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a b s t r a c t

Tree-depth is a parameter introduced under several names as a measure of sparsity of a
graph. We compute asymptotic values of the tree-depth of a random graph on n vertices
where each edge appears independently with probability p. For dense graphs, np → +∞,
the tree-depth of a random graph G is aas td(G) = n − O(

√
n/p). Random graphs with

p = c/n, have aaslinear tree-depth when c > 1, the tree-depth is Θ(log n) when c = 1
and Θ(log log n) for c < 1. The result for c > 1 is derived from the computation of tree-
width and provides amore direct proof of a conjecture by Gao on the linearity of tree-width
recently proved by Lee, Lee and Oum (2012) [15].We also show that, for c = 1, everywidth
parameter is aasconstant, and that random regular graphs have linear tree-depth.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An elimination tree of a connected graph G is a rooted tree on the set of vertices such that there are no edges in G
between vertices in different branches of the tree. The natural elimination scheme provided by this tree is used in many
graph algorithmic problems where two non adjacent subsets of vertices can be managed independently. One good example
is the Cholesky decomposition of symmetric matrices (see [24,7,16,22]). Given an elimination tree, a distributed algorithm
can be designed which takes care of disjoint subsets of vertices in different parallel processors. Starting from the furthest
level from the root, it proceeds by exposing at each step the vertices at a given depth. Then the algorithm runs using the
information coming from its children subtrees, which have been computed in previous steps. Observe that the vertices
treated in different processors are independent and thus, there is no need to share information among them. Depending on
the graph, this distributed algorithm can be more efficient than the sequential one. In fact, its complexity is given by the
height of the elimination tree used by the algorithm. This motivates the study of the minimum height of an elimination tree
ofG. This natural parameter has been introduced under numerous names in the literature: rank function [21], vertex ranking
number (or ordered coloring) [6], weak coloring number [13], but its study was systematically undertaken by Nešetřil and
Ossona de Mendez under the name of tree-depth.

The tree-depth td(G) of a graph G is a measure introduced by Nešetřil and Ossona de Mendez [19] in the context of
bounded expansion classes. The notion of tree-depth is closely connected to tree-width. The tree-width of a graph can be
seen as a measure of closeness to a tree, while the tree-depth takes also into account the diameter of the tree (see Section 2
for a precise definition and [20] for an extensive account of the meaning and applications of this parameter).

Bounded expansion classes are defined in terms of shallowminors and its connection to tree-depth is highlighted by the
following result. The k-th chromatic number of a graph χk(G) is defined as the minimum number of colors needed to color
a graph in such a way that each subgraph H induced by any set of i classes of colors, i ≤ k, satisfy td(H) ≤ i. When we look

✩ Work partially supported by the Catalan Research Council under grant 2009SGR01387 and the Spanish Council under projectMTM2011-28800-C02-01.
The first author is thankful for the FPU grant from the Ministerio de Educación de España.
∗ Corresponding author. Fax: +34 647642897.

E-mail addresses: guillem.perarnau@ma4.upc.edu (G. Perarnau), oserra@ma4.upc.edu (O. Serra).

0166-218X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.10.031

http://dx.doi.org/10.1016/j.dam.2012.10.031
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:guillem.perarnau@ma4.upc.edu
mailto:oserra@ma4.upc.edu
http://dx.doi.org/10.1016/j.dam.2012.10.031


120 G. Perarnau, O. Serra / Discrete Applied Mathematics 168 (2014) 119–126

at a bounded number of chromatic classes we see a simple structure. Observe that χ1(G) is the ordinary chromatic number
and χ2(G) is the so-called star chromatic number [1]. The main theorem in this context states that a class of graphs C has
bounded expansion if and only if lim supG∈C χk(G) < +∞ for any fixed k > 0. This gives another motivation to study the
tree-depth.

Randomly generated graphs have been widely used as benchmarks for testing distributed algorithms and therefore it is
useful to characterize the elimination tree of such graphs. The main goal of this paper is to give asymptotically tight values
for the minimum height of an elimination tree of a random graph.

A random graph G ∼ G(n, p) has n vertices and every pair of vertices is chosen independently to be an edge with
probability p.

For any graph property P , we say that P holds asymptotically almost sure (aas) in G ∼ G(n, p), if

lim
n→+∞

Pr(G satisfies P ) = 1.

Throughout the paper, all the results and statements concerning random graphs must be understood in the asymptoti-
cally almost sure sense. We will occasionally make use of the G(n,m) model of random graphs, where a labeled graph with
n vertices and m edges is chosen with the uniform distribution. As it is well-known, the two models are closely connected
and most of the statements can be transferred from one model to the other one.

Our first result gives the value of tree-depth for dense random graphs.

Theorem 1.1. Let G ∼ G(n, p) be a random graph with np → +∞, then G satisfies aas

td(G) = n − O


n
p


.

Theorem 1.1 implies that random graphs with a superlinear number of edges have a tree structure similar to the one of the
complete graph. Actually our proof of Theorem1.1 provides the same result for tree-width. To our knowledge, the tree-width
of a dense random graph has not been studied before.

Nešetřil and Ossona de Mendez showed that a sparse random graph G(n, c/n) belongs aas to a bounded expansion class
(see [20, Theorem 13.4]). Our main result is the computation of the tree-depth of sparse random graphs.

Theorem 1.2. Let G ∼ G(n, p) be a random graph with p =
c
n , with c > 0,

(1) if c < 1, then aas td(G) = Θ(log log n)
(2) if c = 1, then aas td(G) = Θ(log n)
(3) if c > 1, then aas td(G) = Θ(n).

Henceforth we denote the logarithm in base two by log while we will use ln for the natural logarithm.
The last part of this theorem is closely related to a conjecture of Gao announced in [11] on the linear behavior of tree-

width for random graphswith c = 2, inspired by the results of Kloks in [14]. This conjecture has been recently proved by Lee
et al. [15]. They show that the tree-width is linear for any c > 1 as a corollary of their result on the rank-width of random
graphs. Herewe give a proof of Theorem1.2.3which also provides a proof of Gao’s conjecture, giving an explicit lower bound
on the tree-width. Our proof uses, as the one in [15], the same deep result of Benjamini et al. [2] on the existence of a linear
order expander in a sparse random graph for c > 1.

The paper is organized as follows. In Section 2,we define the notion of tree-depth and give some useful results concerning
this parameter. Section 3 contains the proof of Theorem 1.1, which uses the relation connecting tree-width with balanced
partitions. Finally Theorem 1.2 will be proved in Section 4. For c < 1 the result follows from the fact that the random graph
is a collection of trees and unicyclic graphs of logarithmic order, which gives the upper bound, and that there is one of
these components with large diameter with respect to its order, providing the lower bound. For c = 1 we show that the
giant component in the random graph has just a constant number of additional edges exceeding the order of a tree, which
gives the upper bound, and rely on a result of Nachmias and Peres [18] on the concentration of the diameter of the giant
component to obtain the lower bound. Finally, as we have already mentioned, for c > 1 the result follows readily from the
existence of an expander of linear order in a sparse random graph for c > 1, a fact proved in Benjamini et al. [2].

2. Tree-depth

Let T be a rooted tree. The height of T is defined as the number of vertices of the longest rooted path. The closure of T is
the graph that has the same set of vertices and an edge between every pair of vertices such that one is an ancestor of the
other in the rooted tree.

The tree T is an elimination tree of a connected graph G if G is a subgraph of its closure. The tree-depth of a connected
graph G is defined to be the minimum height of an elimination tree of G. Some examples are shown in Fig. 1.

This definition can be extended to non-connected graphs. Suppose that G has connected components H1, . . . ,Hs. Then,

td(G) = max
1≤i≤s

td(Hi). (1)
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Fig. 1. The path with 15 vertices and the complete graph K4 have tree-depth 4.

It is clear from the definition that the tree-depth of a graph Gwith n vertices satisfies td(G) ≤ n, and that the equality is
satisfied only for the complete graph Kn. Note that the following inequality holds,

td(G \ v) ≥ td(G) − 1 (2)

for every vertex v ∈ V (G).
For any tree T , it can be checked by induction that,

td(T ) ≤ ⌊log n⌋ + 1. (3)

As shown by Dvǒrák et al. [8], equality holds for a relatively wide class of trees. In particular, it holds if T is a path Pn with n
vertices,

td(Pn) = ⌊log n⌋ + 1. (4)

As a simple consequence of the previous equation and the fact that the tree-depth is monotonically increasing under the
subgraph ordering, we have that if G contains a path of length t , then td(G) ≥ log t . In particular, if G has diameter d,

td(G) ≥ log d. (5)

The following inequalities relate the tree-width and tree-depth of a graph (see e.g. [3])

tw(G) ≤ td(G) ≤ tw(G)(log n + 1). (6)

Note that there are classes of graphs that have bounded tree-width but unbounded tree-depth, for example trees. On the
other hand, if a class of graphs has bounded tree-depth, then it also has bounded tree-width.

Some of our results use the relation (6) between tree-depth and tree-width. Bounds on the tree-width can be obtained
through its connection with balanced separators. Kloks [14] defines a partition (A, S, B) of a graph G with n vertices to be a
balanced k-partition if |S| = k + 1, S is a separator (there are no edges between A and B) and

1
3

(n − k − 1) ≤ |A|, |B| ≤
2
3

(n − k − 1) . (7)

He states the following result connecting balanced partitions and tree-width.

Lemma 2.1 (Kloks [14]). Let G be a graph with n vertices and tw(G) ≤ k, k ≤ n − 4. Then G has a balanced k-partition.

We will often use the non existence of a balanced partition to provide lower bounds on the tree-width of G.

3. Tree-depth of dense random graphs

This section is devoted to prove Theorem 1.1.

Proof of Theorem 1.1. By definition it is clear that td(G) ≤ n, thuswe only need to prove the lower bound. It will be derived
from the analogous one for tree-width through inequality (6). For this we will show that a random graph G ∼ G(n, p) with

np → +∞, aas contains no balanced separator of order less than n − 3


ln 3
2


n
p . The result will follow from Lemma 2.1.

Assume p = c(n)/n and set any function f (c) > 3


ln 3
2c . Suppose that there exists a balanced k-partition (A, S, B) of G

with k ≤ (1 − f (c))n. By the definition of balanced k-partitions, we have |S| = k + 1, and |A|, |B| ≥
f (c)n
3 . As |A| + |B| =

n − k ≥ f (c)n, we have

|A| · |B| ≥
2f (c)2

9
n2.

Let X(A,S,B) denote the event that (A, S, B) is a balanced k-partition of Gwith k ≤ (1 − f (c))n. We have

Pr

X(A,S,B)


= (1 − p)|A| |B|

≤ (1 − p)
2f (c)2

9 n2 .
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Let B denote the set of balanced k-partitions with k ≤ (1 − f (c))n. By using the trivial bound |B| ≤ 3n, the number of
labeled partitions of [n] into three sets, we get:

Pr

∪(A,S,B)∈B X(A,S,B)


≤


(A,S,B)∈B

Pr

X(A,S,B)


≤ 3n (1 − p)

2f (c)2
9 n2

≤ exp

(ln 3)n −

2f (c)2

9
n2p


, (8)

where we have used that 1 − x ≤ e−x. By using p = c(n)/n and f (c) > 3


ln 3
2c , the expression (8) tends to 0 for n → +∞.

Since there is no set of size (1 − f (c))n separating G, from inequality (6) and Lemma 2.1 we have td(G) ≥ tw(G) >

(1 − f (c))n. The above inequality is valid for all f (c) > 3


ln 3
2c and thus, we have that aas td(G) ≥ n − O(

√
n/p). �

Observe that the argument in the above proof can be used to deduce that the tree-width of sparse random graphs with
p(n) = c/n is linear in n for sufficiently large c and obtain a lower bound for the constant. From (8) we need

f (c) >


9 ln 3
2c

and since the tree-width is (1 − f (c))n, we also need f (c) < 1. These two conditions imply that for any c > 9 ln 3
2 ≈ 4.94,

one has that

td(G(n, c/n)) ≥ tw(G(n, c/n)) ≥ (1 − f (c))n = Ω(n). (9)

In the next section we will prove that aas td(G(n, c/n)) is linear in n for any c > 1.

4. Tree-depth of sparse random graphs

In this section Theorem 1.2 will be proved. We prove each one of the three cases separately in different subsections.

4.1. Proof of Theorem 1.2.1

Let G ∼ G(n, p = c/n) with 0 < c < 1. Our goal is to show that td(G) = Θ(log log n).
Wewill first prove the upper bound. A unicyclic graph (unicycle) is a connected graph that has the samenumber of vertices

and edges, that is, the graph contains exactly one cycle.

Lemma 4.1. If each connected component of G is either a tree or a unicycle, then td(G) ≤ log nc + 2, where nc is the cardinality
of the largest connected component of G.

Proof. As it has been remarked, td(G) equals the tree-depth of the largest connected component of the graph. After deleting
at most one vertex, a connected component becomes a tree. The result follows by using (2) and (3). �

One of the central results of Erdős and Rényi [9] states that, if 0 < c < 1, then G is composed of trees and unicycles.
Moreover the order of the largest component in the random graph is Θ(log n) (see e.g. [4, Corollary 5.11, Corollary 5.8]).
Using Lemma 4.1 with nc = Θ(log n), we have

td(G) = O(log log n).

We next show the lower bound. Recall that the diameter of the graph provides a lower bound on the tree-depth of G by
inequality (5). Hence our proof for this case will be completed if we show that the random graph G aas contains a tree T of
order Θ(log n) and sufficiently large diameter.

The diameter of G(n, p) in the subcritical phase has been studied by Łuczak in [17] where the author establishes it when
np → 0 and also provides an upper bound when p = c/n, 0 < c < 1. Here we give a simple proof for a lower bound in the
latter case, which is not tight but suffices to show the asymptotic behavior of the tree-depth in this range.

Observe that every labeled tree on k vertices has the same probability to appear in G as a connected component, since
each tree with fixed order contains the same number of edges. Let Hk be the random variable that indicates the height of a
random labeled rooted tree with k vertices. A classical result of Rényi and Szekeres [23] states that Hk satisfies

E(Hk) ∼
√
2πk and Var(Hk) ∼

π(π − 3)
3

k.

Notice that the diameter Dk of a random labeled unrooted tree with k vertices satisfies Hk ≤ Dk ≤ 2Hk and thus, E(Dk) =

Θ(
√
k). Unfortunately, the variance of Dk is also large and a second moment argument does not provide concentration of
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Dk around its expected value. The diameter of an individual tree can be even constant as k → +∞. However, the number
of trees with k vertices in G is large enough to ensure that aas there is at least one with sufficiently large diameter.

To count the number of trees of each size it is more convenient to use the random model G(n,m(n)) where a graph is
chosen uniformly at random from all the labeled graphs withm(n) edges. For this model, Erdős and Rényi [9] proved that if
m(n) = Ω(n), the random variable Xk counting the number of trees of order k in G(n,m(n)) follows a normal distribution
with expected value and varianceMk, where

Mk = n
kk−2

k!


2m
n

k−1

e−
2km
n .

Moving back to the random graph model G(n, p) with p = c/n, and noting that the expected number of edges is n
2


p ∼

cn
2 , one can translate the former result to an analogous one,

Mk = n
kk−2

k!
ck−1e−kc . (10)

We are interested in X = Xlog n, the number of trees of order log n, for which,

M = Mlog n =
nlog log n−α

c(log2 n)(log n)!
where α = c − 1 − log c.

Observe that M → +∞ when n → +∞. By applying Chebyshev’s inequality to the variable X , it follows that aas the
number of tree components of order log n is X = (1 − o(1))M → +∞ (n → +∞), that is, aas there are many trees of
order log n.

Denote by D = Dlog n and define D to be the mean value of the diameters over all the components of order log n. Clearly
E(D) = E(D) = Θ(

√
log n). Observe that the random variables measuring the diameter of each component, conditioned to

the fact that the component is a tree on log n vertices, are independent. Thus, the variance ofD is smaller than the variance of
the diameter of each individual tree. Indeed, Var(D) = o(log n) = o(E(X)2). The Chebyshev inequality on D directly implies
that D = Θ(

√
log n) aas. Hence there is a tree T in Gwith diameter d = Ω(

√
log n).

By using (1) and (5), the desired lower bound follows:

td(G) ≥ td(T ) = Ω(log d) = Ω


log


log n


= Ω(log log n).

This completes the proof of this case. �

4.2. Proof of Theorem 1.2.2

Now we look at the critical point where c = 1.
It was shown by Erdős and Rényi also in [9] that p = 1/n is the threshold probability for the existence of a polynomial size

component, the so called giant component of the random graph. For this particular probability, aas the largest component
has order O(n2/3).

We first prove the upper bound.We show that each component is similar to a tree. For conveniencewe use the definition
of a (k, ℓ)-component given in [12]. A (k, ℓ)-component, ℓ ≥ −1, is a connected component with k vertices and k+ ℓ edges.
Thus, (k, −1)-components are trees and (k, 0)-components correspond to unicyclic graphs. A complex component is a (k, ℓ)-
component with ℓ > 0.

Proposition 4.2. Let G ∼ G(n, p = 1/n). Then, for any ε > 0, there exists ℓ0 = ℓ0(ε) such that the probability that there exists
a complex component with ℓ > ℓ0 is at most ε.

Proof. Let Y (k, ℓ) denote the number of (k, ℓ)-components of G(n, 1/n). The expected value of Y (k, ℓ) is

E(Y (k, ℓ)) =

n
k


C(k, ℓ)


1
n

k+ℓ 
1 −

1
n

 k
2


−(k+ℓ)+k(n−k)

≤
C(k, ℓ)
nℓk!

e−k(1+o(1)),

where C(k, ℓ) is the number of connected labeled graphs with k vertices and k + ℓ edges and k/n → 0. Bóllobas [4, Corol-
lary 5.21] obtained the following sharp bound for C(k, ℓ),

C(k, ℓ) ≤ O

ℓ−ℓ/2kk+(3ℓ−1)/2 .

By combining the previous expressions and using Stirling’s formula, for k = O(n2/3) one gets

E(Y (k, ℓ)) ≤
ℓ−ℓ/2

k


k3/2

n

ℓ

≤ O


ℓ−ℓ/2

n2/3


,

if ℓ ≥ 2.
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Let Y (ℓ) =


k Y (k, ℓ) denote the total number of connected components with excess ℓ. Since connected components
have order at most O(n2/3), we have

E(Y (ℓ)) =

O(n2/3)
k=0

E(Y (k, ℓ)) ≤ O

ℓ−ℓ/2 .

Let Yℓ0 =


ℓ≥ℓ0
Y (ℓ) denote the total number of complex components with excess at least ℓ0. We have

E(Yℓ0) =


ℓ≥ℓ0

E(Y (ℓ)) ≤


ℓ≥ℓ0

O

ℓ−ℓ/2

≤ O

ℓ0

−
ℓ0−1

2


.

By Markov’s inequality

Pr(Yℓ0 ≥ 1) ≤ E(Yℓ0) < ε,

for some ℓ0 = ℓ0(ε) large enough.
This completes the proof. �

Proposition 4.2 shows that aas there is no complex component with excess larger than, say, log log n. Thus, every
component C has aas k = O(n2/3) vertices and at most k + ℓ(C) edges, where ℓ(C) = O(log log n). Note that we can
delete ℓ(C) vertices, turning C into a tree of order (k − ℓ(C)) = O(n2/3). Let ℓm be the maximum excess of edges among all
the components. The tree-depth satisfies

td(G) ≤ ℓm + O

log


n2/3

= O(log log n) + O (log n) = O(log n),

giving the upper bound.
The lower bound is obtained by an argument on the diameter of a giant component. Each giant component C is a tree

decorated with a constant number ℓ(C) of extra edges. Observe that adding an edge to a connected component can at most
halve its diameter. Since the expected diameter of a random tree of size k is Θ(

√
k), it follows from Proposition 4.2 that the

expected diameter of a giant component is Θ(n1/3). Here, however, there are too few giant components, and we cannot use
the same argument as for the previous case c < 1 to conclude that the graph contains a giant component with the expected
value of the diameter. The concentration of this random variable follows from a more general statement due to Nachmias
and Peres [18] on the diameter of the largest component of a random graph with p = 1/n.

Theorem 4.3 ([18]). Let C be the largest component of a random graph in G(n, 1/n). Then, for any ε > 0, there exists A = A(ε)
such that

Pr(diam(C) ∉ (A−1n1/3, An1/3)) < ε.

From Theorem 4.3 we know that, for instance, Pr(diam(C) < n1/3−ε) = o(1). By using (5), we get that aas

td(G) = Ω(log n1/3−ε) = Ω(log n).

This concludes the proof of the case c = 1. �
The result provided by Proposition 4.2 can be also applied to give a good upper bound for the tree-width of G(n, 1/n),

Proposition 4.4. Let G ∼ G(n, p = 1/n). Then, for any ε > 0, there exists ℓ0 = ℓ0(ε) such that

Pr(tw(G) > ℓ0) < ε.

Proof. Since a tree has tree-width one and adding an edge to a graph increases its tree-width by atmost one unit, a complex
component with excess ℓ has tree-width at most ℓ + 1.

By Proposition 4.2, the probability of having a component with excess larger than ℓ0 is at most ε. Hence, Pr(tw(G) ≥

ℓ0 + 1) = Pr(Yℓ0 ≥ 1) < ε. �

Thus, the tree-width of G ∼ G(n, 1/n) is bounded by any function on n that tends to infinity.
Proposition 4.4 and Theorem 1.2.2 show that, for p = 1/n, aas the second inequality in (6) is asymptotically tight.
We also note that Proposition 4.4 applies to any width parameter w(G) which can be upper bounded by a function of the

tree-width. Examples of such parameters are branch-width, path-width, rank-width and clique-width.

4.3. Proof of Theorem 1.2.3

On the range of p = c/n for any constant c > 1, we will prove that the tree-width is linear aas, implying the same result
for the tree-depth. We recall that (9) already shows that the tree-width of G(n, c/n) is linear for any c > 4.94.
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Kloks [14] studied the tree-width of a random graphGwith p = c/n and proved that it is linear for any c > 2.36. Gao [11]
showed that the lower bound can be improved to c > 2.162, and conjectured that the threshold for having linear tree-width
occurs for some 1 < c < 2. As a side result of their study on the rank-width of random graphs, Lee et al. [15] settled the
conjecture by showing that the tree-width is linear for any c > 1.

Here we will give a more direct proof of the linearity of tree-width for random graphs with c > 1 which provides an
explicit lower bound for the linear constant. Our approach uses the same deep result of Benjamini, Kozma and Wormald,
Theorem 4.5, as in [15].

Recall that the (edgewise) Cheeger constant of a graph G is defined as

Φ(G) = min
X⊆V

0<|X |≤n/2

e(X, V \ X)

d(X)
(11)

where e(X, V \ X) is the number of edges with exactly one end point in X and d(X) =


x∈S d(x). For any fixed α > 0,G is
an α-edge-expander if Φ(G) > α.

The recent proof of Benjamini et al. [2] for the value of the mixing time of a random walk on the giant component of
a random graph with p = c/n, c > 1, relies on the existence of an α-edge-expander connected subgraph of linear size
in the giant component. Theorem 4.5 is a direct consequence of [2, Theorem 4.2], which ensures the existence aas of a
certain subgraph RN(G) of the giant component which is an α-edge-expander for some sufficiently small α (which has some
additional properties). The fact that this subgraph has linear order arises in the proof of this theorem (see [2, p. 19]).

Theorem 4.5 ([2]). Let G ∼ G(n, p) with p = c/n, c > 1. Aas there exist α, δ > 0 and a subgraph H ⊆ G such that H is an
α-edge-expander and |V (H)| ≥ δn.

Let H be the subgraph obtained in Theorem 4.5. By Lemma 2.1, there exists a balanced partition (A, S, B) in H , where S is
a vertex separator with |S| = tw(H) + 1 and |A| ≥ (δn − |S|)/3.

Since H is connected we have


x∈A d(x) ≥ |A| and, since S is a separator, e(A, V \ A) = e(A, S). Hence,

|A| ≤
e(A, S)

α
,

implying that

e(A, S) ≥ α|A| ≥ α
δn − |S|

3
= βn,

where β = α(δ − γ )/3 and γ = |S|/n.
Since e(A, S) ≤ d(S), it suffices to show that any set S of vertices with d(S) ≥ βn, must have linear order. For this we

show that there is γ0 > 0, which depends only on α, δ and c , such that the probability that a set S with |S| ≤ γ0n satisfies
d(S) ≥ βn tends to zero when n → +∞. We use a union bound on the number of sets S of size γ n, with γ < αδ/(3c + α),
and the fact that d(S) is a binomial random variable Bin(γ n2, c/n). We have,

Pr(∃S : |S| = γ n, d(S) ≥ βn) ≤


n
γ n

 γ n2
e=βn


γ n2

e


pe(1 − p)γ n2−e

(since βn > cγ n = E(d(S)), if γ < αδ/(3c + α)) ≤


n
γ n


γ n2


γ n2

βn


pβn(1 − p)γ n2−βn

≤


n
γ n


γ n2


γ n2

βn


pβn

since

x
y


≤


xe
y

y
≤ γ n2


e
γ

γ 
γ ec
β

β
n

.

Since β = α(δ − γ )/3, the expression


e
γ

γ 
γ ec
β

β

tends to 0 when γ → 0. Thus, there exists 0 < γ0 < αδ/(3c + α)

such that


e
γ0

γ0


γ0ec
β

β

< 1. It follows that

Pr(∃S : |S| ≤ γ0n, d(S) ≥ βn) → 0(n → +∞).

Therefore the set S has size at least γ0n and tw(H) ≥ γ0n. Since the tree-width is monotone with respect to the subgraph
relation and H ⊆ G, we know that tw(H) ≤ tw(G), and tw(G) = Ω(n), concluding the proof of Theorem 1.2. �

Observe that it is not true in general that every set Swith f (n) incident edges has sizeΘ(f (n)). For instance, themaximum
degree of G(n, c/n) (c > 1) is not constant (see e.g. [4]).

Moreover, it can be checked that the above argument gives

tw(G) ≥
(αδ)2

9e3c2
n,
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thus providing an explicit lower bound for tw(G). In [15] the authors provide the lower bound αδ

M2 n, where M is constant
but it is not made explicit.

We finish the paper by showing, with analogous arguments, that the tree-width and tree-depth of random regular graphs
is also linear. We consider the configuration model G(n, d) as a model of random regular graphs (see e.g. [4]).

Proposition 4.6. There is a constant d0 such that, for every d ≥ d0, aas random d-regular graphs have linear tree-width and
linear tree-depth.

Proof. The Cheeger constant of d-regular graphs can be bounded in terms of the second largest eigenvalue λ2(G) of the
adjacency matrix (see e.g. [5, Lemma 2.1]),

Φ(G) ≥
d − λ2(G)

2d
.

Friedman et al. [10] proved that this eigenvalue in d-regular random graphs is aas O(
√
d). Therefore,

Φ(G) ≥
d − O(

√
d)

2d
= α(d) > 0

and G ∼ G(n, d) is α(d)-edge-expander. Since G is d-regular, any set of vertices X of size at most n/2 has a large set of
neighbors, i.e. the graph is not only an edge-expander but a vertex-expander. If N(X) = {v ∈ V \ X : ∃u ∈ X, u ∼ v}, then

|N(X)| ≥ e(X, V \ X)/d ≥ Φ(G)|X | ≥ α(d)|X |

and the graph is an α(d)-vertex-expander.
By Lemma 2.1, we know that there is a balanced partition (A, S, B) of G, where S is a vertex separator of cardinality

tw(G) + 1 and |A| ≥ (n − tw(G) − 1)/3. Since N(A) ⊆ S, we have

tw(G) = |S| − 1 ≥ α(d)|A| − 1 ≥ α(d)
n − tw(G) − 1

3
− 1.

Hence,

tw(G) ≥
α(d)(n − 1) − 3

α(d) + 3
= Ω(n). �
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