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Abstract We propose a broad framework for individual choice under risk which can
accommodate many stochastic formulations of various deterministic theories. Using
this framework to guide an experimental design, we show that most individuals’
departures from the independence axiom cannot be explained by adding a ‘random
noise’ term to a deterministic ‘core’ theory which incorporates this axiom. We also find
behaviour that cannot be explained in terms of the standard assumptions of Cumulative
Prospect Theory, often invoked to account for violations of independence. Our results
suggest that ‘similarity’ effects may explain the data better.

Keywords Independence axiom . Stochastic choice . Expected utility theory .

Prospect theory

JEL Classifications C81 . C91 . D81

1 Introduction

Expected Utility Theory (EUT) and many of the most influential alternative decision
models developed during the past 40 years are normally expressed in deterministic
form.1 However, when we wish to fit them to data and/or seek to use experimental
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1 There are nowmany such alternatives: Prospect Theory (Kahneman and Tversky 1979); various rank-dependent
expected utility models (e.g., Quiggin 1982) and the reformulation of prospect theory in rank-dependent terms
(Tversky and Kahneman 1992); Machina’s (1982) Generalized Expected Utility Theory; Regret Theory (Bell
1982; Loomes and Sugden 1982); Disappointment Theory (Bell 1985; Loomes and Sugden 1986); similarity
models (Rubinstein 1988; Leland 1994); andmore besides—see Starmer (2000) and Sugden (2004) for reviews—
although more variants have appeared since. We shall refer to models expressed in deterministic form as ‘core’
theories.
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evidence to test and discriminate between them, we have to make appropriate allow-
ance for the stochastic element in those data.

This presents us with a challenge, because there are a number of ways in which the
stochastic component might be specified; and the parameters we estimate and the
conclusions we draw from our tests may vary considerably depending upon the
particular specifications used (for a discussion of these issues, see Stott 2006;
Blavatskyy and Pogrebna 2010; and Chapter 6 in Bardsley et al. 2010).

Rather than try to work through a multiplicity of somewhat differentiated variants,
the strategy of this paper is to use a formulation that is sufficiently general that it is
compatible with a broad spectrum of combinations of deterministic core theories and
stochastic specifications. Within that framework, we report an experiment that allows
us to discriminate between at least some different combinations. As we shall explain, it
is not practicable to run the ‘ideal’ experiment, so the results and the strength of the
conclusions we can draw are necessarily limited by the practical constraints.
Nevertheless, we shall offer a design that others may adapt and extend in ways which
will build up a body of evidence that will allow further discrimination between, and
refinement of, descriptive decision models.

Meanwhile, the conclusions we draw from the experiment reported here can be
summarised as follows:

1. The great majority of participants do display some degree of seemingly stochastic
variability when making choices between simple lotteries: this underlines the need
to develop probabilistic models and experimental designs capable of investigating
them.

2. For many of these individuals, the patterns of response appear to diverge system-
atically from any model that requires (the equivalent of) the independence axiom at
its core.

3. It is not possible on the basis of these data alone to discriminate fully between all of
the various alternative core models that dispense with independence in one way or
another. However, there are indications that although Cumulative Prospect Theory
(Tversky and Kahneman 1992) has been widely adopted as the best alternative to
EUT, it is not well-supported by the data in this experiment. These data point
instead to the possibility that models which allow ‘similarity’ effects may organise
the data better.

The paper is arranged as follows. In the next section we set out the general
framework and discuss the issues we aim to examine. In Section 3 we describe the
experimental design and the more specific questions it is intended to address. Section 4
reports the results and our interpretation of them. The final section offers some
concluding remarks.

2 Modelling framework

Ever since the earliest attempts to use experiments to elicit people’s preferences over
risky alternatives, it has been clear that many people’s choices behave probabilistically
rather than deterministically. That is to say, when the same individual is presented with
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exactly the same tasks framed in exactly the same way on more than one occasion
within a fairly short period of time,2 he/she may answer differently in at least some of
those repetitions.

A striking early example was provided by Mosteller and Nogee (1951). Their Fig. 2,
reproduced below as our Fig. 1, plotted one individual’s responses to a task involving
14 repetitions of 7 different variants of a particular decision task where the individual
could either accept or refuse a bet involving a 1=3 chance of losing 5c and a 2=3 chance of
winning an amount shown on the horizontal axis—either 7c, 9c, 10c, 11c, 12c or 16c.

When the winning payoff was 7c, this individual never accepted the bet, whereas
when the winning sum was 16c, he always took the gamble. In between those two
amounts, the frequency with which he took the gamble was greater than 0% and less
than 100% and increased monotonically with the size of the prize.

So, without being specific about the possible source(s) of ‘noise’ in people’s
responses, 3 we take as a starting point a model where an individual’s underlying
preferences can be represented in the form of probability distributions and where it is
as if each choice is an observation drawn from such a distribution.

To adapt the idea in Mosteller and Nogee’s (1951) figure, and to provide a foretaste
of the experimental design in Section 3, consider a particular lottery B which offers a
0.8 chance of £40 and a 0.2 chance of zero, written briefly4 as B=(£40, 0.8); and
consider choices between B and various sure alternatives A=(xj, 1) where xj increases
in £2 steps from x0=£14 to x13=£40. In Fig. 2, the deterministic preferences of an
individual who is indifferent between B and a sure £26 are shown by the dashed step
function: for all xj<£26, she will always choose B and for all xj>£26 she will never
choose B, while for xj=£26, all probability mixes of A and B are equally good.

The continuous curve shows the underlying distribution for an individual with
probabilistic preferences. In this particular example, when the sure thing offers
£20 or less, the individual always chooses B, whereas when the sure thing offers
£34 or more, he never chooses B. But when A offers amounts between £20 and
£34, there is some chance that either A or B might be chosen. For example, when
presented with a choice between B and £22 for sure, there is a 0.95 chance he will
choose B; so if he made that choice 100 times on separate and independent
occasions, we would expect on average to observe him choosing the sure £22
on five of those occasions. Increasing the sure amount to £30 greatly increases the
likelihood that the sure sum will be chosen—to 93%—but there is still a 0.07
chance of choosing B.

2 In some experiments, the repetitions occur within a single experimental session. Other experiments have
asked participants to attend two or more sessions on different days within the same week, or perhaps over
several weeks. An advantage of spreading the repetitions over several days or weeks is that participants may
forget earlier answers and therefore treat each ‘round’ more freshly and independently. But there is generally
some attrition and possibly changes in people’s circumstances between sessions such that variation in their
responses is not random. There appears as yet to be no good evidence about the balance of advantage and
disadvantage in this respect.
3 In saying this, we are not suggesting that the source of variability in individuals’ responses is unimportant:
on the contrary, we think it will be an important question to address as part of the longer-term development of
descriptive models of human decision making. However, for our present purposes it is not necessary to
identify any particular explanation.
4 In this paper, all lotteries involve one positive payoff and zero otherwise: for brevity we omit the zero.
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Fig. 1 Diagram from Mosteller and Nogee (1951)

Fig. 2 Deterministic and probabilistic preferences
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Using Pr(A ≻ B) to denote the probability of choosing A from the pair {A, B}, we
shall refer to cases where Pr(A ≻ B) = Pr(B ≻ A)=0.5 as cases of stochastic indifference
(SI). In the example shown in Fig. 2, the SI point is where A offers £26 for sure.

There are various different ways in which we might ‘explain’ Fig. 2. At this stage,
we shall not go into detail about these different accounts, but simply note that all of
them are broadly consistent with the general pattern depicted in our Fig. 2.5 Nor should
anyone read anything very specific into the Fig. 2 illustration: the curve there happens
not to be symmetrical around the SI point, but at this stage we are not making any
strong assumptions either about symmetry or about the nature of any asymmetry.
Figure 2 happens to take a particular lottery as fixed and compares it with increasing
sure sums ranging along the horizontal axis; but we could also plot a function where the
A options are non-degenerate lotteries offering steadily improving prospects—for
example, we might have supposed A=(£100, p), with p increasing from (say) 0.1 by
increments of 0.05 to 0.75. In this latter case, the curve might well take a different shape
from the one shown in Fig. 2, but we might still not be surprised to find some lower
values of p such that B is always chosen, followed by some range where B is
progressively less likely to be chosen as p increases until we reach some higher values
of p such that B is never chosen.

However, taking the A options in Fig. 2 to be sure sums of money is convenient for
our current exposition because it allows us to consider how we might represent another
series of comparisons between lotteries C and D that are generated from A and B. Let
us take B and scale down the probability of the £40 payoff by a quarter in order to
generate D=(£40, 0.2); and let us take any A and scale down the probability of the sure
payoff by a quarter and substitute extra chances of zero in order to generate C=(xj,
0.25). According to the independence axiom of deterministic EUT, whatever preference
an individual has for {A, B}, he should have the corresponding preference for {C,
D}—replacing B by D and replacing the A options by the corresponding C lotteries
should leave the step function exactly as it is in Fig. 2.

But is the same true for a probabilistic formulation with EUT as its core? To begin to
answer this question, we need to be more specific about what is meant by ‘a probabi-
listic formulation with EUT as its core’.

At this stage, it may be sufficient to think in terms of a ‘strong’ formulation and a
‘weak’ formulation. A strong formulation would entail the whole distribution shown in
Fig. 2 being applied exactly as it is to the choices between D and different Cs. Various
stochastic specifications of EUT have this implication (see Luce and Suppes 1965); but
a weaker formulation requires only that the distribution for {C, D} has the same SI
point as the distribution for {A, B}. Weaker specifications allow the rest of the function
to be configured differently, as in Fig. 3 where the solid line depicts the probability
function for {C, D} while the dashed line superimposes the {A, B} distribution from
Fig. 2. Such specifications require only that Pr(A ≻ B)≥0.5 ↔ Pr(C ≻ D)≥0.5.

Consider a particular case where xj=£30 so that A=(£30, 1) and C=(£30, 0.25). In
this case, the two pairs {A, B} and {C, D} in our example constitute a format
popularised by Kahneman and Tversky (1979) to demonstrate what they called the

5 A thorough review of different variants of probabilistic models extant at the time was provided by Luce and
Suppes (1965). A more recent discussion can be found in Rieskamp et al. (2006). Most of the models covered
in these reviews are compatible with the representation in Fig. 2.
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common ratio effect (CRE). In terms of deterministic EUT, there are two ways of
‘violating’ the independence axiom in this example: namely, choosing the safer option
A in the scaled-up {A, B} pair while also choosing the riskier option D in the scaled-
down {C, D} pair; or else choosing the riskier B from the first pair while also choosing
the safer C from the second pair. The typical pattern found by Kahneman and Tversky
and replicated in many other experiments undertaken during the past 35 years is that the
A & D violation is exhibited by substantially more people than the B & C violation.
This asymmetry has been an influential part of the evidence against EUTas an adequate
descriptive model.

Figure 3 shows how such an asymmetry might—at least, up to a point—be
compatible with a probabilistic formulation of EUT. If (as in our example above) we
set the safer payoff at £30, we can see that Pr(A ≻ B)=0.93 while Pr(C ≻ D)=0.74, so
that if each choice is made separately and independently, Pr(A & D)=0.2418 while
Pr(B & C)=0.0518. Translated to a sample of 100 individuals with probabilistic
preferences like those in Figs. 2 and 3, we would have some 24 ‘violations’ of the A
& D kind compared with just five of the B & C kind—an asymmetry that might appear
at first sight to be systematic and unlikely to have arisen by chance. The ‘unlikely-to-
have-arisen-by-chance’ judgment is often made on the basis of a null hypothesis that
both patterns ‘ought’ to be equally likely. But that is not the correct null in this case. It
would be the correct null for the ‘strong’ formulation that entails the whole distribution
being the same for both choice pairs; but as shown in relation to Fig. 3, such an
asymmetry could be entirely compatible with the ‘weak’ probabilistic formulation of
EUT.

However, notice two other implications of the weaker formulation depicted in Fig. 3.
First, there is a limit to the extent of the CRE pattern. If the SI point is the same for {A,

Fig. 3 Possible distributions for ‘Scaled-Up’ and ‘Scaled-Down’ Lotteries
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B} as for {C, D}, it cannot be that Pr(A ≻ B)>0.5 while Pr(C ≻ D)<0.5: that is, for a
sample of individuals like the one in the example, we should not expect to see a reversal
of themodal choice of the kind that has been reported in at least some studies, including
Kahneman and Tversky (1979).

Second, if Fig. 3 were an adequate representation of a typical individual’s
preferences, it should be possible to set the parameters in such a way as to
produce a pattern which shows the opposite asymmetry. Consider the case where
xj is set at £22 and label the alternatives to B and D as E=(£22, 1) and F=(£22,
0.25). Reading off from Fig. 3, this would entail Pr(E ≻ B)=0.05 while Pr(F ≻
D)=0.28, so that Pr(E & D)=0.036 while Pr(B & F)=0.266—an even greater
asymmetry, but now the other way round. Such ‘reverse-CRE’ patterns have
seldom been reported 6—although, for exceptions, see Blavatskyy (2010) and
Loomes (2010).

On the other hand, how might things look if the probabilistic model has a core
which dispenses with the standard independence axiom? In particular, suppose we
take one of the deterministic models where those who are indifferent between A
and B have a strict preference for D over C. One possibility is shown in Fig. 4,
where the dashed line shows the original distribution from Fig. 2 with the SI point
for {A, B} at xj=£26, while the solid line depicts a distribution for the {C, D} pair
where the SI point occurs when xj is just under £31. In this particular example,
when the solid line is between 100% and 0% it is everywhere above the dotted
line. This would allow the modal choice to switch for all values of xj between £26
and just under £31. But in this example there would never be any reverse-CRE
patterns: even at lower levels of xj such as £22 and £24 the asymmetry would be
in the usual direction.

Of course, other combinations of non-EU core and probabilistic preferences are
possible. For example, if the SI point for the {C, D} pair were when xj is £28, and
if the curve were generally flatter, as in Fig. 5, we could produce the standard
CRE with a switch of mode when xj lies between £26 and £28 and asymmetries of
the usual kind when xj is greater than £28. However, there would be no effect
either way at xj=£24; and reverse-CRE patterns would be liable to occur at lower
values of xj.

All in all, then, ‘snapshots’ involving a particular value of xj—with that particular
value possibly being selected by the experimenter in order to produce a strong effect of
a particular kind—may not give us sufficient information to distinguish between
alternative models, especially if each choice is presented only once to each individual.
It would be useful to try to get some richer picture of the kinds of distributions depicted
in the Figures discussed and to see how/whether their shapes and/or locations change as
we alter the parameters of the lotteries. In the next section, we describe how we
attempted to do that.

6 To some extent this lack of evidence might be due to some selection bias, of two kinds. First, those who wish
to reproduce the standard effect in order to study it may choose the parameters most likely to generate it.
Second, it might be that those who fail to produce the ‘expected’ effect are deterred from submitting their work
for publication or are more likely to have it rejected. For either of these reasons—or perhaps simply because
the reverse-CRE really doesn’t occur very often—it is widely believed that the ‘usual’ CRE is a very robust
regularity.
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3 Experimental design

In principle, for any given B we should like to identify the range of xjs that would cover
the space from the highest xj where B is still chosen with probability (very close to) one

Fig. 4 Probabilistic preferences for a non-EU core

Fig. 5 A non-EU core with a flatter distribution
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across to the lowest xj where B is (almost) never chosen.7 Within that range, we should
ideally like to have enough {A, B} pairs each repeated enough times (with each choice
independent of all earlier presentations of the same pair) to provide a good estimate of
the curve in question.

Bearing in mind that any sample is likely to involve some degree of heterogeneity
between individuals, one might like in this case to have at least 20 different xj values no
more than £1 apart with perhaps 10 repetitions of each pair, giving a total of 200
questions just for the {A, B} comparison. If we had the same number of questions for
the {C, D} comparison, and if we interspersed a number of other rather different pairs
to try to provide more variety and greater separation and independence between
repetitions, this could easily raise the total number of questions to between 600 and
800. However, a design involving so many choices might be far too onerous and
tedious to produce high quality data. Drawing on our own experience and advice from
colleagues, we worked on the basis of a maximum of 200 questions, with just under
half of these involving binary choices of the {A, B} and {C, D} form.8

Informed by a small pilot study, we opted for two ‘treatments’ to study the CRE,
which we shall label CRESUMS (in which we varied the sums of money offered by the
safer options) and CREPROBS (in which the probabilities in the riskier options were
varied).

3.1 The CRESUMS questions

These questions aimed to obtain data about the kinds of choices discussed in
relation to Figs. 2, 3, 4 and 5. That is, lottery B offered a 0.8 chance of £40 while
the A options offered 11 different sure amounts from £16 to £36 inclusive, with £2
intervals between them. Likewise, lottery D offered a 0.2 chance of £40 while the C
options offered the 11 different sums from £16 to £36 with probability 0.25. The 11
{A, B} and 11 {C, D} pairs were shown in random order, interspersed with other
choices involving quite different parameters, and presented in four ‘waves’ within
each experimental session so that every choice was made on four separated occa-
sions. Pairs were displayed as in Fig. 6, where the upper panel shows a choice
between B=(£40, 0.8) and A=(£30, 1), while the lower panel shows the corre-
sponding scaled down pair with D=(£40, 0.2) and C=(£30, 0.25). We also repro-
duce the text that accompanied each display.

We opted for this way of displaying alternatives in order to try to strike a
compromise between the ‘decision by description’ and ‘decision by experience’
approaches. A growing literature9 suggests that when people form an estimate of
probabilities on the basis of some sampling experience, they may behave differently

7 Even in cases where one option transparently dominates the other, it has been observed that in a small
proportion of cases—typically 1–2%—the dominated alternative is chosen. This is often regarded as a ‘pure’
mistake—a lapse of attention that results in the individual recording what he or she would normally agree is
the opposite of what was intended. Our Figures omit such ‘trembles’—but we know that a small minority of
responses will inevitably be of this kind.
8 Details of the other questions are available from the authors. Also, those who wish to ‘participate’ in the
experiment can access it via http://gvp4c7.experimentaltoolbox.com/210 and http://gvp4c7.
experimentaltoolbox.com/211 for the two treatments of the experiment.
9 A good selection is listed at http://dfexperience.unibas.ch/literature.html
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from when the probabilities are merely stated in decimal or percentage form without
the opportunity for participants to get some ‘feel’ for them. The large number of
decisions in our design made it impossible to ask people to learn the probabilities
for each choice by sampling, but by showing the distributions of balls that give
positive or zero payoffs in a format that allowed probabilities to be easily seen and
compared, we hoped to provide a visual proxy for experience by showing exactly
what each option would actually involve in terms of the 20 balls that would be put
into a bag when one of the choices came to be played out for real.

Some might think that such a format favours EUT (or any other model that
supposes preferences to be linear in the probabilities), since the display may be
regarded as emphasising such proportionality. However, the format does no more or
less than show precisely what each option entails. If EUT is indeed the best model
of people’s core preferences, there is every chance for it to perform well, whereas if
some other model provides a better core, such a model should have the capacity to
organise the data generated in this experimental environment.

In addition to the 44 binary choice questions for {A, B} and the corresponding 44
for {C, D}, we also presented participants with other binary choices involving very
different parameters, and also different formats involving multiple price lists. These
questions served to provide variety and separate the repetitions with which we are
concerned in this paper.

B=(£40,0.8) versus A (£30,1)

(b)

(a)

D=(£40,0.2) versus C=(£30,0.25)

Fig. 6 Screenshots of questions used in the experiment
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3.2 The CREPROBS questions

The CRESUMS questions involve what might be thought of as ‘classic’ CRE param-
eters: a 0.8 chance of the high payoff versus an intermediate certainty in one pair, with
both of those probabilities scaled down by a quarter for the other pair. We used those
parameters in order to establish (a) whether the classic CRE does in fact occur under
conditions of repeated binary choice between alternatives presented as in Fig. 6, and (b)
whether the patterns of response are compatible with an EU core as in Fig. 3, or with
some non-EU core as in Figs. 4 and 5.

One of the consequences of the seeming robustness of the CRE pattern of behaviour
has been to stimulate theorists to produce a variety of models which account for those
patterns in different ways—recall the examples given in footnote 1. We could not hope,
within a single experiment, to investigate thoroughly all of the different possible
accounts of the CRE; but we used the CREPROBS questions to look at two types of
model that explain the pattern in ways that are sufficiently different that we can try to
discriminate between them.

Instead of holding constant the high payoff and fixing the ratio of winning proba-
bilities at 0.8 and varying the size of the intermediate payoff, in this treatment we held
constant both the intermediate and high payoffs (at £20 and £40 respectively) and
allowed the ratios of probabilities to vary. We presented one series of choices in which
the certainty of £20 was compared with (£40, p) with p varying from 0.1 to 0.9 in
increments of 0.1. Another series scaled all of these down by half: that is, (£20, 0.5)
was compared with (£40, q) with q varying from 0.05 to 0.45 in increments of 0.05. A
third series involved probabilities scaled to a quarter of their original level, so that (£20,
0.25) was compared with (£40, r) with r varying from 0.05 to 0.2 in increments of 0.05.
Overall, then, there were 22 different pairs, shown in random order mixed in with other
choices and presented in four different waves.

Such a design allows us to examine whether the standard direction of CRE pattern
occurs; and if it does, it offers the possibility of seeing whether the pattern is consistent
with what we might expect from the kind of weighting function proposed in Tversky
and Kahneman’s (1992) Cumulative Prospect Theory (CPT) or whether it seems more
compatible with a similarity-based explanation.

We start with CPT. There are four ‘common ratios’ of probabilities that we can track
through the three degrees of scaling. However, hardly any participants chose the risky
lottery at any level of scaling when the ratio was 0.2:1, so we focus on the three
common ratios as shown in Table 1.

The key idea in CPT is that the overall subjective value of any lottery is the weighted
average of the subjective values v(.) of each payoff, with the weights being some
nonlinear transformation of the stated probabilities of receiving those payoffs. The
columns in Table 1 show the ratio of decision weights when the probabilities are
transformed according to the weighting function estimated in Tversky and Kahneman
(1992).10 According to CPT applied to the present choices, the value of the safer option
will be greater than, equal to, or less than the value of the riskier option if and only if

10 We report the figures from that particular function where the key coefficient γ was estimated to be 0.61, but
the same general point holds for other estimates of γ in the range between 0.5 and 0.7, which is the range most
commonly reported / asserted.
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the ratio of the subjective values of the intermediate and high payoffs—i.e., v(£20)/
v(£40)—is greater than the ratio of the weights as shown in any particular cell in
Table 1. For example, when an individual is presented with the choice between (£20, 1)
and (£40, 0.6), she will be indifferent between the two (or, when put probabilistically,
will be stochastically indifferent between the two) when her v(£20)/v(£40)=0.474;
hence she will be more likely to choose the certainty if her v(£20)/v(£40)>0.474 and
more likely to choose the riskier option if her v(£20)/v(£40)<0.474.

What Table 1 shows for all three common ratios is that if there is to be any
substantial increase in the likelihood of choosing the riskier option, it will come when
the probabilities are scaled down by the ‘first’ half—i.e., when going from the pairs
involving (£20, 1) to those involving (£20, 0.5)—since there is a considerable increase
in the ratios of weights over this range in all three columns. For example, anyone whose
v(£20)/v(£40) lies between 0.474 and 0.757 would move from having a greater than 0.5
probability of choosing the safer option in the {(£20, 1), (£40, 0.6)} pair to
having a greater than 0.5 probability of choosing the riskier option in the {(£20,
0.5), (£40, 0.3)} pair. However, within each column the ratio of weights changes
much less when scaling down from pairs involving (£20, 0.5) to those involving
(£20, 0.25). Thus there is likely to be much less of an increase in the probability
of choosing the riskier option over this range of scaling down: only those whose
v(£20)/v(£40) lies between 0.757 and 0.780 would move from having a greater
than 0.5 probability of choosing the safer option in the half-scaled case to a
greater than 0.5 probability of choosing the riskier option in the quarter-scaled
case. Much the same applies (albeit at different levels) to the other common
ratios in Table 1.

By contrast, the similarity account offered by Rubinstein (1988) might be expected
to give a different pattern. That account can be summarised as follows. When the
alternatives are sufficiently different on both the payoff and the probability dimension,
many people act more or less like risk averse EU maximisers, choosing the safer option
as long as its expected value is not too much lower than the expected value of the
riskier option. However, as the probabilities are progressively scaled down and become
more and more similar, a point is reached when the difference between those proba-
bilities is judged ‘inconsequential’, so that the probability dimension is ignored and the
payoff advantage of the riskier option now becomes decisive. Although the model does
not specify where this switching threshold occurs, it suggests that there is more
likelihood of similarity-based action as the scaling factor goes from 0.5 to 0.25 than
when it goes from 1 to 0.5.

So the CREPROBS questions were intended to explore behaviour that might shed
some light upon the respective claims of the ‘probability-transformation’ and

Table 1 Ratios of decision weights for various common ratios

Common ratio=0.8 Common ratio=0.6 Common ratio=0.4

£20, 1 w(0.8)/w(1)=0.607 w(0.6)/w(1)=0.474 w(0.4)/w(1)=0.370

£20, 0.5 w(0.4)/w(0.5)=0.880 w(0.3)/w(0.5)=0.757 w(0.2)/w(0.5)=0.620

£20, 0.25 w(0.2)/w(0.25)=0.897 w(0.15)/w(0.25)=0.780 w(0.1)/w(0.25)=0.641
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‘similarity’ accounts and/or might stimulate designs for further attempts to discriminate
between probabilistic versions of these or other non-EU core models.

4 Implementation and results

4.1 Implementation

We recruited 148 participants through the online recruitment system of the Decision
Research at Warwick (DR@W) Group in the University of Warwick. Each participant
received an invitation with detailed instructions along with a link to the online
experiment. Participants were invited to complete the online experiment in their own
time by a specified deadline. Each invited participant was assigned a unique ID
number. This number was automatically copied as a password to the experimental
interface. This insured that (a) only invited participants could take part in the experi-
ment and (b) none of participants could take part more than once. The experiment was
computerised using the Experimental Toolbox (EXPERT) online platform—see foot-
note 8 for links.

Each participant completed a total of 192 questions organised into five parts. One
hundred eighty of the questions were some form of lottery-based task, mixed up and
spread between parts 1, 3, and 5. Parts 2 and 4 consisted of quite different types of
task. Each of these parts consisted of six hypothetical questions of the type used in
the Domain Specific Risk Attitude (DoSpeRT) procedure (Blais and Weber 2006).
In part 2 (part 4) we offered participants six activities which involved financial
(health and safety) risks and asked them to indicate how likely they are to engage in
each activity on a scale from one (highly unlikely) to seven (highly likely). At the
end of the experiment, all participants were given individual feedback about their
self-reported risk attitudes based on their answers in part 2 and part 4. These two
parts created distractor tasks for our participants which allowed us to separate
repetitions of the incentivised questions. Overall, 180 questions in parts 1, 3, and
5 were incentive-compatible while the 12 DoSpeRT questions in parts 2 and 4 were
hypothetical.

The incentive mechanism was as follows. On the date of the specified deadline, 100
participants were selected at random from all participants who completed the experi-
ment on time. 11 These randomly selected participants were invited to the DR@W
experimental laboratory for individual scheduled appointments. One of the 180 lottery-
based questions was picked at random and independently for each participant and was
played out for real money. There was no show-up fee and the instructions made it clear
that the participant’s entire payment depended on how her decision played out in the
one randomly-selected question.

If the participant had chosen some sure amount of money, she would simply receive
that amount. If she had chosen a lottery, she would see an opaque bag being filled with

11 This experiment was in fact one of two being conducted in parallel using the same methodology. The other
was concerned with examining the ‘preference reversal phenomenon’ and is described in a separate paper,
Loomes and Pogrebna (2014), available on request. In total, 249 individuals participated in one or other of the
experiments, and the 100 who played a decision for real were drawn at random from the 249.
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the numbers of red and black balls (actually, coloured marbles) specified in the
question. She then picked a marble at random and was paid (or not) accordingly.

The incentive mechanism was described to all participants in the instructions.
Participants also received a practice question and had an opportunity to e-mail the
experimental team in case they were not clear about the instructions. It took most
participants 30–40 minutes to complete the online experiment. Each individual ap-
pointment in the DR@W laboratory lasted between 3 and 5 minutes. The average
payoff in the experiment was approximately £12.

4.2 Results

Perhaps the greatest concern about the data generated by this experiment is that four
repetitions of each pair may be too few to obtain a really good fit for any curve.
However, the majority of laboratory experiments with human participants will face
practical constraints on the number of observations per individual and it is important to
develop a method which can provide a good account of behaviour using a limited
number of observations. So, rather than try to fit particular curves to each participant’s
sets of responses, we adopt a different approach.

Consider Fig. 7, which shows on the horizontal axis the different values of xj in the
CRESUMS questions, while the vertical axis measures the numbers of times B is
chosen in any four repeated pairings with the same xj.

The circles plot what we should expect to observe for an (illustrative) individual
with deterministic preferences who is indifferent between B and some sure sum
between £24 and £26: they will choose B on every occasion when xj is less than or
equal to £24 and never choose B when xj offers £26 or more. We cannot identify the
precise point of indifference, but we might proxy it as the midpoint—i.e., £25. In other
words, when we count B being chosen a total of 20 times in this pattern, we take this to
correspond with a best estimate of £25 for the point of indifference. Even if the truth is
that the individual does not have deterministic preferences but his underlying proba-
bility of choosing B falls below one for some xj greater than £24 and drops quite
steeply to become zero for some xj less than £26, it would still seem that the best we
can do in the absence of any more detailed information is suppose that the best
available estimate of his SI point is £25.

Were we to observe another seemingly deterministic individual choosing B just 16
times (i.e., always choosing B when xj is less than or equal to £22 and never choosing
B when xj is £24 or more), our best estimate of the indifference value would be £23.
Thus a difference of four in the B count corresponds with a difference of £2 in the SI
point.

Now compare that with the (illustrative) individual whose responses are plotted as
stars. She exhibits some variability for values of xj between £22 and £30 inclusive: that
is, for each of these pairs, she chooses the lottery on at least one occasion and also
chooses the sure amount on at least one other occasion. For ease of exposition, the
pattern shown here is symmetric around a best estimate of the SI point at xj=£26. The
B option is chosen a total of 22 times according to the stars in Fig. 7: that is, this
individual chooses B twice more than the individual represented by the circles who had
an indifference/SI point estimated at xj=£25. So here too the number of times the fixed
bet is chosen can act as the basis for estimating the SI point. Also, as a proxy for the
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steepness/shallowness of the underlying probabilistic distribution, we can count the
number of different xj values for which some variability is observed: in Fig. 7, the
deterministic individual scores 0 in this respect, whereas there are five such values (£22
to £30 inclusive) for the other individual. There will, of course, be some sampling error
for such measures; but our sample sizes in conjunction with the within-subject nature of
key parts of the analysis will still allow us to draw a number of conclusions.

We first consider the evidence concerning stochastic variability with respect to the
22 binary choice questions which are the focus of this paper. For each individual, we
can count the number of pairs where some variability was exhibited: that is, where each
alternative in that pair was chosen at least once in the course of the four repetitions.
Table 2 shows how many of the total of 148 participants fell into each count category.

So out of 148 participants, the first column shows that there were 19 individuals who
exhibited no variability: in these 22 pairs they chose the same option on all four
occasions that each pair was presented to them. It is possible that at least some of
thesemight have exhibited stochastic variability if the increments had been smaller than
£2; but even if we take all 19 as having very precise step-function preferences, this only
amounts to 13% of the sample. Another 11 only exhibited variability within a single
pair, while 19 individuals made different choices within two pairs; and so on. The
median and modal number of instances of within-person variability is four and the
mean is 4.5 (reducing to 4.1 if we exclude five top-end outliers who accounted for 75
instances between them). So some degree of stochastic variability is quite typical.

Fig. 7 Comparing deterministic and probabilistic responses

Table 2 Deterministic and stochastic choice patterns for 148 participants in the experiment

Pairs where each option was chosen at least once 0 1 2 3 4 5 6 7 8 9 10 >10

Numbers of Individuals 19 11 19 20 21 15 7 8 8 6 4 10
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4.2.1 Analysis of CRESUMS responses

Eighty-one individuals participated in this treatment. We first consider whether or not
the standard CRE pattern is observed in those pairs which involved the classic
parameters. To this end, we take the pair A=(£30, 1) and B=(£40, 0.8) and their
scaled-down counterparts C=(£30, 0.25) and D=(£40, 0.2) and consider the various
combinations for each of the four waves of binary choices, denoted by BC1 through
BC4 to show the chronological order. Table 3 shows the results.\

Although there was variability at the individual level, the aggregate patterns were
quite stable across rows in the table and replicated the usual CRE pattern very clearly:
although about half of all observations fell into the A&C and B&D columns and could
be regarded as consistent with EUT, the other half were either A&D or B&C, with the
asymmetry between these two being very pronounced—so much so, that in all four
rows the aggregate modal preference switched from A ≻ B to D ≻ C.

This is a stronger effect than can be explained by a configuration such as the one
shown in Fig. 3 where the SI is the same for {A, B} and {C, D} but where the slopes of
the functions are different. If we take as a proxy for those slopes the counts of pairs
where individuals choose each option on at least one out of the four presentations, we
find a similar pattern for {A, B} and {C, D}, as shown in Table 4.

Analysis at the individual level shows no systematic difference in within-person
variability between the two sets of 11 pairs: there is a positive and significant correla-
tion between the frequency with which an individual exhibits variability for the {A, B}
pairs and for the {C, D} pairs (Pearson r=0.467, p<0.01; Spearman ρ=0.528, p<0.01),
consistent with the idea that, by and large, the slopes of an individual’s underlying
probability distribution of preferences between the scaled-up pairs are not very different
from the slopes for the scaled-down pairs.

If this is the case, we should expect the CRE patterns in Table 3 to be explicable
primarily in terms of shifts in the locations of the SI points for many of the participants.
This is something we can examine up to a point by looking at the aggregate data.
Table 5 shows the numbers of times (out of a possible 81×4=324) that the riskier
option was chosen from the scaled-up pair {A, B} and from the scaled-down pair {C,
D} at each level of intermediate payoff. The conversion to a percentage is shown below
each figure.

These figures represent the summation of all individuals’ underlying preference
distributions and therefore do not give the kind of breakdown provided in Table 3, but
they do enable us to see that D is chosen more frequently than B at all values between

Table 3 Patterns in the four waves of binary choices (BCs) when A = (£30, 1), B = (£40, 0.8), C = (£30,
0.25), D = (£40, 0.2)

A : B C : D A&C B&D A&D B&C

1st wave (BC1) 59 : 22 21 : 60 20 21 39 1

2nd wave (BC2) 57 : 24 22 : 59 21 23 36 1

3rd wave (BC3) 61 : 20 17 : 64 15 18 46 2

4th wave (BC4) 56 : 25 20 : 61 19 24 37 1
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£16 and £36. There is no sign here of the reverse-CRE, even when the riskier option is
the modal choice in the scaled-up pair, as it is for all values of xj equal to or less than
£26.

To examine how far the patterns in Table 5 are due to shifts in different individuals’
underlying preference distributions, we proxy each individual’s SI point on the basis of
counting the total number of times the fixed riskier lottery was chosen in all 44 of his/
her binary choices across all 11 levels of xj. On that basis, we categorise participants
into three groups: those who chose D more often than B with a difference strictly
greater than 4, representing a shift in SI point that would on average be equivalent to at
least one £2 increment of xj; those for whom the difference in either direction was four
or less, who we might (if we were being cautious) regard as having ‘near enough’ the
same SI; and those who chose B more often than D with a difference strictly greater
than 4. On this basis we have a breakdown of 55 : 22 : 4—which is to say that more
than two-thirds of the sample exhibit repeated choice behaviour consistent with an SI
value of xj for the scaled-down pair which is more than £2 to the right of their SI value
of xj for the scaled-up pair.

12 In fact, for 39 of the 81 participants, the difference equates
to £6 or more.

In short, these data strongly reject stochastic versions of EUT that seek to explain the
CRE pattern simply in terms of a particular specification of the ‘random error’ term.13

Rather, the results for the clear majority of participants look much more consistent with
the kinds of patterns illustrated in Fig. 4.

However, if EUT does not provide an adequate core model, can the methods we
have used help to discriminate between at least some of the non-EU alternatives? The
other experimental treatment was designed to try to provide some guidance in that
respect.

4.2.2 Analysis of CREPROBS responses

Recall that the idea behind the design of this part of the experiment was to see whether,
as the conventional shape of the CPT weighting function would entail, most of any
switching from safer to riskier could be expected to occur when probabilities are
initially scaled down by half, or whether, as similarity-based accounts might suggest,
more switching could be expected when scaling down from a half to a quarter.

12 Table 7 in the Appendix shows a more detailed breakdown of the differences which are here grouped into
just three categories.
13 The null hypothesis that there is no difference between the number of individuals with an SI point for B to
the right of their SI point for D and the number of individuals with an SI point for B to the left of their SI point
for D is rejected by a binomial test, p<0.001.

Table 4 Numbers of individuals exhibiting different levels of within-person variability

Pairs where each option was chosen at least once 0 1 2 3 4 5 6 7 8 9 10 11

{A, B}: Numbers of Individuals 24 16 9 14 6 4 2 4 1 1 – –

(C, D}: Numbers of Individuals 29 14 10 9 6 2 3 4 1 – 2 1
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We keep the labels A and B for the fully scaled-up pairs, where in this treatment A
stays fixed at (£20, 1) and B offers different probabilities of £40. As explained in
Section 3.2, A was paired with nine different B lotteries, each repeated four times; but
for reasons also explained in Section 3.2, we concentrate here on three levels of three
common ratios and report the rest of the data in the Appendix. So our focus here will be
upon the 12 choices where Awas paired with B1=(£40, 0.8), B2=(£40, 0.6) and B3=(£40,
0.4), since these are the three Bjs that we can track at the different degrees of scaling
discussed in relation to Table 1. We also keep the labels C and D for the quarter-scaled
pairs. C was fixed at (£20, 0.25) and we consider the 12 choices involving C being paired
four times with each of D1=(£40, 0.2), D2=(£40, 0.15) and D3=(£40, 0.1).

However, the CREPROBS treatment introduced an intermediate level of scaling
down. So at the half-scaled level, we denote the fixed safer option by Y=(£20, 0.5),
while the three riskier lotteries of interest are denoted by Z1=(£40, 0.4), Z2=(£40, 0.3)
and Z3=(£40, 0.2), with each {Y, Zj} pair presented four times. To study the effect of
going from fully scaled up to half scaled down, we can compare the number of times
out of 12 that each individual chose A from {A, Bj} with the number of times the same
individual chose Y from the 12 corresponding half-scaled-down {Y, Zj} pairs.

Table 6 shows the stability of the aggregate patterns across all four waves BC1 through
BC4. It also shows that when we compare the responses to the fully scaled-up {A, B}
pairs with the responses to the quarter scaled-down {C, D} pairs, the usual shift from safer
to riskier options is observed, especially for the probability ratios 1 : 0.8 and 1 : 0.6.

However, the data in Table 6 suggest that these switching patterns were not primarily
due to underweighting higher probabilities, as the standard form of CPT would entail.
In all 12 rows of the table, moving from {A, Bj} to {Y, Zj} never once resulted in an
increase in the numbers of riskier options chosen: in two rows the numbers stayed the
same and in the other ten there was actually an increase in the numbers of safer options
chosen. 14 By contrast, when comparing {Y, Zj} with {C, Dj}, the increase in the
numbers of risky options chosen is clear in all 12 rows and most pronounced in the top
eight where the options were more evenly balanced. While this is not easy to reconcile
with the standard CPT weighting function, it could be compatible with a similarity
account.

While Table 6 is useful in showing the aggregate patterns, our data also allow us to
examine shifts at the level of the individual participant. In each panel of Fig. 8, negative

14 In the Appendix, Table 8 shows the numbers and corresponding percentages of riskier choices for all pairs,
allowing us to see that the same tendency for more safe choices in the first phase of scaling down was also
apparent for the cases where 0.9 was scaled down to 0.45, where 0.7 was scaled down to 0.35, and where 0.5
was scaled down to 0.25. In short, it was a very consistent tendency.

Table 5 Choices of B (D) versus alternatives offering various intermediate payoffs

Intermediate £ 16 18 20 22 24 26 28 30 32 34 36

B Choices 256 247 216 205 184 167 157 91 51 44 21

% 79.0 76.2 66.7 63.3 56.8 51.5 48.5 28.1 15.7 13.6 6.5

D Choices 301 299 281 278 279 271 263 244 225 194 173

% 92.9 92.3 86.7 85.8 86.1 83.6 81.2 75.3 69.4 59.9 53.4
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differences represent choosing the riskier option more often in any set of 12 choices as
the probabilities are scaled down: that is, they represent movements in the ‘usual’ CRE
direction. Thus the black bars show the numbers of individuals exhibiting a particular
difference in the usual direction. Positive differences representing behaviour in the
reverse-CRE direction are shown in light grey.

Going from {A, Bj} to {Y, Zj} is the change that should, according to the conventionally
shaped CPTweighting function, produce most reversals in the standard CRE direction. But
on the basis of Fig. 8(a), we can see that substantially more individuals actually exhibited
the reverse-CRE for this change: overall, 35 had a positive difference consistent with
reverse-CRE while 17 had negative differences consistent with standard CRE and 15
exhibited the zero difference consistent with core independence. If our null hypothesis were
that those who do not conform with independence are equally likely to exhibit the standard
CRE pattern as the reverse-CRE pattern, we should reject that hypothesis at the 5% level in
favour of a tendency towards reverse-CRE. If we wished to allow a difference of ±1 to be
‘near enough’ to EUT, then the breakdown between reverse-CRE, independence and
standard CRE would be 22 : 31 : 14. In short, for the range of scaling down where the
conventional CPT weighting function would entail the most movement in the standard
CRE direction, we actually find some asymmetry in the opposite direction.

However, panel (b) in Fig. 8 shows a very different picture. When we compare half
scaled-down pairs with quarter scaled-down pairs, 54 individuals registered differences
in the usual CRE direction, while just 2 exhibited any reverse-CRE movement. Even if
we regard a difference of ±1 as ‘near enough’ to EUT, the ratio of standard-CRE to
reverse-CRE is still 39:1. It is in this panel that the really strong effects are seen—

Table 6 Aggregate patterns across repetitions and different degrees of scaling

{A, B1} {Y, Z1} {C, D1}

1 : 0.8 0.5 : 0.4 0.25 : 0.2

1st wave (BC1) 21 : 46 27 : 40 9 : 58

2nd wave (BC2) 20 : 47 24 : 43 13 : 54

3rd wave (BC3) 19 : 48 23 : 44 13 : 54

4th wave (BC4) 21 : 46 27 : 40 18 : 49

{A, B2} {Y, Z2} {C, D2}

1 : 0.6 0.5 : 0.3 0.25 : 0.15

1st wave (BC1) 51 : 16 53 : 14 36 : 31

2nd wave (BC2) 44 : 23 53 : 14 41 : 26

3rd wave (BC3) 53 : 14 53 : 14 36 : 31

4th wave (BC4) 52 : 15 55 : 12 42 : 25

{A, B3} {Y, Z3} {C, D3}

1 : 0.4 0.5 : 0.2 0.25 : 0.1

1st wave (BC1) 64 : 3 64 : 3 58 : 9

2nd wave (BC2) 64 : 3 67 : 0 61 : 6

3rd wave (BC3) 63 : 4 66 : 1 58 : 9

4th wave (BC4) 63 : 4 67 : 0 64 : 3
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effects which are much easier to account for in terms of similarity judgments than in
terms of the usual CPT configuration of probability weighting.

When the panel (a) and panel (b) trends are combined to provide a direct comparison
between the scaled-up pairs and the corresponding quarter scaled-down pairs, we arrive
at the pattern in panel (c). Here, 35 individuals choose the riskier option from {C, Dj}
more often than they choose the riskier option from {A, Bj}, while 20 go in the
opposite direction, with 12 exhibiting no difference.

So when we look at the types of questions often used in CRE experiments, involving
comparisons between a fully scaled-up pair and a pair where the probabilities are scaled
down by a quarter, we find the usual CRE pattern predominating in both of our
treatments. However, when we break the scaling down into two parts, as in our

Comparison between {A, Bj} and {Y, Zj}: fully scaled up vs half scaled down

Comparison between {Y, Zj} and {C, Dj}: half scaled down vs quarter scaled down

Comparison between {A, Bj} and {C, Dj}: scaled up vs quarter scaled down
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Fig. 8 CRE and reverse-CRE patterns for different degrees of scaling down
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CREPROBS treatment, we find evidence that the overall pattern is not primarily due to
the form of nonlinear transformations of probabilities suggested by CPT, but is more
readily explained by similarity judgments. Of course, one should be wary of extrapo-
lating too much from a single experimental result, but the strength and consistency of
the patterns, within individuals and across repetitions, gives grounds for believing that
there is at least a case for further investigation.

5 Concluding remarks

In this paper we have added to existing evidence about the stochastic variability in most
people’s preferences as expressed through binary choices. Some degree of such variability
appears to be the norm—observable in at least 87% of our sample15—and although its
extent varies from one individual to another, it appears to be prevalent and non-negligible.

We need to make allowance for this when trying to test decision theories formulated
deterministically. As Fig. 2 showed, when we have the kind of step function entailed by
deterministic models, the independence axiom has the same implications everywhere.
So if C and D are, respectively, scaled-down versions of A and B, then whenever A is
strictly preferred to B, C is strictly preferred to D, and vice-versa, with indifference
between A and B requiring indifference between C and D. However, when preferences
are probabilistic, the above relations only hold under strong restrictions. For weaker
restrictions, the probability distributions relating to {A, B} and {C, D} are only
required to correspond for the SI points.

This opens up the possibility that what might seem like systematic asymmetries at
other points may (to some extent, at least) be produced by a particular choice of
parameters. To provide a more comprehensive examination, we need to investigate a
broader range of parameters, with sufficient repetition at the individual level to identify
movements in the whole—or at least, the main part—of the probability distribution.
That was the motivation for our experimental design.

In our experiment, the evidence strongly suggested systematic shifts in these
distributions of a kind that are incompatible with EUT. However, we detected these
shifts only when the degree of scaling down was sufficient to invoke similarity
judgments. If CPT is to justify its current status as the front runner among alternatives
to EUT, it should be able to organise the data from our CREPROBS treatment; but it
cannot do so, except by radically altering the usual supposition about the shape of the
probability transformation function.

We acknowledge that the coverage of our experiment is limited: one of the trade-offs
involved in this kind of design is that many questions are required in order to get
meaningful coverage of each probability distribution, so that each treatment can only
focus on a few pairs. However, our results are by no means the only ones which suggest
that, once we move away from the ‘classic’ CRE parameters, the robustness of the
usual CPT assumptions is called into question.16

15 In fact, if we also consider the other pairs used to separate and distract from the CRE pairs, the percentage of
respondents exhibiting some variability during the session rises to 94%.
16 See, for example, Battalio et al. (1990) and Prelec (1990), as well as cases of the ‘reverse CRE’ referred to
earlier in the text. More recently, Harbaugh et al. (2010) found little support for CPT’s predictions regarding
risk attitudes in choice tasks.
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But our main point is not to propose the abandonment of CPT in favour of some
similarity-based model (or some other type of explanation)—although that is certainly a
possibility that should be explored in future research. Rather, the main purposes of the
paper have been (a) to argue for the importance of thinking in terms of probabilistic
models and (b) to explore the possibility of an experimental design to investigate such
models which is practicable within the constraints of working with human volunteers
while also being capable of generating sufficient data to produce informative results at
the individual level. We hope that extensions of—and no doubt, improvements upon—
the ideas and designs in this paper will contribute to the development of richer
descriptive models grounded in the probabilistic nature of human preferences.
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Appendix

Table 7 CRESUMS: number of
times D chosen minus number of
times B chosen

Difference D–B Number of individuals

≥ +36 11

+28 to +35 8

+20 to +27 5

+16 to +19 6

+12 to +15 9

+8 to +11 10

+5 to +7 6

+2 to +4 11

−1 to +1 9

−4 to −2 2

≤ −5 4

Table 8 CREPROBS: aggregate data for all 22 pairs

A = (£20, 1) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

B Choices 244 187 132 68 33 14 2 2 0

% 91.0 69.8 49.3 25.4 12.3 5.2 0.7 0.7 0

Y = (£20, 0.5) 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

Z Choices 224 167 112 54 18 4 3 3 1

% 83.6 62.3 41.8 20.1 6.7 1.5 1.1 1.1 0.4

C = (£20, 0.25) 0.2 0.15 0.1 0.05

D Choices 215 113 27 4

% 80.2 42.2 10.1 1.5
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