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Abstract

We show that there exists a cubic threefold defined by an invertible polynomial that, when quotiented by the maximal

diagonal symmetry group, has a derived category that does not have a full exceptional collection consisting of line

bundles. This provides a counterexample to a conjecture of Lekili and Ueda.
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1. Introduction

Let C be the complex numbers. We say a polynomial F ∈ C[G1, . . . , G=] is invertible if it is of the form

F =

=∑

8=1

=∏

9=1

G
08 9
9

where � = (08 9 )
=
8, 9=1

is a non-negative integer-valued matrix satisfying the following conditions:
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2 David Favero et al.

A. The matrix � is invertible over Q;

B. The polynomial F is quasihomogeneous: that is, there exist positive integers @ 9 such that 3 :=∑=
9=1 @ 908 9 is constant for all 8; and

C. The polynomial F is quasi-smooth: that is, the map F : C= → C has a unique critical point at the

origin.

Let G< be the multiplicative torus. Consider the following group:

ΓF := {(C1, . . . , C=+1) ∈ G
=+1
< | F(C1G1, . . . , C=G=) = C=+1F(G1, . . . , G=)}. (1)

This group ΓF acts on A= by projecting onto its first = coordinates and then acting diagonally. Lekili

and Ueda made the following conjecture concerning the bounded derived category associated to the

polynomial F and the group ΓF .

Conjecture 1.1 (Conjecture 1.3 of [20]). For any invertible polynomial F, the bounded derived

category Db (coh -F ) of coherent sheaves on the stack

-F := [(Spec(C[G1, . . . , G=]/(F)) \ 0/ΓF ]

has a tilting object, which is a direct sum of line bundles.

In this paper, we show that

F = G2
1G2 + G2

2G3 + G2
3G4 + G2

4G5 + G2
5G1 (2)

provides a counterexample to this conjecture. In fact, the maximal length of any exceptional collection

of line bundles on Db(coh -F ) is 24. On the other hand, we calculate that 54 line bundles would be

required in any full exceptional collection, let alone a tilting object.

1.1. Relation to current literature and mirror symmetry

The result above is analogous to the case of toric varieties. It was asked by King if the derived category

of a smooth projective toric variety admits a tilting object that is a direct sum of line bundles. This later

became known as King’s conjecture. The first counterexamples to King’s conjecture were provided by

Hille-Perling [10] and then later by Efimov [2] in the Fano case. Nevertheless, in [15], Kawamata proved

that the derived category of any smooth projective toric Deligne-Mumford stack has a full exceptional

collection. It just need not consist of line bundles (or sheaves, for that matter, see [16, Remark 7]).

The Landau-Ginzburg B-model analogue to Db (coh -F ) given by the singularity category of

(C=, ΓF , F) is well-studied in the context of homological mirror symmetry. At present, it is known

to have a full exceptional collection [3]. It is also known to have a full strong exceptional collection in

certain cases: for example, when = ≤ 3 [18] or when F can be written as the Thom-Sebastiani sum of

Fermat and chain polynomials [12]. This has been desirable in order to establish homological mirror

symmetry for mirror pairs of (gauged) Landau-Ginzburg models [4, 5, 8, 13, 14, 20, 21].

1.2. Plan of paper

In Section 2, we show that the Picard group of the stack -F is isomorphic to Z×Z/11Z. In Section 3,

we calculate that the Chen-Ruan cohomology of -F is 54-dimensional. This implies that the cardinality

of any full exceptional collection for Db (coh -F ) must be 54 (Corollary 3.2). On the other hand,

in Section 4, we find a sharp upper bound of 24 on the cardinality of an exceptional collection for

Db(coh -F ) consisting of line bundles.
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2. Line bundles on -F

To address Conjecture 1.1, we first require an explicit description of the Picard group of -F .

2.1. The group ΓF

First, we define the group of diagonal automorphisms of the invertible polynomial F to be

�F := {(C1, . . . , C=) ∈ G
=
< | F(C1G1, . . . , C=G=) = F(G1, . . . , G=)}. (5)

This sits in an exact sequence

0 −→ �F −→ ΓF

j=+1
−→ G< → 0 (6)

where j=+1 is the projection onto the (= + 1)th term of ΓF . Indeed, we know that j=+1 is surjective, as,

given _ ∈ G<, we have that (_@1/3 , . . . , _@=/3 , _) ∈ ΓF .

By Lemma 1.6(B) of [17] for a loop polynomial

F = G
01

1
G2 + G

02

2
G3 + . . . + G

0=−1

=−1
G= + G0== G1,

we have �F � Z/(01 · · · 0= + (−1)=+1)Z with generator (42c8i1 , . . . , 42c8i= ), where

i 9 :=
(−1)=+1− 901 · · · 0 9−1

01 · · · 0= + (−1)=+1
. (7)

Recall that F is quasi-homogeneous: that is, we can choose @8 such that 3 :=
∑=

9=1 @ 908 9 is constant

for all 8 and such that gcd(@1, . . . , @=) = 1. This yields a subgroup �F � G< defined by

5 : �F → ΓF ; 5 (_) = (_@1 , . . . , _@= , _3)

known as the exponential grading operator in the literature.

Furthermore, the inclusion 5 gives rise to a split short exact sequence

0 −→ �F −→ ΓF −→ �F −→ 0 (8)

where �F := �F/(�F ∩ �F ) is the quotient group. Since gcd(@1, . . . , @=) = 1, there exist 18 with∑=
8=1 18@8 = 1, which gives rise to the splitting of the exact sequence given by

6 : ΓF → �F ; 6(_1, . . . , _=, _=+1) =

=∏

8=1

_
18
8
.

Hence ΓF � �F × �F .

The isomorphism ΓF � �F × �F gives rise to an intermediate quotient stack associated to �F ,

/F = [(Spec(C[G1, . . . , G=]/(F)) \ 0)/�F ],

which is a hypersurface in the weighted projective stack

[(Spec(C[G1, . . . , G=]) \ 0)/�F ] = P(@1 : · · · : @=).

This allows us to identify -F with the quotient [/F/�F ].
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4 David Favero et al.

Example 2.1. Let F = G2
1
G2 + G2

2
G3 + G2

3
G4 + G2

4
G5 + G2

5
G1, as in (2). Then �F = Z/33Z with generator

6 = (Z, Z−2, Z4, Z−8, Z16) (9)

where Z is a primitive 33rd root of unity. Here, the intersection �F ∩ �F is generated by

611 = (Z11, Z11, Z11, Z11, Z11). Hence �F can be identified with the symmetry group generated by

(b, b9, b4, b3, b5), where b is a primitive 11th root of unity.

2.2. The Picard group of -F

The Grothendieck–Lefschetz theorem allows us to calculate the Picard group of -F as follows.

Proposition 2.2. Let F be an invertible polynomial with = ≥ 5 and @1 = . . . = @= = 1. The Picard

group of -F is isomorphic to Z×�̂F , where �̂F is the group of characters of �F .

Proof. Since -F = [/F/�F ] is a global quotient stack, Pic(-F ) is nothing more than the �F -

equivariant Picard group of /F . Note that there is a (surjective) pullback map

Pic(-F )
5
→ Pic(/F )

that just forgets the equivariant structure. By the Grothendieck–Lefschetz theorem (see, for example,

[9, Corollary 3.2]), Pic(/F ) � Z: that is, any line bundle is of the form O(=). As O(=) admits an

equivariant structure, the forgetful map 5 is surjective.

Furthermore, as any two equivariant structures differ by a character of �F , we get a short exact

sequence

0 −→ �̂F −→ Pic(-F )
5

−→ Z −→ 0.

Since Z is a projective Z-module, this splits to give the desired isomorphism. �

Example 2.3. Let F = G2
1
G2 + G2

2
G3 + G2

3
G4 + G2

4
G5 + G2

5
G1 so that �F = Z/11Z. Then by Proposition 2.2,

we have Pic(-F ) � Z×(Z/11Z).

3. Dimension of the Hochschild homology of Db(coh -F )

In this section, we compute the dimension of the Chen–Ruan cohomology of -F to be 54. This implies

that any full exceptional collection for Db (coh -F ) must have 54 objects.

Proposition 3.1. Let F = G2
1
G2 + G2

2
G3 + G2

3
G4 + G2

4
G5 + G2

5
G1. Then dim(�∗

�'
(-F ;C)) = 54.

Proof. As vector spaces, the (ungraded) Chen–Ruan cohomology of -F is the direct sum of ordinary

cohomology groups of twisted sectors

�∗
�' (-F ;C) =

⊕

W∈ΓF

�∗({F = 0}W/ΓF ;C)

where {F = 0}W := {G ∈ {F = 0}
C5 \{0} | W · G = G} [1, Section 3].

First, note that if W = (_1, . . . , _5) so that _8 ≠ 1 for all 8, then W · G ≠ G for all G ∈ C5 \{0}. This

implies that the twisted sector corresponding to W contributes the cohomology of the empty set: that is,

nothing.

First, we address the twisted sector associated to the identity element W = 4. Note that �∗({F =

0}/ΓF ;C) = �∗(/F ;C)�̄F , so we must see how �F acts on the cohomology of /F . Recall that the
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Hodge diamond of the cubic /F is of the form

1

0 0

0 1 0

0 5 5 0

0 1 0

0 0

1

This is computed using the Griffiths’ residue map [6], which also allows us to describe the action of

�F . Namely, any element �2,1(/F ) can be written as the residue of a 4-form

i =
&

F
Ω0, Ω0 =

5∑

8=1

(−1)8G8 d G1 ∧ . . . ∧ d̂ G8 ∧ . . . ∧ d G5

where& is a degree1 polynomial inC[G1, . . . , G5]. By looking at the action by the generator d of�F , we

can see that F and Ω0 are invariant under its action; however, no degree 1 polynomial is invariant, so the

�F -invariant subspace of �2,1 (/F ;C) is zero. Similarly, the �F -invariant subspace of �1,2 (/F ;�) is

zero. The hyperplane classes, on the other hand, are all invariant cycles, so

dim�∗({F = 0}/ΓF ;C) = 4.

Lastly, there are 50 non-identity elements

( := {(dg−1)0, (dg−9)0, (dg−4)0, (dg−3)0, (dg−5)0 | 1 ≤ 0 ≤ 10} ⊆ ΓF

with a fixed point where d := (b, b9, b4, b3, b5) is the generator of �F and g = (b, b, b, b, b). In fact,

each has a single fixed point and hence contributes one dimension to the Chen-Ruan cohomology.

We conclude that dim(�∗
�'

(-F ;C)) = 4 + |( | = 4 + 50 = 54. �

This proposition implies the following corollary.

Corollary 3.2. For F as defined in (2), we have that dim(HH∗(D
b (coh -F ))) = 54. In particular, any

full exceptional collection for Db (coh -F ) has precisely 54 objects.

Proof. By an unpublished result of Toën (reproven in [7, Proposition 3.16]),

dim(HH∗(D
b (coh -F ))) = dim(�∗

�' (-F ;C)) = 54.

The fact that any full exceptional collection must have 54 objects follows from the additivity of

Hochschild homology under semi-orthogonal decomposition. �

Remark 3.3. In [3, Theorem 1.1], the authors prove that there is a strong exceptional collection for

the singularity category D[A5, ΓF , F]. It is of length 32, the Milnor number of its mirror LG-model.

By the equivariant version of Orlov’s theorem (proven by Hirano [11, Theorem 1.3]), it follows that

Db(coh -F ) has a full exceptional collection of length 32 + 2(11) = 54. From this, it also follows that

any full exceptional collection must have 54 objects.

4. Computations of Ext between line bundles on -F

By Corollary 3.2, any full exceptional collection for Db(coh -F ) has 54 objects. However, in this section,

we show that an exceptional collection consisting of line bundles on -F has at most 24 objects (and

remark that this bound is achieved).
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Table 1. The (0, 1)th entry is an (0, 1)-bigraded monomial in C[G1 , G2 , G3 , G4, G5 ]/(F) ..

Z/11Z-grading

Z-grading 0 1 2 3 4 5 6 7 8 9 10

0 1
1 G1 G4 G3 G5 G2

2 G2G4 G2
1

G5G2 G1G4 G1G3 G1G5 G3G4 G2
3

G3G5 G1G2

3 G2
1
G2 G3

3
G1G2G4 G3

1
G1G2G5 G2

1
G4 G2

1
G3 G2

1
G5 G1G3G4 G1G

2
3

G1G3G5

Lemma 4.1. For 0 ≥ 0, Hom(O,O(0, 1)) ≠ 0 unless 0 = 0 and 1 ≠ 0 or

(0, 1) ∈ X := {(1, 0), (1, 2), (1, 6), (1, 7), (1, 8), (1, 10), (2, 0)}.

Proof. Observe that Hom(O,O(0, 1)) is the space of bidegree (0, 1) ∈ Z×Z/11Z polynomials in

C[G1, G2, G3, G4, G5]/(F). By Example 2.1, �F = 〈(b, b9, b4, b3, b5)〉 � Z/11Z, where b is a primitive

11th root of unity. Hence,

deg(G1) = (1, 1), deg(G2) = (1, 9), deg(G3) = (1, 4), deg(G4) = (1, 3), deg(G5) = (1, 5).

So Table 1 exhibits an element in Hom(O,O(0, 1)) for 1 ≤ 0 ≤ 3, unless (0, 1) ∈ X. We conclude that

Hom(O,O(0, 1)) is non-zero for 0 ≥ 3 by multiplying any monomial in Hom(O,O(3, 1 − 0 + 3)) by

G0−3
1

. �

Lemma 4.2. For 0 ≥ 2, we have that Ext3(O(0, 1),O) ≠ 0 unless 0 = 2 and 1 ≠ 0 or

(0, 1) ∈ X′ := {(3, 0), (3, 2), (3, 6), (3, 7), (3, 8), (3, 10), (4, 0)}.

Proof. By adjunction, the canonical bundle is O(−2, 0). Therefore by Serre duality,

Ext8 (O(0, 1),O)
Serre
� Ext3−8 (O,O(0, 1) ⊗O O(−2, 0))∗

(4AA4
� Ext3−8 (O,O(0 − 2, 1)))∗.

The result follows from Lemma 4.1. �

Proposition 4.3. An exceptional collection of line bundles in Db(coh -F ) has at most 24 objects and

hence cannot be full (by Corollary 3.2).

Proof. By Example 2.3, any line bundle on -F is of the form O(0, 1) for (0, 1) ∈ Z×Z/11Z. Let E

denote an exceptional collection of line bundles, and take the minimal 0 such that O(0, 1) ∈ E for some

1 ∈ Z/11Z. Since E ⊗ O(−0,−1) is an exceptional collection, we can assume (0, 1) = (0, 0).

Notice that E cannot have an object of the form O(0, 1) for 0 ≥ 5, as, by Lemma 4.1, O(0, 1) receives

a non-zero map from O and, by Lemma 4.2, there is a non-trivial 3-extension of O by O(0, 1).

By Table 1, observe that if 1 ≠ 1′, then for any 0, one has non-zero elements

51 ∈ Hom(O(0, 1),O(0 + 2, 1′)) and 52 ∈ Hom(O(0, 1′),O(0 + 2, 1)).

Therefore, denoting by S(0, 1) the Serre functor applied to the identity map on O(0, 1), one has a loop:

O(0, 1)
51

−→ O(0 + 2, 1′)
S(0+2,1′)
−→ O(0, 1′)

52
−→ O(0 + 2, 1)

S(0+2,1)
−→ O(0, 1).
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We conclude that E cannot have a quadruple of objects

{O(0, 1),O(0, 1′),O(0 + 2, 1),O(0 + 2, 1′)}.

For example, taking 0 = 0 (respectively, 0 = 1), E cannot have multiple objects with 0 = 0 and 0 = 2

(respectively, 0 = 1 and 0 = 3). This forces there to be at most 12 line bundles in E with 0 = 0, 2 and

0 = 1, 3, respectively.

Now, again by Lemma 4.2,E cannot have an object of the formO(0, 1) for 0 ≥ 4 except (0, 1) = (4, 0).

Hence, we can have at most 1 more object. But if O(4, 0) ∈ E, Lemma 4.2 also forces O(0, 1) ∉ E for

1 ≠ 0. Hence, if we already have 12 line bundles in E with 0 = 0, 2 then O(2, 1) ∈ E for all 1. This

gives a contradiction, as O,O(2, 0),O(4, 0) also form a loop

O
G2

1
G3G5

−→ O(4, 0)
S(4,0)
−→ O(2, 0)

S(2,0)
−→ O

and therefore cannot be in the same exceptional collection. We conclude that this 1 additional object

cannot take us beyond 24 exceptional objects. �

Remark 4.4. The upper bound of 24 exceptional objects is sharp. It is achieved by the exceptional

collection drawn below. This exceptional collection is not strong, however; we only draw the degree-0

maps for aesthetic simplicity. The required vanishing can be checked using Lemmas 4.1 and 4.2 and the

fact that Ext1,Ext2 vanish for line bundles on a 3-fold hypersurface in projective space (for example,

using the long exact sequence for the divisor).

O(1, 2) [−3]

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

O(1, 1) //

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸

O(2, 2)

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
O(2, 1) [3]

O(1, 6) [−3]

''PP
PPP

PPP
PPP

P
O(1, 3) //

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋ O(2, 6)

%%❑
❑❑

❑❑
❑❑

❑❑
O(2, 3) [3]

O(1, 7) [−3] // O(2, 0) [−3] // O(0, 0)

CC✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

::ttttttttt
//

$$❏
❏❏

❏❏
❏❏

❏❏

��✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼
O(1, 4) //

==③③③③③③③③③③③③③③③③③③③③③③③

))❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚ O(2, 7) // O(3, 0) // O(1, 0) [3]

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁

88♣♣♣♣♣♣♣♣♣♣♣
//

&&◆
◆◆◆

◆◆◆
◆◆◆

◆

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂

O(2, 4) [3]

O(1, 8) [−3]

77♥♥♥♥♥♥♥♥♥♥♥♥
O(1, 5) //

==③③③③③③③③③③③③③③③③③③③③③③③

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙ O(2, 8)

99sssssssss
O(2, 5) [3]

O(1, 10) [−3]

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
O(1, 9) //

EE☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛

<<②②②②②②②②②②②②②②②②②②②②②②②
O(2, 10)

BB✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝
O(2, 9) [3]
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