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ABSTRACT: Mass spectrometry imaging (MSI) provides in-
formation on the spatial distribution of molecules within a
biological substrate without the requirement for labeling. Its
broad specificity, i.e., the capability to spatially profile any analyte
ion detected, constitutes a major advantage over other imaging
techniques. A separate branch of mass spectrometry, native mass
spectrometry, provides information relating to protein structure
through retention of solution-phase interactions in the gas phase.
Integration of MSI and native mass spectrometry (“native MSI”)
affords opportunities for simultaneous acquisition of spatial and
structural information on proteins directly from their physiological
environment. Here, we demonstrate significant improvements in
native MSI and associated protein identification of intact proteins
and protein assemblies in thin sections of rat kidney by use of liquid extraction surface analysis on a state-of-the-art Orbitrap mass
spectrometer optimized for intact protein analysis. Proteins of up to 47 kDa, including a trimeric protein complex, were imaged and
identified.

■ INTRODUCTION
Mass spectrometry imaging (MSI) enables molecules to be
spatially mapped throughout a biological substrate, such as a
thin tissue section.1 Typically, MSI is used to map highly
abundant, low-mass analytes, e.g., lipids and metabolites.
Proteins prove more challenging to image due to their
significantly greater mass and lower abundance but never-
theless are a trove of information for the study of disease
biology and physiological functions and in the design of
therapeutics. A separate but thriving area of mass spectrometry
is native MS, so called because proteins are ionized from
physiologically mimicking sample conditions in order to retain
information on solution structures in the gas phase.2 Native
MS can provide stoichiometric information for protein−
protein and protein−ligand complexes through careful
optimization of sample conditions, instrument voltages, and
gas pressures.3−6

Our long-term goal is to combine the benefits of MSI and
native MS, i.e., to obtain information on both spatial
distribution and tertiary or quaternary structure, through
native mass spectrometry imaging (native MSI). Native MSI
has thus far only been performed by liquid extraction surface
analysis (LESA);7,8 a schematic for LESA-MSI is shown in
Figure 1. LESA entails automated liquid microjunction
sampling of the tissue substrate followed by nanoelectrospray
ionization (nanoESI). Native LESA has enabled mapping of
small proteins (i.e., less than 20 kDa) and abundant intact
hemoglobin complexes from vascular features.7,9 To fully

exploit native MSI, an attendant requirement is protein
identification, which is achieved by “top-down” fragmentation
(MSn) of intact protein ions within the mass spectrometer to
provide amino acid sequence information.10 This approach is
challenging even with purified samples but provides
information on single nucleotide polymorphisms and any
correlation between post-translational modifications and avoids
additional sample preparation required for enzymatic or
chemical derivation. Top-down analysis of ions directly from
tissue is substantially more difficult due to overlapping signals,
salt adducts, and low signal intensity.
Here, we report significant improvements in the detection

and identification of intact proteins of higher molecular
weights directly from tissue by native LESA-MSI using a
detergent-based solvent system and a state-of-the-art Orbitrap
mass spectrometer designed for efficient top-down protein
analysis. Our results show native LESA-MSI of intact proteins
and protein complexes of molecular weight up to 47 kDa
analyzed directly from kidney tissue. Proteins were identified
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by top-down MSn, and their spatial distributions were
compared to information from existing histological studies.

■ EXPERIMENTAL SECTION
Materials. Kidney tissue from an orally dosed11 adult male

Hans Wistar rat was the kind gift of Dr. Richard Goodwin
(Astra Zeneca). (The drugs were administered as a cassette
containing erlotinib, moxifloxacin, olanzapine, and terfenadine
(at 10, 25, 10, and 25 mg/kg, respectively).) The animal was
euthanized 6 h post dose. All tissue dissection was performed
by trained AstraZeneca staff (project license 40/3484,
procedure number 10). The kidney was snap frozen and
stored at −80 °C until tissue processing.
Tissue was sectioned at −22 °C at 10 μm thickness with a

CM1810 Cryostat (Leica Microsystems, Wetzlar, Germany)
and thaw mounted to glass microscope slides. Sections were
stored at −80 °C until use.
HPLC-grade ammonium acetate was purchased from J. T.

Baker (Deventer, The Netherlands), and C8E4 detergent was
obtained from Sigma-Aldrich (Gillingham, UK). Nitrogen
(>99.995%) and helium (>99.996%) gases used on the mass
spectrometer were obtained from BOC (Guildford, UK). MS-
grade water was obtained from Fisher Scientific (Lough-
borough, UK).
LESA. Prior to analysis, the glass slide was mounted to a

LESA slide adapter and scanned into LESA Points (version
1.1) at 600 dpi. Sampling locations were defined by overlaying
a location array with spacing of 1 × 1 mm. Scans were color-
enhanced to improve contrast between the tissue and LESA
adapter surface. “Contact” LESA was performed using a
Triversa NanoMate (Advion Biosciences, Ithaca, NY) attached
to the mass spectrometer. A 5 μL aliquot of extraction solvent
(200 mM ammonium acetate + 0.125% C8E4) was aspirated
from a solvent reservoir into the conductive pipet tip and
moved to the location above the tissue. For imaging analysis,
the location spacing was 1 × 1 mm, the minimum allowed by
the software (ChipSoft 8.3.3, LESA Points 1.1). (Note that the
actual sampled area has a diameter of ∼600 μm, equivalent to
the outer diameter of the pipet tip.) The tip was pressed into
the tissue surface, and 2.5 μL of solvent was dispensed. After 1
min, 3.5 μL was aspirated, and the tip moved to the nanoESI
chip. ESI was initiated with a potential of 1.85 kV and

backpressure of 0.15 PSI. Sequential analysis of discrete
locations on the tissue in this way enabled production of a
mass spectrometry image. The LESA workflow is depicted in
Figure 1. The analyzed kidney was scanned again postanalysis
to show the sampling locations in Figure 2c.

Mass Spectrometry. Mass spectrometry data were
acquired on an Orbitrap Eclipse Tribrid MS (Thermo Fisher,
San Jose, CA), equipped with the HMRn option. High-mass
calibration and ion optics tuning in the positive ion mode were
performed with FlexMix calibration solution (Thermo
Scientific). The instrument was set to “Intact Protein” mode,
which uses the ion routing multipole (IRM) to trap ions prior
to Orbitrap analysis. The IRM pressure was set to 0.008 Torr
(“Standard pressure”) with high-purity nitrogen (>99.995%).
This pressure may be set up to 0.02 Torr (“High pressure”) for
more efficient trapping of protein complexes, but this was
found to suppress signals for smaller proteins. The ion transfer
tube temperature was set to 275 °C. The source-induced
dissociation (SID) potential was set to 80 V for imaging
experiments and between 80 and 100 V for MSn. The S-Lens
RF was 130% to aid desolvation and transmission of protein
ions. Ion detection was performed in the Orbitrap mass
analyzer, operating at a resolution of 15 000 (at m/z 200) for
imaging experiments and 60 000−500 000 as required for
additional experiments (high-resolution full scan spectra, MSn).
The normalized automatic gain control target (AGC) was set
to 500%, with a maximum injection time of 200 ms. Two
transients (microscans) were averaged per scan. Data from
each sampled location (i.e., pixel) was collected for 1 min to
produce the mass spectrometry image.

MSn. Protein ions were selected for MSn on the basis of their
abundance following manual inspection of the mass spectra in
the imaging data set. MSn was performed by sampling serial
sections to the section imaged, with reference to the ion
images to target the location of highest abundance for the
analyte of interest. MSn of abundant ions (RidA10+, holo-alpha-
globin5+) was performed directly from a single sampling
location with spectra obtained in less than 5 min. MS3 of RidA
(trimer10+ → monomer5+ → MS3 products) was also
performed in this way. Exclusively, MSn of regucalcin10+ was
performed from a single location with the addition of FAIMS
Pro (Thermo Fisher, San Jose, CA), operated with a static

Figure 1. Schematic of the native LESA MSI workflow. (A) A tissue section mounted to a glass slide is scanned into a computer and opened in the
image sequence software. A matrix of sampling locations is generated to produce the acquisition sequence. (B) The glass slide is mounted in the
LESA robot. (C) A pipet tip is collected by the robot, a volume of extraction solvent is aspirated, and the pipet tip is pressed into contact with the
tissue surface. A defined solvent volume is dispensed into the tissue. After a defined period, the solvent is reaspirated and moved to the nanoESI
chip. (D) A potential is applied to the pipet tip to initiate electrospray ionization, and multiply charged protein ions are produced. (E) The ions are
collected by the mass spectrometer for analysis.
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compensation voltage (CV) of −31 V, to improve signal-to-
noise ratio (S/N) by atmospheric pressure ion mobility
separation. Previous work in our laboratory has shown FAIMS
to be suitable for transmitting native proteins and improving
S/N.12 Lower-intensity signals (MUP7+, K-FABP7+, H-FABP,
and alpha-enolase13+) were analyzed by first pooling five 5 μL

LESA extracts followed by direct infusion nanoESI of a 5 μL
aliquot using the Triversa NanoMate. MSn spectra were then
acquired for up to 50 min for the lowest intensity protein ion
signals. Direct infusion from the pooled aliquot provided more
robust ionization and signal than direct sampling for these
longer experiments. All MSn experiments were performed with

Figure 2. Visualizing intact protein distributions in the rat kidney. (a) Photograph of the kidney with four regions indicated (A, blood vessel; B,
cortex; C, medulla; D, renal pelvis). (b) Scan from an optical scanner of the kidney section prior to analysis. (c) Scan of the same kidney section
postanalysis with sampling locations visible. Ion images for (d) major urinary protein (MUP), (e) kidney fatty-acid-binding protein (K-FABP), (f)
heart FABP, (g) reactive intermediate deiminase A (RidA) homotrimer, (h) regucalcin, and (i) alpha-enolase. Each pixel is 1 × 1 mm. Color bars
indicate normalized signal intensity.
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ion trap isolation using an isolation window of m/z 1 to 5
depending on the presence of adjacent, unrelated signals to the
ion of interest. Based on preliminary studies, the following
fragmentation techniques were employed: collision-induced
dissociation (CID; MUP, regucalcin, H-FABP) and higher-
energy collision dissociation (HCD; K-FABP, RidA, holo-
alpha-globin, alpha-enolase).
MS Image Processing. Summed mass spectra for each

pixel were generated in FreeStyle (version 1.4, Thermo
Scientific) and exported in the Thermo raw format. These
files were then converted to mzML by msconvert (Version 3.0,
ProteoWizard Software Foundation).13 The image file was
produced with imzML converter (version 1.3).14 All mzML
files were imported and processed with the “pixel per file”
option. The resulting imzML file was opened in SpectralAnal-
ysis (version 1.2.1).15 Top-hat baseline subtraction was applied
to each spectrum followed by total ion current (TIC)
normalization and zero-filling with the “Orbitrap” option.
Individual ion images were produced with a window of m/z ±
0.5.
Protein Identification. Proteins were identified by

combining information from low-resolution and high-reso-
lution full scan MS data and top-down MSn experiments. Low-
resolution full scan spectra provided average mass information

and were deconvoluted using the Respect algorithm in
BioPharmaFinder 3.1 (Thermo Fisher Scientific). High-
resolution full scan spectra were deconvoluted using the Xtract
algorithm in BioPharmaFinder 3.1, and FreeStyle 1.4. MSn

spectra were manually interrogated to build a zero-charge peak
list, which was imported into ProSight 4.1 and searched against
the proteome of Rattus norvegicus (Uniprot Proteome:
UP000002494, downloaded November 2019). The precursor
monoisotopic mass tolerance was set to 1 kDa to allow for hits
including small bound ligands, the fragment ion tolerance was
set to 20 ppm, and the minimum fragment match was set to 1.
Tentative identifications were provided by ProSight, with
further assignment of MSn signals performed manually using
MS-Product (ProteinProspector, v 5.24.0, http://prospector.
ucsf.edu/prospector/mshome.htm, UCSF) to predict fragment
m/z.

■ RESULTS AND DISCUSSION
Figure 2a shows a photograph of the rat kidney during
sectioning with four key regions indicated: a blood vessel, the
outer region (cortex), the inner region (medulla), and the
renal pelvisthe region where the major blood vessels enter
and exit the kidney. Examples of ion images for proteins
detected with various distributions throughout the kidney are

Figure 3. Native LESA mass spectra obtained from locations in four distinct regions of the rat kidney: (a) cortex, (b) a blood vessel within cortex
tissue, (c) the renal pelvis, and (d) medulla. The panels correspond to pixels 43, 57, 107, and 111 of the images in Figure 2, respectively.
Abbreviations: K-FABP, kidney fatty-acid-binding protein; MUP, major urinary protein; RidA, reactive intermediate deiminase A; αH, holo-alpha-
globin; αβ2H, holo-alpha/beta-globin dimer; Ubiq., ubiquitin; H-FABP, heart fatty-acid-binding protein.
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shown in Figure 2d−i. For example, major urinary protein
(MUP), K-FABP, and RidA were detected in the cortex,
whereas H-FABP was detected in the medulla. Regucalcin was
confined to the inner cortex, and α-enolase was most abundant
in the top-left of the kidney cortex. With the exception of
RidA, none of these proteins have been previously identified in
LESA experiments, and none have been mapped by LESA
MSI. Examples of native LESA mass spectra for single pixels
obtained from analysis of the rat kidney are shown in Figure 3.
Major Urinary Protein (MUP) and Fatty-Acid-Binding

Proteins (FABPs). A protein of molecular weight (MW)
18.72 kDa (m/z 3746.575+, Figure 2d) was predominantly
detected within the renal cortex. The protein was identified as
major urinary protein (MUP, UniProt P02761) by accurate
mass measurement (Δm = −11 ppm) and MS2 using collision-
induced dissociation (CID). (See Figure S1, Supporting
Information.) Of 160 potential backbone cleavage sites, 18
were cleaved for a coverage of ∼11%. Cleavage adjacent to
certain amino acids, particularly aspartic acid (Asp), is known
to occur more readily in native, collision-activated top-down
MSn.16,17 In this experiment, 67% of the Asp C-terminal bonds
were cleaved. (Table S1, Supporting Information, provides
sequence and Asp(C-term)-specific sequence coverage for all
proteins identified in this article.) MUP is found only in male
rats and is a pheromone binder excreted in urine.18,19 A protein
of MW 17.57 kDa (m/z 2512.807+, Figure 2e) exhibited a
similar distribution to MUP. The protein was identified by
HCD MS2 (see Figure S2, Supporting Information) as a chain
derived from MUP (residues 29−179, UniProt P02761, Δm =
0.7 ppm). Existing literature refers to this protein as both 15.5
kDa fatty-acid-binding protein (15.5 kDa FABP) and kidney-
FABP (K-FABP).20,21 The former appears to have arisen as a
consequence of mass estimation from SDS-PAGE in early work
but is clearly erroneous given that its mass has been established
as ∼17.6 kDa by more accurate techniques. Throughout this
work, we have used the latter to avoid confusion between the
name and the molecular weight (although we note that the
designation is sometimes applied to keratinocyte FABP).20,21

Interestingly, MUP is not synthesized in the kidneys; rather, it
is absorbed into renal proximal tubules.22 Once absorbed,
MUP may undergo proteolysis,18 forming K-FABP, which
previous immunohistology studies have shown to be detectable
throughout the cortex of the kidney.20 Ion images (see Figure
S2a−c, Supporting Information) show the greatest abundance
of K-FABP in the cortex and that it is essentially absent in
major blood vessels and medulla tissue. A protein unrelated by
amino acid sequence but similar in its function of binding fatty
acids,20 heart FABP (H-FABP, UniProt P07483, Δm = −10
ppm, see Figures 2f and S3, Supporting Information), was
identified by CID MS2 and revealed to be differently
distributed to MUP and K-FABP, exhibiting the greatest
signal intensity in medulla tissue. This observation is in
agreement with a previous immunohistology study, which
found H-FABP located within the nephron loop in the medulla
and not within the cortex.21

Analysis of Proteins of MW > 30 kDa. Figure 2g shows
the distribution of the noncovalent homotrimeric assembly of
reactive intermediate deiminase A (RidA, UniProt P52759,
42.63 kDa, Δm = 12 ppm). The greatest abundance was
detected in regions of the cortex (see also Figure S4,
Supporting Information). Previous immunohistology studies
have suggested that RidA would be found in cortex tissue.23,24

Reports tend to have focused on analysis of the ∼14.2 kDa

subunit, although prior MS analysis was able to detect the
intact trimer.25 Mapping of the intact complex was possible
here by native MSI for the first time, with confirmation of its
quaternary structure by MSn. The RidA trimer (m/z 426510+)
was subjected to HCD MS2, followed by HCD MS3 of the 5+
monomer product ion, see Figure S5, Supporting Information.
The sequence coverage was ∼4.4%, with 80% of all possible
Asp(C-term) cleavages observed.
Figure 2h shows the distribution of a protein of ∼33.31 kDa

(also Figure S6a−c, Supporting Information). CID MS2 of the
10+ ion revealed the protein to be regucalcin (Uniprot
Q03336, Δm = 0.5 ppm, sequence coverage = 7.4%, see Figure
S6d,e, Supporting Information), a calcium-binding protein
found in renal proximal tubule epithelial cells.26 From the ion
image, the distribution is noticeably more limited than for
MUP, K-FABP, and RidA, i.e., to the inner cortex, suggestive of
greater cell type specificity.
The distribution of the highest molecular weight protein

identified here (α-enolase, Uniprot P04764, 47.03 kDa, 15.5
ppm) is shown in Figure 2i. The ion images of each charge
state (Figure S7a−c, Supporting Information) are highly
comparable, with the most intense signals occurring in cortex
tissue in the upper-left of the section. α-enolase is known to be
differentially expressed with greater abundance in the kidney
cortex, versus the medulla, due to its expression within renal
tubular epithelial cells.27,28 It has been implicated as a
prognostic cancer marker, as a target in kidney stone
prevention, and as a factor in select autoimmune diseases,
making it a potentially interesting target for future native MSI
studies.29−31

Hemoglobin-Related and Small Proteins. Ion images
for intact holo-alpha/beta-globin heterodimer ions (αβ2H, see
Figure S8a,b, Supporting Information) and holo-alpha-globin
(αH, 15.8 kDa, Figure S8c−e, Supporting Information) show
the greatest abundance within blood-vessel-rich regions. HCD
MS2 confirmed the identification of the αH 5+ ions (See Figure
S8f,g, Supporting Information); b and y fragment ions were
identified plus a characteristic Δm of ∼616 Da (heme).
Hemoglobin heterotetramer signals were not detected; it is
possible that the source potential used to improve signals for
other protein ions resulted in the dissociation of this delicate
complex. Alternatively, a low solution concentration may have
led to spontaneous dissociation.32 In previous native LESA
experiments, we have found the Hb tetramer to be scarce,
typically limited to large vascular features presumably rich in
red blood cells and only detectable with a LESA solvent system
comprising ammonium acetate with 5% methanol.9 The
distribution of the 3+ charge state of ubiquitin (m/z
2855.87, 8.56 kDa, Figure S9, Supporting Information) was
detected most abundantly within central kidney regions
including the medullary tissue, in agreement with previous
MALDI-MSI.33

■ CONCLUSIONS
Here, we demonstrate a significant step in the development of
native mass spectrometry imaging, enabling the spatial
distributions of an intact protein complex (RidA) and
monomeric proteins up to 47 kDa to be visualized with
consistency across multiple ion charge states. The distributions
of MUP, K-FABP, H-FABP, RidA, regucalcin, and α-enolase
correlate with existing histological studies, within the limits of
current LESA spatial resolution. Challenges remain in terms of
throughput and expansion of the range of proteins to those of
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lower physiological concentration and higher molecular mass.
Top-down MSn of native proteins without additional sample
cleanup or concentration was suitable for protein identifica-
tion. Fragment ion generation by collisional activation was
consistent with observations for native protein standard
fragmentation (i.e., high propensity for cleavage C-terminal
to Asp).17 Nevertheless, protein identification remains a very
manual process that is highly reliant on precursor ion
abundance to produce quality fragment ion spectra. Strategies
for efficient top-down identification, both instrumentally and in
software, are a necessity for future development of native
LESA-MSI.
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