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Abstract

Accurate forecasting of wind power plays an important role in an effective and reliable power system.

However, the fact of non-schedulability and fluctuation of wind power significantly increases the uncertainty

of power systems. The output power of a wind farm is usually mixed with uncertainties, which reduce the

effectiveness and accuracy of wind power forecasting. In order to handle the uncertainty of wind power, this

paper first proposes to conduct outlier detection and reconstruct data before the prediction. Then, a wind

power probability density forecasting method is proposed, based on cubic spline interpolation and support

vector quantile regression (CSI-SVQR), which can better estimate the whole wind power probability density

curve. However, the probability density prediction method can not acquire the optimal point prediction and

interval prediction results at the same time. In order to analyze the uncertainty of wind power, the present

study considers the prediction results from the perspective of probabilistic point prediction and interval

prediction respectively. Three sets of real-world wind power data from Canada and China are used to

validate the CSI-SVQR method. The results show that the proposed method not only efficiently eliminates

the outliers of wind power but also provides the probability density function, offering a complete description

of wind power generation fluctuation. Furthermore, more accurate point prediction and prediction interval

(PI) can be obtained compared to existing methods. Wilcoxon signed rank test is used to verify that CSI

can improve the performance of forecasting methods

Keywords: Wind power forecasting; Support vector quantile regression (SVQR); Cubic spline
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1. Introduction

Wind power forecasting is one of the most important ways to reduce negative impact from wind power

uncertainty [1]. Wind power is an inherently uncertain and highly random energy resource, which posses

huge challenges to wind power forecasting. Accurate wind power prediction can help to regulate and schedule

the power system and cut down the hazard of multiple grids integration [2–4]. The forecast of short-term

wind power is important to the system safety and stability, which help to achieve better performance for

the power system [5–7].

A lot of research has been carried out in the field of wind power forecasting in recent years. Existing

wind power prediction methods fall into four categories [8]: 1) statistical methods, such as autoregressive

integrated moving average (ARIMA) and Markov chain [9, 10]; 2) artificial intelligence methods such as

artificial neural network (ANN) [11, 12], fuzzy logic method [13, 14]; 3) physical methods that employ nu-

merical weather prediction (NWP) and the surrounding physical information of the wind farm, for instance,

surface roughness, pressure and obstacles, to build forecasting models [15–17]; and 4) hybrid methods that

combine the above categories.

The statistical and artificial intelligence methods do not use relevant physical information for forecasting

and usually suffer from higher prediction errors in short-term wind power forecasting. Hybrid methods be-

come more popular because they can combine the merits of the other categories. For example, in [18], vector

autoregressive moving average-generalized autoregressive conditional heteroscedastic (VARMA- GARCH)

was applied to wind direction and speed data, the forecasting results are converted to a wind power density

function by conditional kernel density (CKD). In [19], a support vector machine (SVM) combined with

empirical mode decomposition (EMD) was implemented. The wind power time series were classified into

several sequences by EMD, and the SVM was used to optimize the training parameters for the accurate

prediction result.

In terms of the output, traditional wind power forecasting methods only produce a point value, or the

conditional expectation of the output at a time point. It is difficult to get the comprehensive knowledge of

future events, leading to increased uncertainties for wind power operation [20]. To quantify the uncertainty

of wind power systems, probabilistic forecasting takes the form of prediction intervals (PIs) or predictive

density functions. In [21], a bootstrap-based extreme learning machine (BELM) was proposed to construct

the PIs of wind power time series. In [22], a neural network (NN)-based method for the construction of PIs

with a prescribed probability called the confidence level was proposed. Particle swarm optimization (PSO)

based on the lower upper bound estimation (LUBE) was used to solve this problem. As to probabilistic

forecasting methods, the ideal forecasting results should contain information on the probability distribution

of expected wind power. However, due to the intermittent and volatile characteristics of the wind power

data distribution, the complete probability distribution of wind power time series is hard to be estimated.
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Koenker and Bassett [23] proposed a quantile regression (QR) method, which has the capability to

solve point prediction of various quantiles. Any information on the shape of the distributions can easily be

determined by means of the estimation throughout the range of quantiles. Hence, complete information on

the prediction can be obtained without any distributional assumptions. In [24], a local quantile regression

(LQR) was used to define 90% and 50% PIs. A large number of quantiles of the probability distribution

was estimated using wind power data. Bessa et al. [25] proposed a time-adaptive quantile-couple estimator

to select the appropriate kernel function for wind power probabilistic forecasting, which was validated on

two real wind farms. In [26], a probabilistic wind power forecasting model was put forward based on a

parametric additive quantile regression (PAQR) method, which was implemented in a practical wind power

system using R software. PAQR is used to fit the training data by means of the sum of spline functions for

a given degree of freedom. It is evaluated on the testing set, when parameters of spline basis functions are

successfully estimated. If model parameters and input data are certain, the prediction of PAQR is invariable.

As an open wind power probabilistic forecasting method based on QR, the R-script code of PAQR can be

downloaded in [26]. Hence, it is well suited as the comparative model.

The SVM was proposed by Vapnik [27], which has been widely used in regression problems with small

sample sizes and high dimensions. Considering the complexity and potential nonlinearity of wind power,

support vector regression (SVR) has been used to solve this problem because of its outstanding performance

in real-world applications [28–31]. It is a kernel-based method, which can translate nonlinear regression

to linear regression problems. Due to the strong generalization capability of Gaussian kernels, the SVR

model constructed by Gaussian kernel functions (i.e. radial basis functions) has been widely applied in

the forecasting field [32, 33]. However, the traditional SVR model does not provide the probability density

prediction. In [34], in order to quantify the forecasting uncertainly, SVM was used to improve QR. The

support vector quantile regression (SVQR) model was proposed, which can deal with nonlinear structural

problems in economic systems. Finally, Xu et.al [35, 36] investigated the relationship between linear and

nonlinear value at risk (VaR) through the SVQR model. The prediction results show that the method is

better than traditional methods.

The kernel functions in SVQR have a great effect on the prediction performance. Gaussian kernel is

shown to be the excellent kernel function in SVQR [37]. However, a unitary SVQR method is insufficient

to describe the probability density function of wind power. As explained in Parzen and Rosenblatt [38, 39],

Kernel density estimation (KDE) is a non-parametric method used to estimate the probability density curve

of a dataset with an unknown distribution [18]. It does not assume any data distribution, which is an

advantage over parametric methods. For KDE, Epanechnikov kernel function is optimal in a mean square

error sense [40]. This paper proposed a method based on the SVQR method and Epanechnikov KDE for

predicting wind power. The complete probability density curve at arbitrary moment in the future can be

achieved.
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Another difficult in wind power forecasting is outliers. Due to the inherent variability in wind power,

not all wind farm data are of good quality. Outliers pollute wind farm data, which can significantly affect

the forecasting accuracy [17]. Such outliers may come from wind speed, fan blades, wind farm maintenance

operation and shut-down, and meter measuring errors, etc [41]. In [42], outliers were removed during the

wind generation time periods, using consistency examination detection. It deletes outliers, and reduces the

sample size, which may lead to inaccurate prediction. It needs a large amount of samples and its calculation

process is relatively complex.

To simplify the computation and obtain accurate results, this article adopts the quartile method to

detect the anomaly of time series in the initial data processing, then a cubic spline interpolation function

(CSI) is applied to replace the abnormal points before forecasting the wind power. A novel method of wind

power forecasting is presented, combining the advantages of CSI function and SVQR model (CSI-SVQR).

This method considers the wind power abnormal data for the stable operation of electricity markets. Three

real-world wind power data sets are used to test its feasibility and effectiveness. The power curve outliers

are analyzed by the quartile method. The CSI function is used to reconstruct the time series. The optimal

interval prediction and mode point forecasting criteria are adopted to analyze the uncertainty of forecasting

results. The proposed method is compared with existing ϵ-SVR, ν-SVR [28], Gaussian process regression

(GPR) [43], extreme learning machine (ELM) [43–45], random vector functional link network (RVFL) [46–

48] point forecasting methods and PAQR [26] probabilistic forecasting method, to evaluate the quality of

probability density forecasting through the reliability criterion. In addition to producing the probability

density function, the comparative results indicate that the method can produce more accurate prediction.

The main contributions of this paper are: 1) The present study proposes a new CSI-SVQR method for

wind power probability density forecasting. The combination of the outlier detection and SVQR model such

that the outliers are removed from the final prediction by means of the quartile method. CSI functions

are adopted to modify the original data to reduce the noisy of original wind power times series. 2) By

means of the Epanechnikov KDE, the complete probability density curve of wind power is obtained, and

more comprehensive information is obtained. 3) Different from existing trial and error methods, the grid

search method is adopted to explore the optimal parameters of SVQR and CSI-SVQR. 4) Probability density

forecasting methods need to consider several metrics. It is difficult to optimize these metrics at the same

time. Here, the optimal interval prediction and mode point prediction metrics are adopted to analyze the

uncertainty of wind power probability density prediction results, respectively. 5) The experimental results

indicate that the accuracy of PI and point prediction values have been remarkably improved compared with

ϵ-SVR, ν-SVR, GRP, ELM, RVFL, PAQR, and SVQR. In addition, Wilcoxon signed rank test verifies that

the methods combined with the CSI function are better than the forecasting technique without using CSI.

The remainder of this paper is organized as follows. Section 2 introduces the method of outlier detection

and interpolation. The forecasting method based on CSI-SVQR and the evaluation metrics of forecasting
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results are presented in Section 3. Section 4 discusses wind power probability density forecasting through

three case studies. Finally, Section 5 draws conclusion and points out future research directions for wind

power probability density forecasting.

2. Data preprocessing

The collected wind power data often contain accidental errors and system errors. These errors may be

caused by the sensor malfunctions and faults and the instability of wind turbines. Previously proposed

methods incline to predict the output of a wind farm based on the collected data sets without data prepro-

cessing, which can greatly reduce the prediction accuracy. The present study proposes to use the quartile

data preprocessing method to identify exceptional values and clear up the original data before prediction.

2.1. Outlier detection

The quartile method [41] can be used to identify abnormal values in data without the assumption of the

data distribution. The quartile method can be illustrated by Fig. 1.

Upper bound

Lower bound

Outlier

Upper quartile

Lower quartile

Median

3( )q

1( )q

( )LQ

( )UQ

2( )q

Figure 1: Quartile method [41]

If a test data point lies outside the interquartile range [QL, QU ], it can be considered as an outlier [41].

The fences formulation is calculated as follows:

[QL, QU ] = [q1 − 1.5 ∗QR, q3 + 1.5 ∗QR] (1)

In Eq (1), lower quartile q1 and upper quartile q3 are the first and third quartiles, respectively. The median

(q2) is the 50th percentile of the data. The first quartile is the 25th percentile, and the third quartile is

the 75th percentile. QR is the interquartile range, namely, QR = q3 − q1, which is a comparatively steady

statistic in terms of the standard deviation. The lower bound is the QL and the upper bound is the QU
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of data, and any data lying outside these defined bounds can be considered an outlier. This method has

certain advantage that it can be employed even when data spots are not normally distributed, because the

quartile method relys on the median and not the mean of the samples [41]. Considering the high uncertainty

of the wind power data, the quartile method is used to identify outliers in this paper.

2.2. Cubic spline interpolation function

The above quartile method finds out the outliers in the collected wind power data sets. These outliers can

actually be used to improve the prediction precision by means of spline interpolation. Spline interpolation

not only obtains a higher degree of polynomial interpolation, but also keeps the stability because of Runge’s

phenomenon [49]. In this paper, the outliers are replaced by a cubic spline interpolation (CSI) function,

which is the most commonly used interpolating method [49].

The basic concept of the cubic spline is to acquire a smooth curve by a series of points. Supposing

that there are N + 1 data samples {(xi, yi), i = 0, 1, 2, · · · , N} and x0 ≤ x1 ≤ x2 ≤ · · · ≤ xN , the present

study constructs a spline function S(x) which conforms the requirements S(xi) = yi. A spline is a cubic

polynomial function in the interval x ∈ [xi, xi+1]. S(x) is equal to ai + bix + cix
2 + dix

3. The coefficients

of the cubic polynomial ai, bi, ci and di are used to guarantee the smoothness of generated data. Function

S(x) must ensure that S(x), S′(x), S′′(x) are continuous everywhere.

Through the above outlier detection and data transformation steps, the outliers found by the quartile

method are transformed by the CSI function. A continuous and smooth curve is obtained. The points on

this curve will be used to build the model for wind power forecasting.

3. Probability density forecasting based on CSI-SVQR method

3.1. SVQR model

The least squares estimation is a traditional method to obtain the approximate results of the explained

variable, which gives specific values of the explanatory variable. Koenker and Bassett [23] proposed a quantile

regression (QR) method in order to estimate the conditional median and other quantiles of the explanatory

variable. Compared with the least squares regression, the major advantage of QR is the robustness against

outliers. Suppose that there is a set of stochastic vectors Y = [Y1, Y2, · · · , Yn] and independent vectors

X = [X1, X2, · · · , Xn], where n is the sample size, and Xi = [xi1, xi2, · · · , xir]
′. The response variable Yi is

characterized by the cumulative distribution function FYi(y) = P (Yi ≤ y), and the τ − th quantile of Yi is

described as follows:

QYi(τ) = F−1
Yi

= inf(y : FYi(y) ≥ τ) (2)

where quantile fractile 0 < τ < 1. In [38], the linear quantile regression model is defined as:

QYi(τ |Xi) = β0(τ) + β1(τ)xi1 + β2(τ)xi2 + · · ·+ βr(τ)xir (3)
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where r is the number of quantile, and QYi(τ |Xi) is the τ conditional quantile of dependent variable Yi

under independent variable Xi. The regression coefficient vector is β(τ) = [β0(τ), β1(τ), · · · , βr(τ)]
′. The

optimum vector β(τ) can be estimated by the optimization function h(β):

h(β) = min
β

n∑
i=1

ρτ (Yi −X ′
iβ) (4)

where ρτ (Yi −X ′
iβ) is the loss function:

ρτ (Yi −X ′
iβ) =

 (Yi −X ′
iβ)τ, Yi ≥ X ′

iβ

(Yi −X ′
iβ)(τ − 1), Yi < X ′

iβ
(5)

The response variable Yi of conditional quantile at any quantiles is obtained by the estimated parameter

vector β(τ), and then the conditional density forecasting is able to be achieved. According to formulas (3)

and (4), the linear structure is adopted by the QR model. It means that the model of the explained variables

and explanatory variables is linear. However, the relationship of wind power time series is nonlinear. The

simple QR is hard to solve complex wind power forecasting problems.

SVM is a supervised learning model in machine learning. It has been successfully used to solve nonlinear

and regression problems. SVR [50] modifies SVM to solve linear regression problems. The main idea is that

the vector can be mapped into a multidimensional feature space by nonlinear mapping χ. The constructed

SVR model is as follows:

f(x) = ωTχ(x) + b (6)

The parameter vector ω and threshold value b can be obtained by minimizing the following

min
ω,b

(
1

2
ωTω + C

nt∑
i=1

|yi − f(xi)|) (7)

where C is the penalty parameter, nt is the sample size of the training set, and xi, yi are the input and

output vector of the training data sets.

In order to solve the nonlinear and heterogeneous problems, the SVQRmodel is proposed by Takeuchi [34].

Shim [51] introduced a simple SVQR model on the basis of the semiparametric method. The model is ob-

tained by using QR to substitute the penalty function in the SVR model, which is defined as :

min
ωτ ,bτ

(
1

2
ωT
τ ωτ + C

nt∑
i=1

ρτ (yi − bτ − γT
τ zi − ωT

τ χ(xi))) (8)

where ωτ is the parameter vector at τ quantile, and ρτ (·) is the loss function as defined in Eq (4). zi, xi

represent, the linear and nonlinear vector. bτ is threshold value at τ quantile, γτ is regression vector at τ

quantile, and yi is the output vector of the training data sets.
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Slack variable and the Lagrange multiplier [52] are used to estimate the SVQR model. Eq.(8) can be

converted into an unconstrained problem, then the optimal values of ωτ , bτ , γτ can be represented as:
ωτ =

nt∑
i=1

(εi − ε∗i )χ (xi)

(bτ , γτ ) = (AT
SAS)

−1AT
S (yS − κS(ε− ε∗))

(9)

where εi, ε
∗
i are the optimized Lagrange multipliers, the design matrix is AS = (1, zi

T ) and the condition of

i ∈ IS must be met. The index set of support vectors IS = { i = 1, 2, ..., nt |0 < εi < τC , 0 < ε∗i < (1− τ)C}

is obtained by Karush-Kuhn-Tucher conditions. In the above formula, κS is the kernel matrix and its

elements are κ(xj , xi) = φ(xj)
Tφ(xi) with j = 1, 2, · · · , nt and i ∈ IS . The Gaussian function is selected to

calculate the kernel matrix, the formula is

κ(xj , xi) = e−
∥xj−xi∥

2

2σ2 (10)

σ2 is the free parameters of the kernel matrix.

3.2. Evaluation metrics for predicted results

3.2.1. Point prediction evaluation metrics

In order to evaluate the proposed CSI-SVQR method, the paper selects the mean absolute percentage

error (MAPE) and relative mean square error (RMSE) as the evaluation criteria of point prediction. Con-

sidering that wind power is highly volatile and the output value of wind farm may be 0 or very close to 0,

which is not favorable for statistical analysis, the present study uses the maximum history value Ymax as

the denominator of relative errors [53]. The following point forecasting evaluation metrics are defined as:

MAPE =
1

nf

nf∑
t=1

∣∣∣∣Yt − pt
Ymax

∣∣∣∣ (11)

RMSE =

nf∑
t=1

(Yt − pt)
2

nf∑
t=1

Y 2
t

(12)

where nf is the number of forecasting samples, Yt and pt are the actual value and predicted result at the

t-th moment, respectively.

This paper chooses mode and median of wind power probability density curve as the point prediction

values. Mode is the highest probability value of the probability density curve and median is the middle

value of a dataset. Supposing that there is a set of wind power predicted values at the i-th moment from

small to large fi1, fi2, · · · , fir,the mode and median are calculated as follows respectively:

Median =

 fi r+1
2

fi r
2
+ fi r+2

2

, r is odd

, r is even
(13)
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Mode = argmax (f̂h(x)) (14)

where argmax(.) denotes the value of x when the function is maximal.

In order to evaluate the point forecasting performance of probability density methods, the mode fore-

casting error is selected as a evaluation metric

SSEmode =

nf∑
t=1

(Yt −Modet)
2

(15)

where SSEmode is the sum of squared errors of mode and Modet is forecasting value of mode at the t-th

moment.

3.2.2. Evaluation metrics for prediction intervals

Different from point forecasting that simply provides the forecasting errors, PIs not only offer a prediction

interval, in which practical values are most likely to be included, but also produce the coverage probability.

Prediction interval normalized average width (PINAW) and prediction interval coverage probability (PICP)

are commonly used. Their definitions are [22, 54]:

PINAW =
1

nf

nf∑
i=1

Ui − Li

R
(16)

PICP =
1

nf

nf∑
i=1

λi (17)

where nf is the number of predictions, Li, Ui are the lower bound and upper bound at the i-th moment.

R represents the range between maximum upper bound minus minimum lower upper of the target values,

which is used to normalize the PIs average width; λi is a Boolean function. It is defined as follows:

λi =

 1 , Yi ∈ [Li, Ui]

0 , Yi /∈ [Li, Ui]
(18)

PINAW is an objective measurement that is used for computing the average width of PIs. A small

PINAW means narrow width of PIs, which is more advantageous for decision making. It is insufficient to

only consider PINAW but ignore the coverage probability of PIs. As the cardinal feature of PIs, PICP

expresses the percentage value of actual values covered by the PI, and it is expected to be greater than the

level of nominal confidence [54, 55]. In the practical application of wind power prediction, a small PINAW

and a high PICP are preferable.

To comprehensively assess the quality of PIs, Ref [22] designed an entertaining metrics, named coverage

width-based criterion (CWC) for balancing the effect both PICP and PINAW, which is shown as follows:

CWC = PINAW + ρ(PICP )e−γ(PICP−β) (19)
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where β is predefined as the nominal confidence level that should be satisfied. γ is a scaling factor that

amplifies the diversity between PICP and β. ρ(PICP ) =1 in the training process. For testing set, ρ(PICP )

is a step function. During the evaluation of the test set PIs, if PICP satisfies the assigned nominal confidence

level β, ρ(PICP ) =0, and CWC is equal to PINAW. Otherwise, ρ(PICP ) =1, and the exponential penalty

term will be evaluated by CWC.

3.3. Wind power probability density forecasting based on CSI-SVQR

SSEmode and CWC are two different types of evaluation indicators. It is hard to obtain simultaneous

optimal results. High quality interval prediction may partially sacrifice point prediction performance. In

this subsection, the article describes the CSI-SVQR from the optimal SSEmode and CWC, respectively. The

flowchart of the proposed method is shown in Fig. 2.

Figure 2: The flowchart of CSI-SVQR probability density forecasting method
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3.3.1. Data modification

The original data need to pre-processed because the outliers may seriously affect the forecasting accuracy.

In this article, the quartile method is applied to detect the abnormal values which are embedded in the data

sets. After the outliers are determined, they are replaced by the CSI function. Then, modified wind power

time series are obtained. The detailed description of this part has been explained in Section 2.

3.3.2. Data normalization and splitting

The above preprocessed data are normalized, with a weaken uniform dimension from the time series,

which is calculated by:

xi =
Xi −Xmin

Xmax −Xmin
i = 1, 2, · · · , n (20)

where xi is the processed data, Xi is the unprocessed data, and Xmin, Xmax are the minimum and maximum

of original wind power series, respectively; n is the total number of samples. The obtained new data sets

are further divided into two sets: a training set and a test set. The training data set is applied to train the

CSI-SVQR model. The test data set is used to test the performance of the proposed method.

3.3.3. Select parameters using grid search

The selection of parameters C, σ2 may affect the performance of SVQR. Similar to SVR [27], the present

study selects the parameters of SVQR using the grid search method, which adopts a grid that is constructed

by exponentially growth sequences of C and σ2. Namely, in all the candidate parametes, each possibility is

tried through a loop, and the best performing parameter is the final result.

3.3.4. Build the SVQR model

The modified wind power time series xi are used as the input to SVQR according to Eq (8).

3.3.5. Estimate the SVQR model

The estimator of SVQR is obtained by Eq (9). Then, the conditional quantile at different quantiles can be

obtained based on the optimized parameter vector ωτ and threshold value bτ , and the conditional quantile

of wind power forecasting is defined as follows:

Qyi (τ |zi, xi) = bτ + γT
τ zi +Ki(ε− ε∗) (21)

where Ki is the i− th quantile of kernel matrix.

3.3.6. Evaluate CWC or SSEmode

In order to measure the interval prediction quality of SVQR, we try to minimize CWC

min(CWC(C, σ2)) (22)

11



Furthermore, the point forecasting results of mode is assessed by means of minimizing SSEmode

min(SSEmode(C, σ2)) (23)

Then, the ability of uncertainty analysis of SVQR is shown from the perspective of probabilistic point

prediction and interval prediction respectively.

3.3.7. Training termination

The training process is terminated if the optimal ωτ , bτ , γτ are obtained. Otherwise, it continues and

returns to Step 3.

3.3.8. Wind power probability density forecasting

In this paper, kernel density estimation (KDE) is adopted to forecast the probability density function

of wind power. The conditional quantile Qyi(τ |zi, xi) is taken as the input of KDE function to achieve the

predicted probability density curve. Suppose there is a set of random variables X1, X2, · · · , Xr that are

taken from a identically and independent distributed sample set, the KDE is:

f̂h(x) =
1

rh

r∑
i=1

KE(
Xi − x

h
) (24)

where r is the number of quantiles, KE(·) is the kernel function. h is the bandwidth of kernel function,

which seriously affects the accuracy of forecasting results.

There are many commonly used kernel functions: Triangular, Uniform, Epanechnikov, Gaussion and so

on [56]. Among those functions, the loss of efficiency and mean square error of Epanechnikov kernel are

both less than the other kernel functions, and this kernel is convenient to calculate [40, 57]. Based on these

reasons, the Epanechnikov kernel is selected as a kernel function for probability density forecasting and its

mathematical expression is shown:

KE(η) =


3
4 (1− η2) , η ∈ [−1, 1]

0, η /∈ [−1, 1]
(25)

and η = Xi−x
h in Eq (25).

3.3.9. Prediction results analysis

Once training CSI-SVQR terminates, the parameters of C, σ2 are chosen to test the proposed method.

The CSI-SVQR method is adopted to obtain the conditional quantile Qyi(τ |zi, xi). The conditional quantile

of wind power forecasting under all quantiles are inputted into the kernel function to build probability

density functions. Then the minimum and maximum values of probability density functions is defined as

the upper and lower bounds of the prediction intervals. The evaluation criteria in Section 3.2 are applied to
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evaluate the performance of wind power probability density forecasting results. Compared with point and

interval prediction, the proposed probability density forecast method can provide more useful informations

for the decision-making department.

4. Case studies

4.1. Data sources

The real wind power data from a wind farm in Canada [58] and a wind turbine in China are adopted

to verify the effectiveness of the proposed algorithm. These two different places represent different types of

wind power profiles. The wind power data from China is more complex than those from Canada because

wind power data in a turbine may include many 0 power values. In the first case study, the data from

Canada are relatively clean without outlier. Data in the second case study are also from Canada, which is

more noisy. Data in the third case study from China contain more outliers. The wind power data of the

first case were collected from January 20, 2015 to January 24, 2015, from Ontario in Canada, with 24 points

in every day (120 samples). In the second case study, data were collected hourly from June 1, 2014 to June

28, 2014 in Ontario, Canada (672 samples). The third dataset was collected every fifteen minutes from May

30, 2006 to June 3, 2006 in Mathematical modeling competition of electrical cup of China of 2011 [59] (480

samples). The boxplots of outlier detection for three cases are shown in Fig. 3, including wind farm data

without ourliers in case 1, wind farm data with ourliers in case 2, and wind turbine data with ourliers in

case 3 . It is easy to discover that several ourliers exist in cases 2 and 3, which may influence the accuracy

of forecasting methods.

Each data set is divided into two subsets: In the first case, the data from January 20, 2015 to January

23, 2015 are used for training, and the data of January 24, 2015 are used for testing (24 test samples); In

the second case, the wind power data of Ontario from June 1, 2014 to June 21, 2014 are considered as the

training data, and the data from June 22, 2014 to June 28, 2014 are used as the testing data (168 test

samples); In the third case, the data of China from May 30, 2006 to June 2, 2006 are selected for training,

while the data of June 3, 2006 are selected for testing (96 test samples). By trial and error, we select previous

2-10h wind power data as the input data, showing similar forecasting results. For the Canada data sets, the

input of previous 7 hours is slightly better; for the China data set, the input of previous 4 quarterly-hours

is slightly better.

In all cases, 20 quantiles with the interval of 0.05 are chosen to perform the probability density forecasting,

and the quantile is from 0.01 to 0.96 (i.e., the confidence level is 95%). To evaluate the performance of CSI-

SVQR model, the point prediction methods, including ϵ-SVR, ν-SVR, GPR [43], ELM [43–45], RVFL [46–

48], CSI-ϵ-SVR (the ϵ-SVR model combined with CSI), CSI-ν-SVR (the ν-SVR model combined with CSI),

CSI-GPR (the GPR model combined with CSI), CSI-ELM (the ELM model combined with CSI), and CSI-

13
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Figure 3: The boxplots of outlier detection for three cases
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RVFL (the RVFL model combined with CSI) are compared in this paper. Their point prediction results are

compared with the mode and median of SVQR and CSI-SVQR. Meantime, the present study modified the

PAQR probability wind power forecasting method according to R code presented in [26]. PAQR is combined

with CSI and KDE to construct PAQR and CSI-PAQR probability density density forecasting method in

comparison with CSI-SVQR. Based on the optimal CWC and SSEmode, two point prediction assessment

metrics and two PIs assessment metrics, including MAPE, RMSE, PICP and PINAW are calculated to

evaluate the presented method. The mode of probability density curve is used to verify the performance

of probability density forecasting method. The parameters of the ϵ-SVR, ν-SVR, CSI-ϵ-SVR, and CSI-ν-

SVR are determined based on LIBSVM 3.23 toolbox in Matlab [28]. The likelihood function of GPR and

CSI-GPR are the Gaussian and isotropic rational quadratic covariance functions. The node number of the

hidden layer of ELM and CSI-ELM is set to 30 based on the Sigmoidal function. For the optimal results, the

number of hidden neurons of RVFL and CSI-RVFL is set to 1000. The ”radbas” activation function and the

scaling range of the randomization for uniform diatribution (Scalemode=3) are adopted in cases of Canada;

the ”sigmoid” activation function and the scaling features for all neurons (Scalemode=1) are adopted in

case of China [48]. The optimal results of PAQR and CSI-PAQR depend on the degree of freedom of basis

functions [26]. The optimal results of SVQR and CSI-SVQR depend on C, σ2. According to the training

data, the optimal parameters of SVQR and CSI-SVQR using the grid-search approach are determined by

exponentially growing sequences (e.g., C = 2−1, 20, 21, ..., 212 and σ2 = 2−1, 20, 21, ..., 212, then a 14*14 grid

is constructed). Four SVR methods, two SVQR methods, two GPR methods, two ELM methods, and two

RVFL methods were implemented on Matlab 2016b. Two PAQR methods were implemented on R 3.43

software. It is worth noting that the obtained results of SVQR, CSI-SVQR, PAQR, CSI-PAQR, GPR,

CSI-GPR, RVFL and CSI-RVFL are unaffected by the software version because random choice policy is not

adopted in the process of training and testing. The prediction results of four SVR methods, and two ELM

methods may be influenced by the running environment. For a fair comparison, ELM and CSI-ELM are run

repeatedly for 30 times, and the optimal values are adopted as the final results.

4.2. Case study 1

Table 1: Forecasting errors of two traditional SVR, GRP, ELM and RVFL methods for case 1.

Methods MAPE(%) RMSE(%)

ϵ-SVR 7.39 3.31

ν-SVR 6.00 2.38

GPR 5.65 1.82

ELM 6.61 2.81

RVFL 7.03 3.35
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Figure 4: Hourly wind power data of Canada in 2015 (top) and the time series of case 1 (bottom)
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Figure 5: PIs and mode of the SVQR based on the optimal CWC for the first case

Table 2: The prediction results of SVQR and PAQR based on the optimal CWC for the first case.

Methods PICP(%) PINAW(%)
MAPE(%) RMSE(%)

Mode Median Mode Median

SVQR 100 23.27 5.94 5.35 1.93 1.54

PAQR 95.83 28.61 6.64 7.07 1.87 2.15
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Figure 6: The diagram of probability density curves of the SVQR method based on the optimal SSEmode

for the first case

Table 3: The prediction results of SVQR and PAQR based on the optimal SSEmode for the first case.

Methods PICP(%) PINAW(%)
MAPE(%) RMSE(%)

Mode Median Mode Median

SVQR 100 25.02 4.62 5.34 1.29 1.61

PAQR 95.83 29.08 5.30 5.64 1.18 1.22
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In the first case, the hourly wind power curves of Ontario, Canada in 2015 are plotted in Fig. 4. The

hourly data from January 20, 2015 to January 23, 2015 are selected to predict the wind power on January 24,

2015. After outlier identification, we found that no outliers are detected in this case. Therefore, the original

data are used in predicting the wind power. The first 7-hour data are used as the input data. The selected

optimal parameters of SVQR model based on the optimal CWC are C = 2048, σ2 = 8. Based on the optimal

SSEmode, the parameters are C = 256, σ2 = 8. To fully analyze the results of the algorithm proposed in this

paper, PICP and PIMAW are used in comparing algorithms. MAPE and RMSE are selected in comparing

methods of point forecasting.

Table 1 shows the errors of ϵ-SVR, ν-SVR, GPR, ELM, and RVFL. The results of the PIs and point

predictions of SVQR and PAQR are shown in Tables 2 and 3. By comparing the forecasting errors in

Tables 1 - 3, it is easy to find that the error values of SVQR are smaller than PAQR and five traditional

point forecasting methods, and the constructed PI obtained by SVQR is superior to that evaluated by PAQR.

The accuracy of GPR is superior to that of ϵ-SVR, ν-SVR, ELM, and RVFL. The PICP value of SVQR

is 100%, which means all actual values are covered by the obtained upper and lower bounds. Furthermore,

when CWC is adopted as the fitness function, the PINAW is 23.27%, which is the optimal PI. But the MAPE

is close to traditional ν-SVR. The mode point forecasting is even less than that of median. In comparison,

when the minimal SSEmode is selected as the objective function, the MAPE of SVQR evaluated by mode

is only 4.62%, which is optimal point forecasting results. But, the PINAW achieves 25.02%. It is obvious

that CWC and SSEmode cannot be optimal at the same time in case 1.

The optimal PI and mode point forecasting results are shown in Figs 5 and 6. Based on the optimal

CWC, Fig 5 indicates that all test samples (red line) are located in the narrow predicted intervals, and the

mode curve (blue line) is near to the real targets curve. Fig. 6 provides the complete wind power probability

density curves in the 1st, 4th, 7th, 11th, 14th, 17th, 20th and 24th hours on January 31, 2015, obtained by

SVQR based on the optimal SSEmode. In Fig. 6, all real values of testing samples appear in the probability

density curve.

4.3. Case study 2

In this case, the wind power data of Ontario in Canada are selected for predicting wind power from

June 22, 2014 to June 28, 2014 (one week in summer). Through the quartile method, 19 outliers are found,

namely 2.83% of the total data (19/672). The hourly wind power curve of Ontario in 2014 and the outliers

in June 2014 are plotted in Fig. 7. The first 7-hourly data are used as the input samples. Based on the

optimal CWC, the selected parameters of SVQR and CSI-SVQR models are both C = 4096, σ2 = 1. Based

on the optimal SSEmode, parameters C of SVQR and CSI-SVQR are set to 256 and 128, respectively. The

parameters σ2 of both models are 16.

The forecasting errors of traditional point forecasting methods are shown in Table 4, and obtained results
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Figure 7: Hourly wind power data of Canada in 2014 (top), and the comparison between the original wind

power series and modified series of case 2 (bottom)
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Figure 8: PIs and mode of the CSI-SVQR based on the optimal CWC for the second case
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Table 4: Forecasting errors of ten point forecasting methods for the second case.

Methods MAPE(%) RMSE(%)

ϵ-SVR 4.12 5.63

CSI-ϵ-SVR 3.59 4.46

ν-SVR 2.59 3.24

CSI-ν-SVR 2.53 3.15

GPR 2.61 3.29

CSI-GPR 2.57 3.21

ELM 2.57 3.18

CSI-ELM 2.57 3.14

RVFL 3.89 2.54

CSI-RVFL 2.76 3.49

of four probability density forecasting methods based on the optimal CWC and the SSEmode are shown

in Tables 5 and 6. For the point prediction results in Table 4, the predicting errors of the CSI-ϵ-SVR,

CSI-ν-SVR, and CSI-GPR wind power forecasting models are smaller than that of ϵ-SVR, ν-SVR, and

GRP. The MAPE of CSI-ELM is the same as that of ELM, but its RMSE is smaller than that of ELM.

CSI-RVFL reduces the MAPE of RVFL, but fails to obtain better RSME. In ten point forecasting methods,

CSI-ν-SVR obtains the best MAPE and the third best RMSE (3.15%), which is less than that of RVFL

(2.54%) and CSI-ELM (3.14%). From Tables 5 and 6, the forecasting errors (MAPE, RMSE) of CSI-SVQR

are smaller than SVQR and PICPs all satisfy predefined nominal confidence level (namely, 95%). In terms

of the forecasting results of the optimal CWC in Table 5, the PINAW of CSI-SVQR is narrower than that

of other methods though its PICP is less than that of PAQR and CSI-PAQR. The mode of CSI-SVQR

obtains the optimal point forecasting results. The point forecasting results of PAQR are better than that of

CSI-PAQR. This suggests that CSI-PAQR need to sacrifice the point forecasting results in order to obtain

better interval prediction results. Furthermore, in terms of the forecasting results of the optimal SSEmode

in Table 6, the values of mode calculated by the above four methods are better than those of median, and

the mode obtained by CSI-SVQR is better than other methods mentioned above. The point forecasting

results and PINAW of two SVQR methods are better than that of two PAQR methods. But, the PINAWs

of CSI-SVQR and CSI-PAQR are slightly less than the results of SVQR and PAQR, indicating the CSI

may affect interval prediction performance for acquiring better mode point forecasting results. Meantime,

the PICPs of four methods are all satisfied the preassigned confidence level (95%). The PINAW values

obtained by PAQR and CSI-PAQR are more than 30% though the results of PICP are 100%. On the whole,

CSI-SVQR achieves the most satisfying result.
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The prediction results of one week obtained by CSI-SVQR based on the optimal CWC are presented

in Fig. 8. Fig. 8 shows that the real values lie within the predicted upper and lower bounds with a high

percentage and narrow PINAW. The actual test samples are close to the mode. Fig. 9 shows the complete

wind power probability density curves in the 1st, 25th, 49th, 73rd, 97th, 121st, 145th and 168th hours of

the week from June 22, 2014 to June 28, 2014, which are evaluated by the CSI-SVQR based on the optimal

SSEmode and the kernel density estimation function. It is clearly seen from the figure that all real values

of the wind power appear in the probability density curves; they are also near the peak of the probability

density curves. Experimental results show that the proposed CSI-SVQR method can better handle the

uncertainly of wind power.
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Figure 9: The diagram of probability density curves of the CSI-SVQR method based on the optimal SSEmode

for the second case

The data set in case 2 is collected from historical wind power in the summer. Apparently, the distribution

characteristics of the wind power data in the winter are different from those in the summer. In order to

consider the impact of meteorological (seasonal) factors on wind power, the quartile method is used to detect

outliers in the winter wind power data for Ontario, Canada from 2013 to 2020. Fig. 10 presents the boxplots

of outlier detection produced by the quartile method for ten months in the winter of 2018 to 2020. It shows

that there is no outlier existing in the Canada winter data set. Thus, it is unnecessary to apply CSI on this
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Table 5: Comparison of four probability density forecasting methods based on the optimal CWC for the

second case.

Methods PICP(%) PINAW(%)
MAPE(%) RMSE(%)

Mode Median Mode Median

SVQR 95.24 23.16 3.04 3.13 4.33 5.05

CSI-SVQR 95.24 22.62 3.0 3.21 4.44 5.27

PAQR 97.61 27.24 5.02 5.70 3.28 4.03

CSI-PAQR 98.21 25.79 5.19 6.52 3.78 4.62

Table 6: Comparison of four probability density forecasting methods based on the optimal SSEmode for the

second case.

Methods PICP(%) PINAW(%)
MAPE(%) RMSE(%)

Mode Median Mode Median

SVQR 96.43 26.57 2.47 2.95 3.29 3.98

CSI-SVQR 97.62 27.9 2.41 2.96 2.93 4.0

PAQR 100 34.73 4.78 5.39 3.23 3.60

CSI-PAQR 100 35.62 4.71 5.76 3.18 4.03
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Figure 10: The boxplots of outlier detection for ten months in the winter of 2018 to 2020

4.4. Case study 3

The third case collects data at every 15 minutes from May 30, 2006 to June 3, 2006 in Mathematical

modeling competition of electrical cup of China of 2011 [59]. In this case, the wind power of previous 4

quarterly-hours are used as the input to forecast 15-minutes interval wind power data of June 3, 2006.

Because a large amount of outliers exist, the preprocessing method was applied first. The quartile method

found 15 outilers in the wind power data, namely 3.125% of the total data (15/480), which were then

transformed by the CSI function. The 15-minute wind power data and the modified data set are plotted in

Fig. 11. Based on the optimal CWC, the optimal parameters of CSI-SVQR are C = 2048, σ2 = 8, and the

parameters of SVQR models are C = 1024, σ2 = 2. Based on the optimal SSEmode, parameters C of SVQR

and CSI-SVQR are set to 2048 and 4096, respectively. The parameters σ2 of both models are 16.

The prediction errors of the compared models are drawn in Table 7. According to Table 7, the number of

the prediction errors of CSI-ϵ-SVR, CSI-ν-SVR and CSI-ELM is smaller than that of traditional ϵ-SVR, ν-

SVR and ELM methods. CSI-ELM is the best method out of the ten methods of point forecasting. CSI-GPR

is awarded the second best MAPE, though its RMSE is slightly less than GPR and CSI-ELM. CSI-RVFL also
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Figure 11: Wind power data from a wind turbine of China (top) and the comparison between the raw and

revised wind power data set of case 3 (bottem)

Table 7: Forecasting errors of ten point forecasting methods for the third case.

Methods MAPE(%) RMSE(%)

ϵ-SVR 7.63 14.27

CSI-ϵ-SVR 7.41 13.83

ν-SVR 7.02 13.68

CSI-ν-SVR 6.99 13.87

GPR 7.00 13.54

CSI-GPR 6.77 13.62

ELM 6.86 15.51

CSI-ELM 6.65 13.49

RVFL 6.95 13.58

CSI-RVFL 6.82 13.81
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Figure 12: PIs and mode of the CSI-SVQR based on the optimal CWC for China data set
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Figure 13: The diagram of probability density curves of the CSI-SVQR method based on the optimal

SSEmode for China data set

25



fails to acquire better RMSE compared to RVFL though its MAPE is smaller than that of RVFL. Tables 8

and 9 show the number of prediction errors, PICP and PINAW of the four probability density forecasting

methods. Similar to cases 1 and 2, the PICPs of all methods are also satisfied the preassigned confidence

level (95%). By comparing with the values of Table 8 based on the optimal CWC, CSI-SVQR obtains

the optimal PINAW and MAPE. The PINAW of CSI-PAQR is less than that of PAQR though the point

forecasting results of CSI-PAQR are better than PAQR. The RMSE of SVQR and CSI-SVQR evaluated

by Mode is less that of Median. This should be a normal phenomenon for it is hard to control the point

forecasting results when the optimal CWC is adopted as the objective function. In Table 9 , CSI-SVQR also

acquires the optimal PINAW and MAPE, when the optimal SSEmode is adopted as the objective function.

The point forecasting results of CSI-PAQR are superior to that of PAQR, but the quality of PI obtained

by CSI-PAQR is less than that of PAQR. Though PAQR achieves the highest PICP, its PINAW is close to

40%. It is obvious to discover that PAQR and CSI-PAQR have diffcults in achieving comprehensive perfect

results because it need drastically sacrifice PINAW in order to gain higher PICP and lower forecasting error.

CSI-SVQR can obtain more reasonable PINAW and point forecasting results based on a satisfied confidence

level (over 95%). Hence, the performance of CSI-SVQR is optimal.

Table 8: Comparison of four probability density forecasting methods based on the optimal CWC for the

third case.

Methods PICP(%) PINAW(%)
MAPE(%) RMSE(%)

Mode Median Mode Median

SVQR 95.83 29.25 7.9 8.28 19.87 18.46

CSI-SVQR 95.83 26.53 7.32 7.99 20.24 17.21

PAQR 100 30.04 7.81 10.34 18.53 23.18

CSI-PAQR 98.96 30.99 7.53 10.25 17.55 20.83

Table 9: Comparison of four probability density forecasting methods based on the optimal SSEmode for the

third case.

Methods PICP(%) PINAW(%)
MAPE(%) RMSE(%)

Mode Median Mode Median

SVQR 95.83 30.54 6.69 7.53 13.21 15.49

CSI-SVQR 95.83 27.24 6.44 7.72 13.37 16.11

PAQR 98.96 39.4 6.68 11.37 15.32 22.65

CSI-PAQR 96.88 40.56 6.58 8.29 14.65 17.79
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As shown in Fig. 12 based on the optimal CWC, the actual values fall between the upper and lower

bounds with a high probability, and the proposed CSI-SVQR model achieves a higher point prediction

accuracy than the existing wind power forecasting methods. Based on the optimal SSEmode, Fig. 13 shows

the curves of wind power probability density distribution at the selected 8 quarterly-hours (00:00, 03:45,

06:30, 09:45, 12:00, 15:45, 19:30 and 23:45) on 3 June 2006. It is clear that all test samples follow the

probability density curves, and are near the peak of curves.

4.5. Wilcoxon signed rank test for performance evaluation of CSI

To validate the effectiveness of CSI, two-sample Wilcoxon signed rank test (also called Mann-Whitney

test) [60] is used to contrast the performance of different forecasting methods with and without the use of

CSI. One-sided hypothesis test with the significance level of 5% is employed. The obtained MAPE values

are divided into two pairs of samples. One set of samples records the MAPE of ϵ-SVR, ν-SVR, GPR, ELM,

RVFL, SVQR (mode), and PAQR (mode); another one records the MAPE of these methods with the use of

CSI. The null hypothesis is that the average MAPE of compared methods without the use of CSI is equal to

the paired methods using CSI. The alternative is that the average MAPE of compared methods without the

use of CSI is greater than the paired methods using CSI, namely CSI can improve the forecasting accuracy

of different methods. Cases 2 and 3 are conducted to evaluate CSI. The calculated p-values are 0.01776

and 0.007813, respectively. Because the p-values are less than the significance level, the null hypothesis is

rejected. It means that CSI can significantly improve the prediction accuracy of the methods adopted.

4.6. Test based on out-of-sample data

In order to test the performance of selected hyper-parameters in SVQR and CSI-SVQR, we extend the

experiment to out-of-sample data. For case 2, SVQR and CSI-SVQR are used to forecast wind power of

next week (from June 29, 2014 to July 5, 2015), when the optimal C and σ2 are certain. It’s worth noting

that the maximal power (1821MW) in this week is more than the one (1703MW) of original data. Hence, it

can be used to detect the impact of the extreme value on the proposed method. From the results based on

the optimal CWC in Table 10, the PINAW of CSI-SVQR is narrower that that of SVQR (namely, the basic

target can be met.), but their PICPs are all lower than predefined confidence level, and the mode point

forecasting results are not better than that of median. From Table 11, when the optimal SSEmode is adopted,

all metrics of CSI-SVQR except RMSE are less than that of SVQR though the target where the mode is

greater than the median can be satisfied. To comprehensively measure the generalization performance of the

proposed probability density prediction method, the MAPE and RMSE evaluated by probability mean of

the probability density function (referred to as ”Mean” ) introduced in [12] are shown in Tables 10 and 11.

Then, the optimal MAPE can be obtained from CSI-SVQR.
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For case 3, SVQR and CSI-SVQR are used to forecast wind power of 96 points of next day (June 4,

2006). Tables 10 and 11 show that the interval prediction and mode point forecasting results of CSI-SVQR

are significantly better than that of SVQR, although the PICP is hard to satisfy the confidence level. The

point forecasting performance of probability mean is better than mode and median. As for as the metric of

the optimal CWC, the MAPE and RMSE of CSI-SVQR based on probability mean are better than that of

SVQR. But, if the optimal SSEmode is adopted, two methods have same MAPE in probability mean, and

the RMSE of CSI-SVQR based on probability mean is slightly less than that of SVQR.

On the whole, for the out-of-sample data, the PICP of SVQR and CSI-SVQR can not keep the predefined

confidence level because of the impact of the cumulative error. The main metrics of CSI-SVQR are better

than that of SVQR.

Table 10: Forecasting results of SVQR and CSI-SVQR based on the optimal CWC for out-of-sample data

Data sets Methods PICP PINAW
MAPE (%) RMSE (%)

Mode Median Mean Mode Median Mean

Case 2
SVQR 86.90 16.33 6.60 5.38 5.55 3.94 2.73 3.05

CSI-SVQR 86.31 14.71 5.71 5.60 5.29 3.34 3.72 3.22

Case 3
SVQR 88.54 35.63 11.44 12.62 10.84 31.59 33.50 27.37

CSI-SVQR 91.67 34.47 10.76 11.51 10.13 27.04 27.73 24.30

Table 11: Forecasting results of SVQR and CSI-SVQR based on the optimal SSEmode for out-of-sample

data

Data sets Methods PICP PINAW
MAPE (%) RMSE (%)

Mode Median Mean Mode Median Mean

Case 2
SVQR 93.45 22.23 4.32 4.67 4.15 1.86 2.14 1.75

CSI-SVQR 92.86 23.14 4.41 5.36 4.11 1.83 2.84 1.70

Case 3
SVQR 91.67 36.93 10.92 10.69 10.10 27.75 25.07 23.65

CSI-SVQR 93.75 36.04 10.60 11.23 10.10 27.62 26.42 24.16

4.7. Discussion on calculation time

The running time of the algorithm is also a problem worthy of attention. Probability density forecasting

methods construct probability density functions by means of the forecasting results under different quantiles,

which need to spend more training time. Generally speaking, it is meaningless to compare the running time

of point prediction method and probability density forecasting method. In this paper, all the algorithms

were repeated 10 times on a 3.20-GHz-based Intel six-core processor (i7-8700) with 32 GB of random access
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memory. The running time of CSI is only 0.06s. The speed of PAQR and CSI-PAQR are not obviously

affected by the data size, because they use spline function to directly fit the prediction model. In all three

cases, the average computing time of two PAQR method is about 1.5 seconds (ranges from 0.65 to 2.46

seconds), when the degree of freedom (it must be a positive integer ) of the spline function is given. The

presented SVQR and CSI-SVQR search parameters C and σ2 on a 14*14 grid, consuming a lot of computation

time. The parameters of SVQR is predefined by trial and error in the previous work [37], which is compared

with PAQR given the degree of freedom. The average calculation time of two SVQR methods for three cases

is shown in Table 12. It is obvious that the computing time of SVQR-typed methods increases significantly

with the increase of the amount of data in the training sample. The speed of CSI-SVQR is slightly faster

than that of SVQR, because CSI improves the quality of data with lower computing cost. In case 1, the

speed of SVQR predefined parameters is close to that of PAQR. But in cases 2 and 3, it significantly slower

than PAQR.

Table 12: Calculation time of SVQR and CSI-SVQR for three cases

Data sets Methods
Calculation time(s)

Grid search Predefined

Case 1 SVQR 80.33 0.67

Case 2
SVQR 1119.34 14.51

CSI-SVQR 1107.34 13.46

Case 3
SVQR 566.44 4.28

CSI-SVQR 563.83 3.63

5. Conclusion and future work

In this paper, a wind power probability density forecasting method based on CSI-SVQR is presented.

It can handle uncertainty in training data better than other methods from the perspective of probabilistic

interval prediction and point prediction, respectively. To detect and transform the outliers in the data,

this paper proposes to use the quartile method and CSI function to preprocess the data first, and SVQR

is then employed to build predictive models, in which the Epanechnikov kernel function is used to produce

probability density functions.

Simulation experiments show that the proposed method has the following advantages. In case study 1

without outliers, SVQR is superior than PAQR and five point forecasting methods. In cases 2 and 3 with

outliers, CSI can inprove the accuracy of all compared algorithms. Classical point prediction methods can

also obtain very low of RMSE and MAPE values for the comparative experiments are all based on the

optimal parameters. When the optimal SSEmode is selected as the objective function, all probabilistic point
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forecasting results are superior in terms of Mode values. However, the results in terms of Median values

may be better than that of Mode, if the optimal CWC is considered as the objective function. That is

probably because the probability density forecasting method mainly focuses on quantitatively analysing the

uncertainty of PIs, which is difficult to justify the best point forecasting metrics unless a coercive strategy is

adopted. Compared with the traditional methods, CSI-SVQR can produce more accurate point prediction

results and PIs. In addition, CSI-SVQR presents higher PICP and narrower PINAW than SVQR. Meanwhile,

the overall performance of CSI-SVQR is superior to that of PAQR and CSI-PAQR whether using the optimal

CWC criterion or the optimal SSEmode criterion. When SVQR and CSI-SVQR are used to forecast out-

of-sample wind power data, the performance of CSI-SVQR is slightly better than SVQR, though the PICP

of them can not satisfy the predefined confidence level. In addition, CSI-SVQR reduces the computation

time of SVQR, which is also a obvious advantage of CSI-SVQR.

In the future studies, we will look into the following problems that have not been solved: 1) There

are plentiful advanced QR methods. Hence, it is worth exploring probability density forecasting based on

other QR methods to find better results. 2) Some other factors have an impact on wind power forecasting,

such as temperature, wind speed, wind direction and humidity, which should be considered. 3) There is a

trade-off between PICP and PINAW. A better objective function will be proposed and studied to balance

the trade-off. 4) Last but not the least, intelligent optimization algorithms will be considered to find the

optimal parameters in CSI-SVQR.
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