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Background: Pre-clinical research with multi-potent adult progenitor cells (MAPC®

cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as

an anti-inflammatory and immunomodulatory therapy in organ transplantation.

Normothermic machine perfusion of the liver (NMP-L) has been proposed as a

way of introducing therapeutic agents into the donor organ. Delivery of cellular therapy

to human donor livers using this technique has not yet been described in the literature.

The primary objectives of this study were to develop a technique for delivering cellular

therapy to human donor livers using NMP-L and demonstrate engraftment.

Methods: Six discarded human livers were perfused for 6 h at 37◦C using the Liver

Assist (Organ Assist, Groningen). 50 × 106 CMPTX-labeled MAPC cells were infused

directly into the right lobe via the hepatic artery (HA, n = 3) or portal vein (PV, n = 3) over

20min at different time points during the perfusion. Perfusion parameters were recorded

and central and peripheral biopsies were taken at multiple time-points from both lobes

and subjected to standard histological stains and confocal microscopy. Perfusate was

analyzed using a 35-plex multiplex assay and proteomic analysis.

Results: There was no detrimental effect on perfusion flow parameters on infusion

of MAPC cells by either route. Three out of six livers met established criteria for

organ viability. Confocal microscopy demonstrated engraftment of MAPC cells across

vascular endotheliumwhen perfused via the artery. 35-plexmultiplex analysis of perfusate

yielded 13 positive targets, 9 of which appeared to be related to the infusion of MAPC

cells (including Interleukin’s 1b, 4, 5, 6, 8, 10, MCP-1, GM-CSF, SDF-1a). Proteomic

analysis revealed 295 unique proteins in the perfusate from time-points following the

infusion of cellular therapy, many of which have strong links to MAPC cells and

mesenchymal stem cells in the literature. Functional enrichment analysis demonstrated

their immunomodulatory potential.
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Conclusion: We have demonstrated that cells can be delivered directly to the target

organ, prior to host immune cell population exposure and without compromising the

perfusion. Transendothelial migration occurs following arterial infusion. MAPC cells

appear to secrete a host of soluble factors that would have anti-inflammatory and

immunomodulatory benefits in a human model of liver transplantation.

Keywords: liver transplantation, organ preservation, organ donation, mesenchymal progenitor cells, machine

perfusion, stem cell therapy, immunomodulation, marginal donors

HIGHLIGHTS

• Transplant surgeons are becoming more reliant on the use of
marginal donor livers

• NMP-L provides the unique opportunity to deliver
therapeutics to donor livers

• MAPC cells have beneficial immunomodulatory and anti-
inflammatory effects

• Infusing MAPC cells via the hepatic artery results in
consistent engraftment

• MAPC cells secrete a unique beneficial proteome that may
improve outcomes.

INTRODUCTION

The demand for donor livers overwhelms supply and in the UK,
19% of patients die or are removed from the list whilst waiting
for a transplant (1). Strategies to improve the quality of high risk
donor livers [531 rejected in the UK last year (1)] would increase
the pool of transplantable livers and improve patient outcomes.

Multipotent adult progenitor cells (MAPC R©) have been
proposed as an immune-active treatment for a wide variety
of conditions (2). They belong to the family of mesenchymal
stem cells (MSC) but show a higher proliferative capacity and
a broader differentiation potential (3). A distinct bone-marrow
derived cellular population, they meet the formal criteria for
designation as stromal stem cells in that they are plastic-
adherent and express CD73, CD90, and CD105, in the absence
of the hematopoietic markers CD14, CD34, CD45, and HLA-
DR (4). They differ from MSC based on cellular phenotype
(negative for CD140a, CD140b, alkaline phosphatase and express
major histocompatibility complex class I at lower levels), size,
transcriptional profile, and expansion capacity (5). Proof of
concept of their efficacy has been demonstrated in animal
models for the treatment of different conditions including graft
versus host disease and in a porcine and human lung model
of machine perfusion (6–11). Not only can they impair the
induction of CD8+ cytotoxic T-lymphocyte function and supress
T-lymphocyte proliferation (12), but MAPC cells and related
mesenchymal stem cells (MSC) have been shown to reduce

Abbreviations: CD, cluster of differentiation; DBD, donation following brain

death; DCD, donation following circulatory death; HA, hepatic artery; ICAM-1,

intercellular adhesion molecule-1; IRI, ischaemia reperfusion injury; MAPC cells,

multipotent adult progenitor cells; MSC, mesenchymal stem cells; NHS, National

Health Service; NHSBT, National Health Service Blood and Transplant; NMP-L,

normothermic machine perfusion of the liver; PV, portal vein.

ischaemia reperfusion injury (IRI) and reduce the inflammatory
response in solid organs (2, 10, 13, 14). These preclinical studies
suggest that MAPC cells could exert their beneficial effects in
a solid organ transplant model through immunomodulation by
promoting immunological tolerance (9, 15–17).

Transplantation is the only curative option for patients with
end-stage liver disease and the global shortage of suitable donor
livers has been extensively reported (18, 19). The UK transplant
activity data over the past decade (2008–2018) demonstrates a
54% increase in transplant activity (657 to 1014) (1). The increase
in donor numbers over this period has been achieved through
a 58% increase in livers donated following brain death (DBD)
and a 257% increase in those donated following circulatory
death (DCD) (20). Our own data shows a pre-transplant on-list
mortality rate for priority patients of up to 40% (unpublished
data). It is widely accepted that whilst the use of extended criteria
DCD or marginal DBD liver grafts may provide additional
organs for transplantation they are known to be associated
with additional challenges (21–23). Given the significant clinical
impact of these factors, there is an urgent clinical need to
attempt to modulate the inflammatory and immune responses
they induce.

Normothermic machine perfusion of the liver (NMP-L) is
a novel technique whereby a donor liver graft is perfused at
physiological temperature and pressure with a complex solution
containing an oxygen carrier and other constituents (including
colloid, electrolytes etc.) that aims to preserve the graft under
physiological conditions ex-situ. It has been shown to be a
superior to static cold storage as a method of organ preservation
(24, 25), it also provides the unique opportunity to assess organ
viability prior to transplantation (26–29). The potential use of
NMP-L as a method of delivering cell-based and novel small
molecule therapies aimed at improving the condition of extended
criteria livers has been proposed (30) and is steadily gaining
credence within the transplant community as experimental proof
that concept data is emerging (31, 32). Despite examples in
animal models, delivery of cellular therapy usingmachine has not
been demonstrated in a human liver model (33–35).

The aims of this study were to (a) develop and demonstrate
feasibility of NMP-L as a technique for delivering cellular
therapy to extended criteria human donor livers; (b)
determine the best vascular route for delivery and confirm
the presence of cellular engraftment and (c) determine
parameters that may reflect biologically functional activity
imparted by the presence of the therapeutically administered
MAPC cells.
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MATERIALS AND METHODS

Preparation of MAPC Cells
MAPC cells were provided by Athersys Inc. (Cleveland, Ohio,
USA). The isolation and cultivation of these MAPC cells have
been previously described (36). Cryovials containing ∼10 ×

106 cells labeled with CellTracker
TM

Red CMTPX dye (Thermo
Fisher Scientific Inc.) were thawed and prepared according to
clinical protocols immediately prior to infusion into the donor
liver (see supplementary information for protocols). Cellular
concentrations and viability were determined using trypan blue
dye exclusion and 50 × 106 cells were made up to a final volume
of 50ml with 0.9% normal saline ready for infusion. Calculations
of number of cells were based on clinical studies where cells
were delivered systemically (150–600million) and this was scaled
down due to infusion into the target organ and in this case the
right lobe of the liver (16).

Source of Discarded Human Livers
The six donor livers included in this study were offered,
accepted and retrieved with the initial intention to use them
for clinical transplantation. They were procured by one of the
UK’s National Organ Retrieval Service teams using nationally
agreed surgical protocols (National standards for organ retrieval
from deceased donors (joint with NHSBT). Available from:

http://www.bts.org.uk). Following assessment by either the
retrieval or transplanting surgeon, the livers were declined by
all UK transplant centers and consent-permitting, subsequently
offered for research by the NHSBT co-ordinating office. Ethical
approval for the study was granted by the National Research
Ethics Service committee in London-Surrey Borders (reference
number 13/LO/1928). Consent for the use of donor tissues for
research was obtained by the specialist nurses in organ donation
from the designated donor’s next of kin.

Preparation of the Donor Liver for NMP-L
and MAPC Cell Infusion
On receipt of the donor liver, its preparation for NMP-L was
initially analogous to clinical transplantation. A polyethylene
Leadercath Arterial catheter [Vygon [UK] Ltd] was placed to
permit infusion of cellular therapy into the right lobe either
via the hepatic artery or portal vein. For arterial infusion the
guidewire was passed through the gastroduodenal arterial stump
and gently directed into the main branch of the right hepatic
artery. For portal venous infusion the needle supplied was used
to puncture the portal vein proximal to the bifurcation and the
wire passed down the right portal venous branch. The catheter
was then guided over the wire and into the appropriate vessel
and secured using 5-0 prolene sutures. Cells were infused directly
into the right lobe via either the right hepatic arterial branch or

FIGURE 1 | Cells were infused via the gastroduodenal arterial stump (C,D) into the right hepatic arterial branch (A) or directly into the right portal venous branch (B).
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the right portal vein branch to create an internal control and gain
information on engraftment of recirculating cells. A 3-way tap
was attached to the catheter, flushed with 2ml of Ringer’s solution
and set to the closed position. The distal end of the catheter was
always placed in the main trunk of the right arterial or portal
venous branch (Figure 1). Following insertion and securing of
cannulae, The liver was placed into the machine reservoir and
connected to a Liver Assist device (CE marked; Organ Assist,
Groningen, The Netherlands) as previously described (29, 37).

Infusion of MAPC Cells
MAPC cells were infused via syringe driver attached to the Vygon
Leadercath catheter over 20min into the right lobe via the hepatic
artery (HA, n = 3; HA1, HA2, HA3 [1 DBD and 2 DCD]) or
portal vein (PV, n = 3; PV1, PV2, PV3 [1 DBD and 2 DCD])
during the perfusion. The cells were infused as described initially
after 4 h of perfusion (n = 2, first HA and PV infusion). Vascular
flow characteristics were unaffected by the infusion, therefore
subsequent infusions were performed after 1 h (n= 4, 2 HA, and
PV infusions).

Assessment of Physiology and Sample
Collection Protocol
Flow rates, pressures, resistances and temperatures in the hepatic
arterial and portal venous circuits were recorded every 30min
and specifically before, during and after cell infusions. Arterial
and hepatic venous perfusion fluid was sampled every 30min and

immediately assessed using a Cobas b 221 point of care system
(RocheDiagnostics, USA). Samples were also processed to permit
the freezing of perfusate at−80◦C. Livers that metabolized lactate
to below 2.5 mmol/L within 2 h were termed “viable” as it is
predicted that these livers have the metabolic capacity to function
sufficiently following transplantation (28)—a hypothesis that was
tested during the clinical pilot study as well as in the VITTAL trial
(Viability Testing and Transplantation of Marginal Livers) which
is now closed to recruitment (27, 38).

Histological Assessment
Liver biopsies were taken from both the left and right lobes;
on the back bench prior to the start of NMP-L, pre-cell
infusion and at the end of the 6-h perfusion. Biopsies were
fixed in formalin, embedded in paraffin and sections cut at

4µm. The MAPC cells were identified by the CellTracker
TM

Red
CMTPX dye and their biodistribution—related to their route of
administration assessed using confocal microscopy. Three-color
confocal microscopy (4’,6-diamidino-2-phenylindole [DAPI] on
the blue channel, CMTPX Red on the red channel and CD31 on
the green channel (to identify vascular endothelium)) was used
to demonstrate the presence and location of MAPC cells. The
creation of virtual slides through imaging of whole tissue mounts
was achieved using the ZEISS AxioScanZ.1 slide scanner and
confocal microscopy was performed using the ZEISS LSM780
confocal microscope.

FIGURE 2 | Perfusion parameters during 6 perfusions (HA1-3 cells infused via right hepatic artery. PV1-3 cells infused via right portal venous branch). (A) HA

resistance; (B) HA flow rate adjusted for liver weight; (C) PV flow rate; (D) Lactate level over the course of the perfusion. 3 livers met viability criteria according to our

Birmingham Machine Perfusion Group Viability Criteria. Two of the non-viable livers HA3 and PV3 also have very low arterial flow rates due to high intrinsic arterial

resistances.
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Assessment of Soluble Markers in
Perfusate Samples
Cytokine and Chemokine Analysis Using Multiplex

Array
Perfusate samples from all perfusions at 4 time-points were
analyzed using the 34-Plex Human ProcartaPlexTM Panel 1A
multiplex kit (ThermoFisher Scientific Ltd.). The target list
included Eotaxin/CCL11; GM-CSF; GRO alpha/CXCL1; IFN
alpha; IFN gamma; IL-1 beta; IL-1 alpha; IL-1RA; IL-2; IL-4; IL-5;
IL-6; IL-7; IL-8/CXCL8; IL-9; IL-10; IL-12 p70; IL-13; IL-15; IL-
17A; IL-18; IL-21; IL-22; IL-23; IL-27; IL-31; Interferon gamma-
induced protein 10 (IP-10/CXCL10); Monocyte chemoattractant
protein-1(MCP-1/CCL2); Macrophage inflammatory protein-1
alpha (MIP-1 alpha/CCL3); MIP-1 beta/CCL4; RANTES/CCL5;
Stromal cell-derived factor-1 (SDF1 alpha/CXCL12); TNF alpha;
TNF beta/LTA. A “viable” liver that had not received MAPC cells
and was transplanted as part of the clinical pilot study was used
as a control. The multiplex assay was performed according to the
manufacturers guidelines and run on a Luminex R© 100TM System.
Raw data were analyzed using Prism 8.0 for Mac OS X.

Proteomic Analysis of the Perfusate
Proteomic analysis of individual perfusate samples from four
time-points was performed for each liver and compared to

results from all other livers (n = 8) previously perfused with
standard perfusate that had not received cellular therapy. This
was to maximize the probability of identifying unique proteins
in the MAPC cell perfused livers. Hemoglobin depletion of
haemolysed samples using Hemoglobind (BioTech Support
Group LLC, Monmouth Junction, NJ) was followed by trypsin-
based liquid digestion, peptide cleaning, gradient separation
and elution into a Linear Trap Quadropole (LTQ) Orbitrap
Elite mass spectrometer for liquid chromatography (LC-MS/MS).
Scan results were searched against Uniprot database. Protein-
protein interactions (PPI’s) and functional enrichments (FE’s)

were determined using the String© database 2017 (https://string-

db.org, String Consortium 2020) and Cytoscape© (Cystoscape
Consortium (39–41).

RESULTS

Donor Demographics and Perfusion
Parameters
Six livers were perfused (2 DBD and 4 DCD) with a median
donor age of 52.5 (35–71), cold ischemic time of 500min (453–
754), and donor risk index of 2.41 (1.58–3.22). Three received
cells via the right hepatic artery and 3 via the right portal vein
(1 DBD and 2 DCD in each group). The timing of infusions

FIGURE 3 | Light microscopy images of H&E (A,B) and periodic acid Schiff stains (C,D). (A,B) are H&E stained sections from early NMP-Ls showing some

histological abnormalities. Architecture of the liver parenchyma was well-maintained in those livers that were deemed viable. Liver PV3 (B) was severely steatotic and

H&E stained sections demonstrated large droplet macrovescicular steatosis and loss of cohesion between hepatocytes in liver cell plates suggesting endothelial

disruption. In those livers that met viability criteria, increases in glycogen storage were observed (Figures 3C,D). In HA3 (slide A), portal microvessels (arrows) are

seen plugged by disintegrating red cells. Original objective × 10. Original objective × 10, scale = 100µm. (B) 1 h after commencement of perfusion number PV3, loss

of cohesion between hepatocytes in liver cell plates is observed (circle). Normal liver cell plates are arrowed. Original objective × 20, scale = 50µm. (C,D) are periodic

acid Schiff stained sections of liver PV1. (C) PV1 before NMP-L. (D) PV1 After 4 h of NMP-L. Glycogen stains as dark pink, arrows highlight pale glycogen depleted

areas. It can be seen that there is less glycogen depleted pale areas after perfusion indicating that the hepatocytes have taken up glucose from the perfusate and

metabolize it to glycogen. Original objective × 5 for both, scale = 200µm.
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FIGURE 4 | Confocal microscopy images showing representative tissue sections (as labeled) of livers infused with MAPC cells. Blue channel (Nucleic acid probe DAPI

345nm) (4’,6-diamidino-2-phenylindole), Red channel (615 nm) CMTPX Red and green channel (FITC 495 nm). Four confocal microscopy panels (blue channel, green

channel, red channel, and composite) of representative images of the left lobe (A) and right lobe (B) prior to MAPC cell administration and left lobe (C) and right lobe

(D) 4 h after MAPC cell administration via the right hepatic artery. The cells are clearly seen in (D) fluorescing in the red and green channels and visible as orange cells

in the composite image. Cells were never seen in any of the left lobe biopsies at 1 or 4 h after MAPC cell administration. A-D Objective × 10, scale =100µm.

varied also. HA1 and PV1 received cells toward the end of
the perfusion (infusions started at 4 h 40 mins and ran over
20min, cells delivered with 1 h perfusion remaining) and in
the remaining four livers (HA2, 3, and PV2, 3) the cells were
infused after 40min of perfusion and were delivered fully with
5 h of perfusion remaining. There were no significant detrimental
effects on the perfusion parameters during cellular infusion
and neither resistances or flow rates were adversely affected.
Of interest, flow rates in the artery transiently increased by
∼30% during all 3 arterial infusions but flows returned to
normal shortly after stopping the infusions (data not shown).
Arterial resistance and flow, portal flow and lactate can be seen
in Figure 2.

Histology and Confocal Microscopy
Histological features were in keeping with efficacy of perfusion
and liver quality. Architecture of the liver parenchyma was
well-maintained in those livers that were deemed viable

(Figure 3A). Liver PV3 was severely steatotic and H&E stained
sections demonstrated large droplet macrovescicular steatosis
and loss of cohesion between hepatocytes in liver cell plates
suggesting endothelial disruption (Figure 3B). In those livers
that met viability criteria, increases in glycogen storage were
observed (Figures 3C,D). Three-color confocal microscopy
(4′,6-diamidino-2-phenylindole [DAPI] on the blue channel,
CMTPX Red and CD31 on the green channel (to identify
vascular endothelium) was used to demonstrate the presence
and location of MAPC cells. Cells were visualized in the right
lobe of all 6 livers. MAPC cells were visualized in every low
power field of view in central and peripheral biopsies of the
right lobe (5 random biopsies each of central and peripheral
tissue) and were visualized 1 h after infusion and 5 h after
infusion [Figures 4, 5, 6, 7 show confocal images comparing
right and left lobes pre and post-infusion (4), low power HA
vs. PV infusion (5), and high power post HA infusion (6)
and post PV infusion (7)]. MAPC cells were never visualized
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FIGURE 5 | Confocal microscopy images showing representative tissue sections (as labeled) of livers infused with MAPC cells. Blue channel (Nucleic acid probe DAPI

345nm) (4’,6-diamidino-2-phenylindole), Red channel (615 nm) CMTPX Red and green channel (FITC 495 nm). Six confocal microscopy (A–F) (blue channel, green

channel, red channel, and composite) of representative images of the right lobe comparing route of delivery of the MAPC cells. (A) HA low power; (B) HA medium

power; (C) HA high power; (D) PV low power; (E) PV medium power; (F) PV high power. (A–C) Demonstrate widespread delivery of MAPC cells which are visible

(arrows) in both the green and red channel images suggesting a possible conformational change following engraftment which is more clearly demonstrated in

Figures 6, 7. The square annotation in (B) shows the autofluorescence commonly seen in the red channel in liver tissue, however the granular pattern is clearly

different to the solid appearance of the cells that fluoresce due to the CMTPX stain. (C–E) Demonstrate cells arrested within the sinusoids of the liver following

administration via the right portal vein. These are much brighter in the red channel and they clearly reside within the vascular channels. In (F) there are two cells which

appear similar to those in (A–C) suggesting that they may have started to engraft within the parenchyma, although many remain in the sinusoids. (A,D) —× 10

objective, scale = 100µm; (B,E) —× 20 objective, scale = 50µm; (C,F) × 40 objective, scale = 25µm.
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FIGURE 6 | Confocal microscopy images showing representative tissue sections (as labeled) of livers infused with MAPC cells. Blue channel (Nucleic acid probe DAPI

345nm) (4’,6-diamidino-2-phenylindole), Red channel (615 nm) CMTPX Red and green channel (FITC 495 nm). Four confocal microscopy panels (blue channel, green

channel, red channel, and composite) of representative images of the right lobes of 3 livers infused with MAPC cells via the right hepatic artery after 1 h (A—medium

power) and 4 h (B–D—high power). Here the green arrows in (A,C) demonstrate the vascular endothelium stained with CD31 and cells that appear to lie out with the

vasculature between the parenchymal cells. These cells also fluoresce in the FITC channel and this may be because they have undergone some form of conformation

change during the engraftment process. A × 20 objective, scale = 50µm; (B–D) × 40 objective, scale = 25µm.

in the left lobe. Arterially infused cells appeared to cross the
CD31 stained vascular endothelium and migrate to within the
parenchyma. These cells also appear to undergo some form of
conformational change as they are also expressed in the green

channel in addition to the red channel as opposed to those cells
that remain in the vascular channels and are visible in the red

channel only.

Cytokine and Chemokine Analysis of
Perfusate Using Luminex
From the 34-plex multiplex analysis, the concentrations of
13 out of 34 targets were shown to increase over the
course of the perfusion: IL-1RA, IL-1beta, IL4, 5, 6, 8, 10,
18, IFN-gamma, TNF-alpha, MCP-1, GM-CSF, SDF-1 alpha.
The results are displayed in Figure 8 (median values with
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FIGURE 7 | Confocal microscopy images showing representative tissue sections (as labeled) of livers infused with MAPC cells. Blue channel (Nucleic acid probe DAPI

345nm) (4’,6-diamidino-2-phenylindole), Red channel (615 nm) CMTPX Red and green channel (FITC 495 nm). Four confocal microscopy panels (blue channel, green

channel, red channel, and composite) of representative images of the right lobes of 3 livers infused with MAPC cells via the right portal vein after 1 h (A—high power)

and 4 h (B–D—high power). In this series, the green arrows again demonstrate the vascular endothelium using the CD31 stain but here the MAPC cells are barely

visible in the FITC channel and are clearly fluorescing in the red channel suggesting that that are yet to undergo the changes seen in Figure 6. (A–D) × 40 objective,

scale = 25µm.

range), with the six livers split into two groups—group 1
(n = 2) cells infused after 5 h and group 2 (n = 4) cells
infused after 1 h. A transplanted control which underwent
perfusion was also analyzed at 2 time points (0 and 6 h).
The changes in concentration of nine targets (Figure 8A) –
IL4, 5, 6, 8, 10, MCP-1, SDF-1 alpha, IL-1 beta, and GM-
CSF appeared related to the presence of MAPC cells, as they
were only detected after their infusion. The levels of the

remaining four targets (Figure 8B) TNF-alpha, IFN-gamma,
IL-18, and IL-1RA appeared unrelated to the presence of
MAPC cells.

Proteomic Analysis of Perfusates
Analysis of perfusates from the 6 donor livers identified a
total of 1,300 unique proteins of which 48 were present in
every sample. Of interest these included alcohol dehydrogenase
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FIGURE 8 | Perfusate analysis using Luminex platform. Pattern of nine targets appear related to cellular perfusion (A), with concentrations increasing in perfusates of

livers after the infusion of MAPC cells. Four targets (B) appear unrelated to the infusion of MAPC cells. (A) shows nine targets that had an apparent increase in

concentration within the perfusate samples following MAPC cell administration. IL4 appeared to increase shortly after cell administration—increasing in the final hour

of the perfusion after MAPC administration—whereas the remaining targets required longer to increase. As can be seen in the legend the green arrow denotes the

administration of MAPC cells at 1 h and the red arrow at 5 h. (B) Shows four targets (TFN-alpha, IL1RA, Interferon-gamma, and IL-18) that increased their

concentrations during the perfusion and appear unrelated to MAPC cell administration but more likely linked with levels of inflammation within the marginal livers.

Ib and 4, superoxide dismutase 1, aldehyde dehydrogenase,
complement component 3, apolipoproteins A-II, B and H,
glyceraldehyde-3-phosphate dehydrogenase, serpin peptidase
inhibitor clade G member 1, kininogen 1 and inter-alpha-
trypsin inhibitor heavy chain family, member 4. When the
results from these perfusions were compared to a group of

8 contemporaneous perfusions with similar demographics and

characteristics that had not received therapeutic intervention,
295 unique proteins were identified in the perfusate from time-

points following the infusion of cellular therapy (i.e., after 5 h

for HA1 and PV1 and after 1 h in HA2 and 3 and PV2 and
3). The network edges were set to high confidence (>0.700
interaction score) which yielded a PPI enrichment p-value of
1.05e−05 showing that it was highly likely that this group
of proteins were biologically connected. Unconnected nodes
were removed and 191 proteins were imported to Cytoscape
for further functional enrichment and network analyses. These
proteins (Figure 9), through functional enrichment analysis,
were shown to be involved with 549 gene ontology processes
(GO:Processes) [false discovery rate [FDR] <0.05]. These
are grouped and depicted in Figure 10. Seventeen of these
proteins were also identified as having strong links to MAPC
cells and MSC in the literature (Figure 11)—with 14 of 17
in the top 50 most connected proteins in terms of “node
degree” or PPI (Supplementary Table 1). Many of these had
strong tissue associations with the bone marrow and the liver
(Supplementary Table 3). The descriptions of these proteins can

be found in Table 1 whilst the functional enrichment data can be
seen in Supplementary Tables 1–3.

DISCUSSION

This is the first study to demonstrate the feasibility and potential
advantages of using NMP-L to deliver stem cell therapy to
marginal human donor livers. Our data demonstrate that delivery
of MAPC cells to human donor livers is feasible, has no
detrimental effect on flow or resistance, cells infused via the
artery appear to undergo transendothelial migration and there is
evidence of beneficial biological activity.

MAPC cells are a distinct bone-marrow derived cellular
population that share properties associated with MSC. Unlike
standard MSC culture conditions however, they prefer hypoxic
conditions in media supplemented with epidermal growth factor
and platelet-derived growth factor. MAPC cells have been shown
to be non-immunogenic and exert strong immunosuppressive
effects on T-cells in vitro and may also supress an ongoing
immune response (12, 42). These findings paved the way for
the use of MAPC cells in models of graft-versus host disease
and as an anti-inflammatory therapeutic treatment in models of
transplantation. MAPC cells were chosen for this study because
they share many of the positive properties of MSC, and a clinical
grade version of MAPC cells, MultiStem R© cells, have been
evaluated in several clinical trials and are easily scalable for use
in future NMP-L clinical trials (43–45).
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FIGURE 9 | Protein-protein interaction (PPI) network demonstrating 191 unique proteins (nodes) identified in the perfusate of livers infused with MAPC cells during

NMP-L. Node size and color is proportional to the number of Interactions associated with said protein. “Edges” or Interactions are based on high confidence of

interaction (String database confidence score > 0.700).

Most animal studies using stem cells in models of liver
transplantation deliver the cells either systemically intravenously
(where most cells are trapped in the lungs) or via the portal
vein—a route that was used for a safety and feasibility study in
human subjects (16). Indeed, the portal venous route is also the
preferred route for islet cell infusion for the treatment of Type-
I diabetes although increased portal venous resistance has been
demonstrated (46). The argument for systemic infusion is that
the cells appear to exert effects through paracrine mechanisms
and soluble mediators (47). Despite this, their effects appear
to be strengthened when cell–cell contact is present (42). This
points to the presence of cell contact-dependent suppressive
activity or suggests that the interaction of immune cells to
MAPC cells upregulates their suppressive function through other
soluble factors. The process of machine perfusion provides
a valuable window of opportunity to deliver cellular therapy

directly into the target donor organ, ensuring the presence of
the anti-inflammatory therapy before the onset of the immune
response during organ reperfusion at clinical transplantation.
In this study, there was no evidence of increased resistance or
reduced flows when cells were infused via either vascular route.
The transient increases in arterial flow are addressed later in
the discussion.

Cells were easily identified using fluorescence microscopy,
although cells never appeared in the left lobe suggesting
that cells became trapped in the disposable circuit if they
did not engraft on the first pass. There appeared to be a
difference in MAPC cell homing depending on route of infusion
with cells infused via the portal vein “arresting” within the
sinusoidal channels (localization) whereas arterially-infused
cells transmigrated across the vascular endothelium (homing)
(Figures 5, 6, 7). These cells also appeared to undergo some
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FIGURE 10 | Network cluster demonstrating categories of gene ontology processes that the proteins are involved with following function enrichment analysis.

Proteins are grossly involved with regulation of a range of biological a cellular processes, immunomodulation, cellular movement, and compartment organization.

Node size is proportional to the number of proteins involved with said process.

form of conformational change possibly through “inside-out”
signaling or changes in integrin conformation (48). They
fluoresce in the green channel as well as the red after crossing
the vascular endothelium to reside within the parenchyma
(Figure 7). This observation is similar to that seen in flow
assays when migrated cells go from phase light to phase dark
and may well influence fluorescent spectral overlap during
confocal microscopy.

Hepatic sinusoidal endothelium differs from vascular
endothelium in terms of structure and adhesion molecule
expression. Despite hepatic sinusoidal endothelium having
increased expression of intercellular adhesion molecule-1
(ICAM-1), the absence of cell-cell junctions and reduction in
p- and e-selectin expression may reduce the chances of MAPC
transmigration across sinusoidal endothelium when infused via
the portal route. Cells infused via the artery must pass through a
narrow pre- or inter-sinusoidal confluence which may improve

their changes of retention within the tissue. The arterial system
also supplies the bile ducts and presence of cells near the bile
ducts may help ameliorate the bile duct endothelial damage that
can occur at reperfusion.

When looking for evidence of MAPC cell functional activity,
Luminex analysis of perfusates from different time points
yielded some interesting results. Of the 35 intended targets,
13 were detectable in the perfusate. Four of these appeared
to be related to graft quality and not the presence of cells
although TNF-a, IFN-gamma, and IL1-RA have been shown to
upregulate the immunomodulatory effects of stem cells. TNF-
a and IFN-gamma, which drive inflammatory and immune
mediated responses via activation of macrophages and induction
of MHC-II molecules, increased over the course of the
perfusion. In combination, they have been shown to increase the
immunosuppressive effects of MAPC cells through indoleamine
2,3 dioxygenase activation (49, 50). IL-1RA has also been shown
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FIGURE 11 | Protein-protein interaction (PPI) network highlighting proteins with evidential links to MAPC cells and MSC in the literature (blue nodes). Of note, these

proteins are some of those with the largest number of interactions and roles in biological processes.

to be an effective anti-inflammatory mediator when used in
combination with MSC in models of acute liver failure (51).
As mentioned, the concentrations of 9 targets appeared to be

related to the timing of MAPC cell infusion. IL4 has been
shown to suppresses liver TNF-a mRNA expression, neutrophil
accumulation and liver injury (52) whilst IL-10 has been
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TABLE 1 | Descriptions of proteins identified unique to perfusate following MAPC cells administration with links in the literature to MAPC cell and MSC activity.

Protein Description

IL6 B-cell stimulatory factor 2; Cytokine with a wide variety of biological functions. It is a potent inducer of the acute phase response.

EGFR Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into

appropriate cellular responses.

CDC42 Cell division control protein 42 homolog; Plasma membrane-associated small GTPase which cycles between an active GTP-bound and

an inactive GDP-bound state.

ICAM1 Intercellular adhesion molecule 1; ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2).

TIMP1 Tissue inhibitor of metalloproteinases 1; Metalloproteinase inhibitor that functions by forming one to one complexes with target

metalloproteinases.

GRB2 Growth factor receptor-bound protein 2; Adapter protein that provides a critical link between cell surface growth factor receptors and the

Ras signaling pathway.

EZR Cytovillin; Probably involved in connections of major cytoskeletal structures to the plasma membrane.

SERPINE1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1; Serine protease inhibitor. This inhibitor acts

as “’bait” for tissue plasminogen activator, urokinase, protein C and matriptase-3/TMPRSS7.

ITGAL Leukocyte function-associated molecule 1 alpha chain; Integrin alpha-L/beta-2 is a receptor for ICAM1, ICAM2, ICAM3, and ICAM4.

IGFBP7 Insulin-like growth factor binding protein 7; Binds IGF-I and IGF-II with a relatively low affinity. Stimulates prostacyclin (PGI2) production.

Stimulates cell adhesion.

FSTL1 Follistatin-related protein 1; May modulate the action of some growth factors on cell proliferation and differentiation.

HYOU1 Hypoxia up-regulated 1. Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. May play a role as a

molecular chaperone and participate in protein folding.

IL1RN Interleukin-1 receptor antagonist protein; Inhibits the activity of interleukin-1 by binding to receptor IL1R1 and preventing its association

with the coreceptor IL1RAP for signaling.

STIP1 Transformation-sensitive protein IEF SSP 3521; Acts as a co-chaperone for HSP90AA1. Mediates the association of the molecular

chaperones HSPA8/HSC70 and HSP90.

IL1RL1 Interleukin 1 receptor-like 1; Receptor for interleukin-33 (IL-33). Its stimulation recruits MYD88, IRAK1, IRAK4, and TRAF6, followed by

phosphorylation of MAPK3/ERK1 and/or MAPK1/ERK2, MAPK14, and MAPK8.

SERPINA4 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 4; Inhibits human amidolytic and kininogenase activities of

tissue kallikrein.

MAPK4 Extracellular signal-regulated kinase 4; Atypical MAPK protein. Phosphorylates microtubule- associated protein 2 (MAP2) and

MAPKAPK5. May promote entry in the cell cycle.

shown to protect against hepatic ischemia-reperfusion injury
by suppressing NFkB activation and subsequent expression
of pro-inflammatory mediators (53) and importantly both
have been shown to be upregulated following MAPC cell
administration (54, 55). MCP-1 (CCL2) expression appeared to
correlate with cell infusion and has been shown to be secreted
by MAPC cells (56). Stimulation of MAPC cells using TNF-a
and IFN-g increases expression of chemokine receptor type 2
and promotes migration of the cells to areas of inflammation
where MCP-1 (CCL2) is being secreted. This stimulation also
increases transcription of iNOS and cyclooxygenase-2 mRNA
which leads to production of NO and PGE which are involved
mechanistically in the suppression of T-cell proliferation (57, 58).
The presence of NO in the MAPC cells-containing media may
explain the transient increase in arterial flow and decreased
vascular resistance when cells were infused into the right lobe,
which subsided within 10min of the infusion stopping (59).
The precise mechanistic relevance of these observations are not
clear at present and remain the subject of ongoing research in
our group. However, a potential explanation is that the anti-
inflammatory response may be liver centric and attempting to
reduce the extent of parenchymal injury whilst the increase
in inflammatory markers is allowing the potential influx of

immune cells that are required for later liver injury resolution
(60, 61).

To determine the presence of potentially unique MAPC
cell-associated proteins, proteomic analysis of the individual
perfusate samples taken after cell infusion was compared to
those samples pre-infusion and to eight similar livers that did
not receive cellular therapy. The analysis as described in the
results section would suggest that MAPC cells, in the presence
of a pro-inflammatory environment as confirmed by multiplex
analysis, secrete molecules that regulate the biological activity of
the extracellular matrix as well as chemokines, cytokines, and
molecules that participate in and regulate a variety of biological
pathways (Figure 10 and Table 1). Many of these proteins
have previously been described in the secretome of MAPC
cells and could play an important role in a pro-inflammatory
environment, during for example, ischemia-reperfusion (62).
The expression of HYOU1 suggests that MAPC cells may be
involved in the enhancing the cytoprotective mechanisms within
the liver during NMP-L (63). In additionMAPC cells increase the
expression of known cell cycle proteins such as GRB2, MAPK4
and the growth factor EGFR. Furthermore, proteins involved
in tissue injury resolution such as TIMP-1 and STIP1 are also
upregulated suggesting that MAPC cells may regulate this part
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of the IRI process too (64). The expression of ITGAL and ICAM-
1 suggests a potential immuo-modulatory role for MAPC cells
although this needs further experimental clarification (65).

We are aware of several limitations in this study, in particular
the number of livers included, the timings of the infusions and
the different routes of delivery, all of which in combination
impact upon the statistical power of the study. We spent a
long time considering how best to carry out this research in a
cohort of organs that are scarce and generally very heterogenous
in nature. Importantly it is precisely such organs that may
benefit from this type of therapeutic approach in future. In
terms of research, livers obviously differ to kidneys in terms
of blood supply and the number in the body. The use of
discarded kidneys affords the researcher the opportunity to use
one for the intervention and one as a control. Nor is there
the need to consider the blood supply to use for delivery of
the therapy. In contrast in livers, we must consider the optimal
route for delivery and also try to create some form of internal
control as discarded human livers are too heterogenous to be
able to draw robust statistical conclusions given the limited
numbers offered for scientific research. We were also unable
to comment on the effect of MAPC cell delivery on overall
organ “viability” or the ability of the MAPC cells to “rescue”
an organ currently deemed untransplantable. In this regard,
multiple factors are at play in terms of overall organ viability.
It is likely that the mechanisms at play may not significantly
impact upon gross organ viability but are more likely to attenuate
the inflammatory and immune responses at a cellular level and
this would hopefully translate into improved outcomes following
in-situ reperfusion.

This research, as stated in the aims was a pilot study
that set out to (a) develop a technique for infusion and
demonstrate the feasibility of NMP-L to deliver cellular therapy
to extended criteria human donor livers; (b) determine the best
vascular route for delivery and confirm the presence of cellular
engraftment and (c) determine parameters that may reflect
biologically functional activity imparted by the presence of the
therapeutically administered MAPC cells. Whilst we recognize
that the comparatively small n-numbers and differences of timing
of infusion of the cells were potential limitations to our study,
we nevertheless believe that the techniques and the data obtained
are sufficiently robust to permit cautious but valid analysis
and conclusions.

CONCLUSION

This is the first study to investigate the feasibility of using
machine perfusion to deliver cellular therapy to human donor
livers. We have demonstrated that cells can be delivered
directly to the target organ without compromising the perfusion.
This not only overcomes the disadvantages associated with
systemic infusion, but ensures the cells are present before
ingress of the recipient immune cell population. The arterial
route of infusion appears to result in more effective cellular
engraftment. MAPC cells secrete a host of soluble factors that
are known to have anti-inflammatory and immunomodulatory

effects that would be especially beneficial for extended criteria
donor livers.
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