. Low left atrial cardiomyocyte PITX2 concentrations appear to be associated with an 
increased risk of  recurrent AF after thoracoscopic AF ablation. Furthermore, elevated blood BMP10 
protein concentrations, a new biomarker for AF quantifying a secreted, PITX2-controlled left atrial 
protein, predict recurrent AF after catheter-based AF ablation in patients. These results can inform 
future strategies to prevent recurrent AF in patients, e.g., targeting those with low left atrial PITX2 or 
high blood BMP10 levels.

Figure 4. Reduced expression of PITX2 in patient left atrial cardiomyocytes predicts recurrent atrial fibrillation. 
(A) Expression levels of PITX2 in patient nuclei. Samples were stratified by AF recurrence at 1 year follow-up after 
ablation (No AF Rec 5.58 [3.16, 8.80], AF Rec 3.32 [1.60, 6.25]; P < 0.082. AF Rec, patients with recurrent AF within 
1 year after ablation, n = 16; No AF Rec, patients without recurrent AF within 1 year after ablation, n = 36. (B) Strat-
ification of PITX2 mRNA concentrations from A into quartiles. The numbers of patients who experienced recurrent 
AF in the respective quartiles are shown.
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Although many patients with AF respond to rhythm control therapy, others experience early recur-
rences: symptomatic recurrence of  AF occurs within 6–12 months in 40%–70% of  patients on antiar-
rhythmic drug therapy (23–25) and in 20%–50% after AF ablation (AFLMU cohort in this study and 
refs. 26–28). Current practice leaves selection of  rhythm control therapy to local protocols (29). The 
reasons for recurrent AF after ablation are not fully understood (30, 31), although there is clinical evi-
dence that common gene variants on chromosome 4q25, close to the PITX2 gene, are associated with 
recurrent AF after ablation (3, 5, 32). This study identifies reduced left atrial cardiomyocyte PITX2 
concentrations and its surrogate, elevated BMP10 concentrations, as a major predictor of  recurrent 
AF after ablation (Figure 7). The effect of  low left atrial PITX2 on recurrent AF was found only in left 
atrial cardiomyocyte preparations, but not in whole left atrial tissue, consistent with previous findings 
in whole left atrial tissue from patients (15, 33).

PITX2 functions as an essential cardiac transcriptional factor, possibly acting within a network 
of  transcriptional regulation (18). Reduced PITX2 expression results in congenital heart diseases (12, 
34) and cardiac arrhythmogenic defects (14). While a direct link between AF and PITX2 has so far 

Table 1. Clinical characteristics of the AFACT and MARK AF cohorts compared by outcome group

AFACT study cohort MARK AF study cohort

Univariate analysis Univariate analysis

Characteristic No Rec AF (n 
= 61)

Rec AF (n 
= 22)

P value OR 95% CI No Rec AF  
(n = 36)

Rec AF  
(n = 16)

P value OR 95% CI

Age (yr) 59 (8) 60 (8) 0.448 1.024 0.964, 1.087 62 (53, 67) 61 (60, 66) 0.545 1.036 0.959, 1.119
Male/female 48/13 (79/21%) 17/5 

(77/23%)
0.890 0.921 0.286, 2.968 29//7 (81/19%) 11/5 

(69/31%)
0.351 1.883 0.493, 7.200

AF duration (mo)A 3 (2, 7) 6 (3, 10) 0.075 1.043 0.961, 1.131 6 (2, 10) 3 (2, 6) 0.119 0.898 0.774, 1.040
CHA2DS2VAScA 1 (0, 2) 1 (0, 2) 0.594 1.063 0.796, 1.420 1 (0, 2) 1 (1, 2) 0.551 1.125 0.680, 1.864
LA diameter (mm) 41 (40, 44) 42 (38, 46) 0.638 1.035 0.936, 1.144 41 (38, 44) 46 (36, 48) 0.781 0.999 0.909, 1.099
Heart failure 2 (3%) 1 (5%) 0.785 1.405 0.121, 16.305 3 (8%) 1 (6%) 0.795 0.733 0.070, 7.644
Hypertension 17 (28%) 9 (41%) 0.258 1.792 0.648, 4.957 13 (36%) 6 (38%) 0.924 1.062 0.314, 3.593
Stroke 6 (10%) 1 (5%) 0.444 0.437 0.050, 

3.846
4 (11%) 2 (13%) 0.885 1.143 0.187, 6.982

Diabetes mellitus 6 (10%) 1 (5%) 0.444 0.437 0.050, 
3.846

1 (3%) 0 (0%) 0.501 – –

AF type (paroxysmal) 28 (46%) 6 (27%) 0.128 0.442 0.152, 1.282 18 (50%) 4 (25%) 0.092 0.333 0.090, 1.231
History of pulmonary 
vein isolation

9 (15%) 5 (23%) 0.392 1.699 0.500, 5.771 6 (17%) 4 (25%) 0.482 1.667 0.398, 6.974

Flecainide 18 (30%) 8 (36%) 0.552 1.365 0.488, 
3.817

23 (64%) 9 (56%) 0.601 0.727 0.219, 2.411

Atenolol/bisoprolol/
metoprolol/[MARK AF 
sotalol <240 mg] 

29 (48%) 15 (68%) 0.096 2.365 0.846, 6.612 20 (56%) 11 (69%) 0.371 1.760 0.507, 6.112

Amiodarone/[MARK AF 
sotalol ≥240 mg] 

25 (41%) 9 (41%) 0.995 0.997 0.370, 2.686 5 (14%) 4 (25%) 0.328 2.067 0.473, 9.025

Verapamil 12 (20%) 1 (4%) 0.092 0.194 0.024, 
1.593

6 (17%) 2 (13%) 0.701 0.714 0.128, 3.995

Digoxin 9 (15%) 3 (14%) 0.898 0.912 0.223, 
3.730

5 (14%) 1 (6%) 0.426 0.413 0.004, 
3.858

Antithrombotics 6 (10%) 1 (5%) 0.444 0.437 0.050, 
3.846

1 (3%) 0 (0%) 0.501 – –

Oral anticoagulants 57 (93%) 20 (91%) 0.694 0.702 0.119, 4.129 36 (100%) 16 (100%) – – –
PITX2 (2–ΔΔCt)A

 [MARK AF PCM1+] 8.6 (3.7, 17.3) 11.9 (3.6, 
17.7)

0.665 1.022 0.965, 1.083 5.1 (2.2, 11.5) 4.4 (2.2, 5.4) 0.219 0.840 0.695, 1.014

 [MARK AF PCM1–] – – – – – 0.6 (0.3, 1.0) 0.3 (0.2, 0.6) 0.204 0.284 0.068, 1.193
PITX2c (2–ΔΔCt)A 0.5 (0.2, 1.2) 0.6 (0.2, 1.5) 0.470 1.132 0.872, 1.470 0.3 (0.1, 1.7) 0.3 (0.1, 0.7) 0.552 0.798 0.375, 1.699

Categorical variables are reported as n (%); continuous variables are reported as mean (SD) or median (Q1, Q3) for nonparametric distributions (A). Independent 
t test (or Mann-Whitney U test for nonparametric distributions) and χ2 tests were used to compare continuous and categorical variables between patients 
within both outcome groups. LA, left atrial.
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only been shown in murine models, single nucleotide polymorphisms at the 4q25 locus (the strongest 
genomic markers of  AF risk) can regulate PITX2 expression (35) and subsequently alter its transcrip-
tional activity. Reduced left atrial PITX2 can modify ion channels and cell-cell contacts, thus changing 
their electrical function, resulting in a predisposition to AF in mice (12–14, 16, 17). Our results provide 
the first evidence to our knowledge that low left atrial cardiomyocyte PITX2 levels contribute to recur-
rent AF after ablation in patients in whom left atrial tissue was collected at the time of  AF ablation.

Our results also confirm recent data from mouse atria indicating that cardiomyocytes are the major 
cell type expressing PITX2 in the adult left atrium (36). Furthermore, we found that approximately 
one-quarter of  nuclei in human left atrium are cardiomyocyte, consistent with prior data in mice (36). 
The marked variability in cardiomyocyte content of  the left atrium, dependent, e.g., on the degree of  
atrial fibrosis and atrial fatty infiltration (Figure 2E), can explain why PITX2 concentrations in whole 
atrial tissue were not associated with recurrent AF.

Our gene expression analyses identified Bmp10 as a gene whose expression is increased when Pitx2c 
is reduced, consistent with PITX2 repressing BMP10. These findings are consistent with other murine 
models of  Pitx2 deficiency (10–12). In addition, recent findings in a mouse model that deactivated the 
enhancer region of  Pitx2c found Bmp10 to be one of  the most upregulated genes (37). These results 
suggest that a common repressor/enhancer transcriptional network may exist between Bmp10 and 
Pitx2 whereby the loss of  one of  these genes results in the reciprocal upregulation of  the other (18, 38). 
Such findings are plausible given that PITX2 is known to be a key regulator of  “leftness” in the heart 
during development (36, 39) and BMP10 is a right atrial gene (11, 40). Additional features supported 

Figure 5. Bmp10 expression is increased following reduction of Pitx2. (A) RNA-Seq analysis of significantly upregulated genes in left atrial tissue 
from Pitx2c+/– mice (n = 3 mouse pairs). (B) Bmp10 mRNA expression levels in the left atrium (LA) and left ventricle (LV) of WT and Pitx2c+/– mice, 
assessed by qPCR using Gapdh as a housekeeping gene (WT LA 0.03 [0.01, 0.04], Pitx2c+/– LA 3.20 [2.86, 3.60], P = 0.002; WT LV 0.05 [0.01, 0.09], 
Pitx2c+/– 0.01 [0.01, 0.02], P = 0.060; n = 6). Statistical significance was calculated using Mann-Whitney U test. (C) Protein expression of Bmp10 in 
the left atrium and left ventricle of WT and Pixt2+/– mice as assessed by Western blotting using Gapdh as a loading control (WT LA 1.00 [1.00, 1.00], 
Pitx2c+/– LA 2.34 [1.43, 3.05], P < 0.059; WT LV 0.40 [0.22, 0.78], Pitx2c+/– 0.34 [0.16, 0.45], P < 0.462; n = 4). (D) BMP10 mRNA expression levels in 
human left atrial cardiomyocyte (CM) and non-cardiomyocyte (Non-CM) appendage samples assessed by qPCR using GAPDH as a housekeeping gene 
(Non-CM 0.00 [0.00, 0.00] CM 0.70 [0.45, 1.95]; P = 0.032, n = 8). Statistical significance was calculated using a 1-sample t test.
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our selection of  increased BMP10 plasma concentrations as a surrogate marker for reduced left atrial 
PITX2. BMP10 is a secreted protein that is released into plasma (41). BMP10 is a heart-restricted 
protein, expressed in cardiomyocytes during development and required for cardiomyocyte growth and 
development (42, 43) and with little expression in the left ventricle (Figure 5, B and C).

Using BMP10 as a plasma surrogate for left atrial PITX2, we found that elevated BMP10 concen-
trations, quantified just before a clinically indicated AF ablation procedure, are a good predictor of  
recurrent AF after ablation (Figure 6). BMP10 improved prediction of  recurrent AF when added to 
established clinical features that predict recurrent AF (21). The predictive power of  BMP10 outper-
formed other plasma biomarkers that have been proposed as predictors of  recurrent AF (44–47).

Taken together, our findings provide further support for the hypothesis that reduced left atrial cardio-
myocyte PITX2 contributes to recurrent AF. These results can inform strategies to prevent recurrent AF in 
patients, e.g., targeting those with low levels of  PITX2.

Table 2. Patient characteristics in the AFLMU cohort compared by outcome group

Characteristic No recurrent AF (n = 206) Recurrent AF (n = 153) P value Univariate analysis, HR (95% CI)
Age, yr 66 (56, 70) 68 (58, 72) 0.049 1.016 (0.999, 1.033)
Male/female 127/79 (62/38%) 86/67 (56/44%) 0.299 1.156 (0.837, 1.598)
BMI, kg/m2 23.2 (20.4, 26.2) 23.3 (20.2, 26.0) 0.913 0.998 (0.965, 1.032)
eGFR, mL/min/1.73 m2 79.0 (67.8, 91.0) 74.0 (60.0, 87.0) 0.025 0.993 (0.985, 1.001)
Diabetes 25 (12%) 21 (14%) 0.656 1.130 (0.712, 1.794)
Stroke/TIA 23 (11%) 21 (14%) 0.464 1.204 (0.758, 13911)
Hypertension 139 (68%) 117 (77%) 0.062 1.495 (1.029, 2.174)
Heart failure 90 (44%) 80 (52%) 0.107 1.314 (0.956, 1.806)
Type of AF (paroxysmal) 124 (60%) 65 (43%)  < 0.001 0.566 (0.410, 0.781)
LA size (mm) 40 (38, 44) 42.0 (38, 47) 0.002 1.059 (1.032, 1.087)
Ejection fraction (%) 60 (57, 66) 60 (55, 68) 0.958 0.988 (0.973, 1.003)
AF ablation 206 (100%) 153 (100%) - -
Medication

 NOAC (3 missing) 135 (66% of 205) 83 (54% of 151) 0.030 0.717 (0.520, 0.987)
 VKA 67 (33%) 65 (43%) 0.053 1.389 (1.006, 1.918)
 Aspirin 38 (18%) 38 (25%) 0.143 1.297 (0.897, 1.874)
 Antiplatelet agents 10 (5%) 4 (3%) 0.278 0.669 (0.248, 1.809)
 ACE inhibitors 106 (52%) 87 (57%) 0.310 1.228 (0.889, 1.698)
 Beta blocker 197 (96%) 147 (96%) 0.834 0.916 (0.404, 2.075)
 Diuretic 65 (32%) 57 (37%) 0.259 1.383 (0.995, 1.924)
 Calcium channel antagonist 19 (9%) 20 (13%) 0.247 1.499 (0.933, 2.407)
 Aldosterone antagonist 10 (5%) 15 (10%) 0.068 1.817 (1.063, 3.106)
 Antiarrhythmics 61 (30%) 47 (31%) 0.821 1.007 (0.712, 1.425)
Biomarkers

 ANG2 (ng/mL) 2.08 (1.61, 3.18) 2.54 (1.88, 3.70) 0.003 1.092 (1.025, 1.164)
 BMP10 (ng/mL) 1.69 (1.50, 1.97) 1.92 (1.64, 2.24)  < 0.001 1.527 (1.150, 2.028)
 CRP (mg/L) 1.61 (0.65, 2.70) 2.05 (0.96, 3.98) 0.014 0.999 (0.983, 1.016)
 CA125 (per 10 U/mL) 1.00 (0.74, 1.50) 1.09 (0.69, 1.55) 0.549 1.053 (1.019, 1.088)
 ESM1 (ng/mL) 2.42 (1.85, 3.26) 2.55 (1.92, 3.46) 0.348 1.051 (0.952, 1.160)
 FGF23 (per 100 pg/mL) 1.10 (0.89, 1.46) 1.31 (1.03, 1.91)  < 0.001 1.002 (0.973, 1.031)
 FABP3 (per 10 ng/mL) 2.90 (2.44, 3.55) 3.24 (2.58, 3.95) 0.004 1.073 (0.993, 1.160)
 GDF15 (per 100 pg/mL) 8.49 (6.48, 11.94) 9.72 (7.39, 14.27) 0.005 1.009 (0.993, 1.024)
 IGFBP7 (ng/mL) 82.37 (74.21, 93.43) 88.10 (78.54, 101.85) 0.004 1.007 (1.000, 1.014)
 IL-6 (pg/mL) 2.22 (1.50, 3.78) 2.65 (1.66, 4.18) 0.025 1.019 (0.993, 1.046)
 NTproBNP (per 100 pg/mL) 2.62 (1.24, 7.35) 5.55 (2.18, 9.63)  < 0.001 1.006 (0.999, 1.013)
 TnT (per 100 pg/mL) 0.09 (0.07, 0.14) 0.10 (0.07, 0.16) 0.035 1.165 (0.899, 1.509)

All participants were of European descent. Categorical variables are reported as n (%), continuous variables are reported as median (Q1, Q3) for nonparametric 
distributions. Mann-Whitney U test for nonparametric distributions and χ2 tests were used to compare characteristics between patients. eGFR, estimated 
glomerular filtration rate; NOAC, non–vitamin K antagonist oral anticoagulant; VKA, vitamin K antagonist; ACE, angiotensin-converting enzyme.
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Strengths. First, left atrial PITX2 was quantified in patients undergoing stand-alone thoracoscopic 
AF ablation, rather than patients requiring open heart surgery, who are the source of  most analyses 
of  human left atrial tissue. This population comprised a small subset of  patients with AF receiving 
rhythm control therapy, enriched for patients with recurrent AF after AF ablation, rather than being a 
population of  patients with several other cardiovascular diseases requiring surgery. This is a strength, 
as patients undergoing thoracoscopic AF ablation are more similar to patients receiving rhythm con-
trol therapy for AF than patients undergoing open heart surgery for other conditions, who are a com-
mon source for atrial tissue, but also calls for validation in additional patient cohorts treated with 
rhythm control therapy.

Until the present study, PITX2 expression had largely been investigated in whole tissue left atrial 
appendage samples, rendering measured concentrations subject to interference by non-cardiomyocyte frac-
tions (Figure 2E and refs. 15, 33, 48). The cardiomyocyte isolation protocol applied here enriches the nucle-
ar fraction of  cardiomyocytes and allows for a purer analysis of  nuclear cardiomyocyte genes.

Limitations. First, the AFACT and MARK AF cohorts used in the statistical analysis are large 
for a study involving thoracoscopically collected left atrial tissue in patients, but relatively small for 
a clinical study employing multivariate analysis. Although, this limits the power to detect additional 
factors associated with recurrent AF, it was not possible to obtain more tissue samples. Therefore, we 
validated our findings in an independent cohort by studying a secreted form of  BMP10, which was 
identified as a PITX2-regulated gene. Second, while BMP10 was identified by an atrial gene expression 
screen using established models for reduced PITX2 expression, which is in agreement with published 
data, further experiments, i.e., ChIP-Seq or assay for transposase-accessible chromatin using sequenc-
ing (ATAC-Seq), are warranted to demonstrate directly that BMP10 is controlled by PITX2. Third, 
while the AFLMU data set is rather large for an AF ablation cohort with biomarkers, further studies in 
independent patient data sets, ideally assessing atrial PITX2 and plasma BMP10 concentrations in the 
same patients, are warranted to confirm our findings. Further exploratory analyses, potentially includ-
ing machine learning approaches in addition to established methodologies, can shed further light on 
the complex regulation of  left atrial gene expression. Finally, this study did not address whether com-
mon gene variants on chromosome 4q25 regulate PITX2. While cellular expression of  such variants 
can reduce (35) or increase PITX2 levels (49), the control of  PITX2 in the left atrium of  patients will 
be modified by transcriptional and epigenetic regulation of  PITX2, along with other factors (reviewed 
in ref. 18). The partial redundancy in the regulation of  atrial gene expression (18) can further mitigate 
the AF drivers associated with reduced PITX2.

Conclusions. Low left atrial cardiomyocyte PITX2 and elevated blood BMP10 predict recurrent 
AF after catheter-based AF ablation in patients. BMP10 emerges as a promising plasma biomarker to 
assess left atrial PITX2 activity. These results can inform future strategies to prevent recurrent AF in 
patients, e.g., targeting those with low PITX2.

Methods

Study populations
AFACT. Atrial Fibrillation Ablation and Autonomic Modulation Via Thorascopic Surgery (AFACT; 
NCT01091389) is a prospective, randomized, controlled, single-center study (Amsterdam UMC) that 
recruited participants between April 2010 and January 2015 to investigate the efficacy and safety of  gan-
glion plexus ablation in patients undergoing thoracoscopic AF ablation. Details of  inclusion and exclusion 
criteria as well as the main outcomes of  this study have been previously published (50).

Figure 6. Increased BMP10 predicts recurrent atrial fibrillation in 359 patients after catheter ablation. (A) By univariate analysis, BMP10 confers 
the highest relative risk for recurrent AF among 11 other common cardiovascular biomarkers after adjustment for age, sex, type of AF, and left 
atrial diameter. (B) BMP10 levels are significantly elevated in patients with recurrent AF. (C) In multivariate analysis, increased left atrial (LA) size, 
nonparoxysmal type of AF, and elevated BMP10 predict recurrent AF. (D) When patients were stratified into quartiles based on BMP10 concentra-
tion, the largest proportion of patients with recurrent AF were in the highest BMP10 quartile. The numbers of patients that experienced recurrent 
AF in the respective quartiles are shown. (E) Stratification of patients by BMP10 quartiles corresponds with their rhythm outcome up to 2 years 
follow-up, with the worst outcomes in patients in the highest quartile (Q4). ANG2, angiopoietin 2; CRP, high-sensitivity C-reactive protein; CA125, 
cancer antigen 125; ESM1, endothelial cell–specific molecule 1; FABP3, fatty acid binding protein 3; GDF15, growth differentiation factor 15; IGFBP7, 
insulin like growth factor binding protein 7; TnT, high-sensitivity cardiac troponin T.
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MARK AF. The MARK AF study (ethical approval NL50069.018.14) recruited consecutive patients 
undergoing thoracoscopic AF ablation. It was designed as a prospective registry collecting data from 
patients not included into AFACT but seen for thoracoscopic AF ablation at Amsterdam UMC. Patients 
with AF were recruited using the same criteria as for the AFACT study (50).

AFLMU. The AFLMU study (EK494-16) is an ongoing prospective research project. For this analysis, 
only patients enrolled until 2016 were considered to enable meaningful follow-up (Figure 1B). For this anal-
ysis, patients undergoing AF ablation were considered. Blood samples were collected during the ablation 
from a groin puncture site and before access to the left atrium.

Patients underwent systematic rhythm follow-up with 24-hour Holter monitoring every 3 months 
(AFACT and MARK AF) or 7-day Holter monitoring (AFLMU; Figure 1). All patients were of  European 
ancestry. ECG-documented AF recurrences were reviewed by an experienced operator before counting.

Biological samples
Left atrial and left ventricular tissue preparation. Left atrial appendages were collected from patients in the 
AFACT and MARK AF studies during thoracoscopic AF ablation and frozen at –80°C for later analy-
sis. Murine left atrial and left ventricle tissue were harvested from 10 pairs of  2- to 3-month-old WT and 
Pitx2c+/– mice bred on a MF1 genetic background and snap-frozen in liquid nitrogen. The Pitx2c+/– mice 
were originally obtained from Nigel Brown (St George’s University, London, United Kingdom) and have 
previously been characterized (10). All molecular biology experiments performed by investigators blinded 
to rhythm outcome or mouse genotype (see Supplemental Methods for details).

RNA-Seq and molecular biology in left atrial mouse tissue. Whole tissue left atrium samples from 6 pairs of  
3-month-old WT and Pitx2c+/– mice were snap-frozen in liquid nitrogen and stored at –80°C.

Blood biomarkers. BMP10 levels were quantified in ng/mL from EDTA plasma using a pre-com-
mercial high-throughput assay on a cobas Elecsys platform (Roche Diagnostics) employing Elecsys  

Figure 7. Correlation of low left atrial cardiomyocyte PITX2 mRNA and elevated BMP10 protein concentrations with 
recurrent AF after ablation. Our data show that left atrial cardiomyocyte PITX2 mRNA concentrations, measured in 
left atrial appendages excised after thoracoscopic AF ablation, are a strong predictor of recurrent AF after AF ablation. 
Based on molecular biology analyses, we postulate that PITX2 represses production of the left atrial protein BMP10 
that is secreted into blood. Indeed, elevated concentrations of BMP10 in peripheral blood were found to predict recur-
rent AF after AF ablation. These data call for validation in independent cohorts.
 

https://doi.org/10.1172/jci.insight.139179


1 3insight.jci.org   https://doi.org/10.1172/jci.insight.139179

C L I N I C A L  M E D I C I N E

Electro-ChemiLuminescence (ECL) technology. By calibrating with serial dilutions of  recombinant BMP10, 
the instrument read-out was precisely normalized across runs to enable large cohort measurements with a 
high degree of  accuracy. A total of  11 cardiovascular biomarkers that have been proposed as predictors of  
AF were quantified as well (angiopoietin 2; high-sensitivity C-reactive protein; cancer antigen 125; endo-
thelial cell–specific molecule 1; FGF23; fatty acid binding protein 3; growth differentiation factor 15; insu-
lin-like growth factor binding protein 7; IL-6; NTproBNP; high-sensitivity cardiac troponin T). All measure-
ments were done by investigators blinded to clinical information and outcomes.

See Supplemental Methods for further technical details.

Data analysis
RNA-Seq analysis. RNA-Seq FASTQ files were aligned on HISAT2 (version 2.1.0) using Ensembl Mus mus-
culus reference GRCm38.91 (51, 52). Aligned reads were counted using HTSeq version 0.9.1 (53). Required 
transformations through different RNA-Seq analysis steps were done using SAMtools version 1.4 (http://
samtools.sourceforge.net/). Differential expression was obtained using DESeq2 in R. Ensembl IDs were 
transformed to gene symbols using BioTools (https://www.biotools.fr/) Data were deposited in the NCBI’s 
Gene Expression Omnibus database (GEO GSE152181).

Statistics. For molecular biology experiments, Mann-Whitney U test was used for all analyses looking at 
between-group comparisons and t test when direct comparisons were made to normalized data involving a 
single value. All data were tested for normality using a Shapiro-Wilk test. Box-and-whisker plots display the 
1st–99th percentile, and P values are stated for statistically significant comparisons. For direct comparisons 
between 2 groups, median values along with Q1 and Q3 are stated in the text and figure legends. Biomark-
ers were tested for association with outcomes per quartile increase for comparability between biomarkers.

The baseline characteristics of  patients with and without AF recurrence at 1 year follow-up in AFACT 
and MARK AF cohorts were compared. Only recurrences after 3 months after ablation were considered. 
Categorical variables were assessed using χ2 tests. Continuous variables were compared using indepen-
dent-samples t tests or Mann-Whitney U tests as applicable after testing for normality using the Kolmogor-
ov-Smirnov test. A 2-tailed P value less than 0.05 was considered to be statistically significant.

A logistic regression model was fitted with forward selection (entry criterion, P = 0.1) to identify 
parameters associated with increased odds of  AF recurrence among the top 4 clinical predictors of  recur-
rent AF after catheter ablation and quantified PITX2/PITX2c expression levels in whole atrial tissue or 
cardiomyocyte samples. Clinical predictors were identified from a systematic review (21). LASSO per-
formed as sensitivity analyses as an alternative selection procedure. OR and 95% CIs were calculated for 
all selected variables.

A Cox regression model was applied using data from the AFLMU cohort, with PITX2/PITX2c being 
replaced by BMP10. BMP10 was also compared with 11 other cardiovascular biomarkers. All analyses 
were performed using SPSS v.24 (IBM Corp.). Authors had direct access to primary data from all the stud-
ies above for data analysis. All graphs were produced using GraphPad Prism8 software.

Study approval. For human studies, all patients provided written informed consent, and studies were 
approved as follows: AFACT (NCT01091389) — The study conformed to the Declaration of  Helsinki, 
and all patients provided written informed consent; MARK AF (NL50069.018.14) — All patients provided 

Table 3. Extended analysis including 11 biomarkers

Selected parameter β Coefficient HR 95% CI
Lower Upper

LA size (mm) 0.052 1.053 1.026 1.081
Type of AF (nonparoxysmal) 0.458 1.581 1.136 2.199
BMP10 (quartiles, ng/mL) 0.239 1.270 1.093 1.475
FGF23 (quartiles, ng/mL) 0.183 1.201 1.027 1.405
Cumulative baseline hazard at 1 year 0.014

Considering 11 cardiovascular biomarkers in addition to BMP10, elevated BMP10 and FGF23 significantly increased the risk of recurrent AF in addition to left 
atrial (LA) size and nonparoxysmal type of AF.
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written informed consent, and the study was approved by the ethics committee of  Amsterdam Medical 
Center; AFLMU — All patients provided written informed consent, and the study was approved by the 
Ethics Committee of  LMU Munich (EK494-16). Experiments involving the use of  murine tissue were 
performed under a protocol approved by the University of  Birmingham Animal Welfare and Ethics Review 
Body guidelines (Home Office license PFDAAF77F).
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