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a b s t r a c t

Let A be a family of subsets of an n-set such that A does not contain distinct sets A and
B with |A \ B| = 2|B \ A|. How large can A be? Our aim in this note is to determine the
maximum size of such an A. This answers a question of Kalai. We also give some related
results and conjectures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A set system A ⊆ P [n] = P ({1, . . . , n}) is said to be an antichain or Sperner family if A ⊄ B for all distinct A, B ∈ A.
Sperner’s theorem [5] says that any antichain A has size at most


n

⌊n/2⌋


. (See [2] for general background.)

Kalai [3] noted that the antichain condition may be restated as: A does not contain A and B such that, in the subcube of
the n-cube spanned by A and B, they are the top and bottom points. He asked what happens if we ‘tilt’ this condition. For
example, suppose that we instead forbid A, B such that A is 1/3 of the way up the subcube spanned by A and B? Equivalently,
A cannot contain two sets A and Bwith |A \ B| = 2|B \ A|.

An obvious example of such a system is any level set [n](i) = {A ⊂ [n] : |A| = i}. Thus we may certainly achieve size
n

⌊n/2⌋


. The system [n](⌊n/2⌋) is not maximal, as we may for example add to it all sets of size ⌊n/4⌋ − 1—but that is a rather

small improvement. Kalai [3] asked if, as for Sperner families, it is still true that our family A must have size o(2n).
Our aim in this note is to verify this.We show that themiddle layer is asymptotically best, in the sense that themaximum

size of such a family is (1+ o(1))


n
⌊n/2⌋


. We also find the exact extremal system, for n even and sufficiently large. We give

similar results for any particular ‘forbidden ratio’ in the subcube spanned.
What happens if, instead of forbidding a particular ratio, we instead forbid an absolute distance from the bottom point?

For example, for distance 1 this would correspond to the following: our set system A must not contain sets A and B with
|A \ B| = 1. How large can A be?

Here the situation is rather different, as for example one cannot take an entire level. We give a construction that has size
about 1

n


n

⌊n/2⌋


, which is about (a constant fraction of) 1/n3/2 of the whole cube. But we are not able to show that this is

optimal: the best upper bound that we are able to give is 2n/n. However, if we strengthen the condition to A not having A
and B with |A \ B| ≤ 1 then we are able to show that the greatest family has size 1

n


n

⌊n/2⌋


, up to a multiplicative constant.
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2. Forbidding a fixed ratio

In this section we consider the problem of finding the maximum size of a family A of subsets of [n] which satisfies
p|A\B| ≠ q|B\A| for all A, B ∈ Awhere p : q is a fixed ratio. Initially wewill focus on the first non-trivial case 1:2 (note that
1:1 is trivial as then the condition just forbids two sets of the same size in A) and then at the end of the section we extend
these results to any given ratio.

As mentioned in the Introduction, for the ratio 1:2 we actually obtain the extremal family when n is even and sufficiently
large. This family, which we will denote by B0, is a union of level sets: B0 = ∪i∈I [n](i). Here the set I is defined as follows:
I = {ai : i ≥ 0} ∪ {bi : i ≥ 0}, where a0 = b0 =

n
2 and ai and bi are defined inductively by taking ai = ⌈

ai−1
2 ⌉ − 1 and

bi = ⌊
bi−1+n

2 ⌋ + 1 for all i. For example, if n = 2k then I = {2k−1
} ∪ {2i

− 1 : 0 ≤ i ≤ k− 1} ∪ {2k
− 2i

+ 1 : 0 ≤ i ≤ k− 1}.
Noting that for any sets A and B with either (i) |A| = l where l < n

2 and |B| > 2l or (ii) |A| = l where l > n
2 and |B| < 2l − n

we have |A \ B| ≠ 2|B \ A|, we see that B0 satisfies the required condition. Our main result is the following.

Theorem 1. Suppose A is a set system on ground set [n] such that |A \ B| ≠ 2|B \ A| for all distinct A, B ∈ A. Then
|A| ≤ (1 + o(1))


n

⌊n/2⌋


. Furthermore, if n is even and sufficiently large then |A| ≤ |B0|, with equality if and only if A = B0.

The main step in the proof of Theorem 1 is given by the following lemma. The proof is a Katona-type (see [4]) averaging
argument.

Lemma 2. Let A be a set system on [n] such that |A \ B| ≠ 2|B \ A| for all distinct A, B ∈ A. Then
2l
j=l

|Aj|
n
j

 ≤ 1

for all l ≤ n
3 and

k
j=2k−n

|Aj|
n
j

 ≤ 1

for all k ≥
2n
3 , where Aj = A ∩ [n](j).

Proof. We only prove the first inequality, as the proof of the second is identical. Pick a random ordering of [n] which we
denote by (a1, a2, . . . , a⌈

2n
3 ⌉

, b1, . . . , b⌊
n
3 ⌋). Given this ordering, let Ci = {aj : j ∈ [2i]} ∪ {bk : k ∈ [i + 1, l]} and let

C = {Ci : i ∈ [0, l]}. Consider the random variable X = |A ∩ C|. Since each set B ∈ [n](i) is equally likely to be Ci−l we have
P[B ∈ C] =

1
( n

i )
. Thus by linearity of expectation we have

E(X) =

2l
i=l

|Ai| n
i

 . (1)

On the other hand, given any Ci, Cj with i < jwe have |Ci \ Cj| = 2|Cj \ Ci| and so A can contain at most one of these sets.
This gives E(X) ≤ 1. Together with (1) this gives the claimed inequality

2l
i=l

|Ai| n
i

 ≤ 1. �

Proof of Theorem 1. We first show |A| ≤ (1 + o(1))


n
⌊n/2⌋


. By standard estimates (see e.g. Appendix A of [1]) we have

|[n](≤αn)
∪[n](≥(1−α)n)

| = o(


n
⌊n/2⌋


) for any fixed α ∈ [0, 1

2 ), so it suffices to show that |
 3n

5
i= 2n

5
Ai| ≤


n
n
2


. But this follows

immediately from Lemma 2 by taking l = ⌊
n
3⌋.

We now prove the extremal part of the claim in Theorem 1. We first show that the maximum of f (x) =
n

i=0 xi subject
to the inequalities

2l
j=l

xj
n
j

 ≤ 1, l ∈

0, 1, . . . ,

n
3


(2)

and
k

j=2k−n

xj
n
j

 ≤ 1, k ∈


2n
3


, . . . , n


(3)
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from Lemma 2 occurs when xn/2 =


n
n
2


. Indeed, suppose otherwise. At least one of these inequalities involving xn/2 must

occur with equality, as otherwise we can increase xn/2 slightly, increase the value of f (x) and still satisfy (2) and (3). Pick

j > n
2 as small as possible such that xj > 0. Let yn/2 = xn/2 + ϵ


n

n/2


, yj = xj − ϵ


n
j


and yi = xi for all other i. As

f (y) > f (x) one of the (2) or (3) must fail. If ϵ is sufficiently small only the inequalities involving yn/2 and not yj can be
violated. Choose k < n/2 maximal such that yk > 0 and yk does not occur in any inequality involving yj. Note that we must
have j− k ≥

n
4 . Decrease yk by ϵ

 n
k


. Since the only increased variable yn/2 always occurs with one of yj or yk, it follows that

y = (y0, . . . , yn) satisfies (2) and (3).
We claim that f (y) > f (x). Indeed, we must have either |j − n

2 | ≥
n
8 or |k −

n
2 | ≥

n
8 . Without loss of generality assume

that |k −
n
2 | ≥

n
8 . Then since


n

n/2


>


n

(n/2)+1


+


n

3n/8


for sufficiently large nwe have

f (y) = f (x) + ϵ


n

n/2


− ϵ


n
j


− ϵ

n
k


> f (x) + ϵ


n

n/2


− ϵ


n

(n/2) + 1


− ϵ


n

3n/8


> f (x).

Therefore we must have xn/2 =


n

n/2


, as claimed.

Now, by the inequalities (2) and (3) we have xj = 0 for all n
4 ≤ j ≤

3n
4 with j ≠

n
2 . From here it is easy to see by a weight

transfer argument that f (x) has a unique maximum when xi =
 n

i


for i ∈ I and xi = 0 otherwise. For a set system A these

values of xi = |Ai| can only be achieved if A = B0, as claimed. �

We remark that the statement of Theorem 1 does not hold for all even n, as can be seen for example by taking n = 4 and
A = P [n] \ [n](2).

We now extend Theorem 1 from the ratio 1 : 2 to any given ratio p : q. Let p : q be in its lowest terms and p < q. If
A ∈ [n](i+a) and B ∈ [n](i) satisfy p|A \ B| = q|B \ A| then we have p(a+ b) = q(b) where b = |B \ A|. But then pa = (q− p)b
and since p and q are coprime we must have that (q − p)|a. Therefore any family A =


i∈I [n]

(i), where I is an interval of

length q− p, satisfies p|A \ B| ≠ q|B \ A| for all A, B ∈ A. Taking ⌊
n
2⌋ ∈ I gives |A| = (q− p+ o(1))


n

⌊n/2⌋


. Our next result

shows that this is asymptotically best possible.

Theorem 3. Let p, q ∈ N be coprime with p < q. Let A be a set system on ground set [n] such that p|A \ B| ≠ q|B \ A| for all
distinct A, B ∈ A. Then |A| ≤ (q − p + o(1))


n

⌊n/2⌋


.

The following lemma performs an analogous role to that of Lemma 2 in the proof of Theorem 1.

Lemma 4. Let A be a set system on [n] such that p|A \ B| ≠ q|B \ A| for all distinct A, B ∈ A. Then
j∈Jk

|Aj|
n
j

 ≤ 1

where Jk = {l : ⌈
pn
p+q⌉ ≤ l ≤ ⌊

qn
p+q⌋, l ≡ k(mod (q − p))} for 0 ≤ k ≤ q − p − 1.

Proof. We only sketch the proof, as it is very similar to the proof of Lemma 2. For convenience we assume n = (p + q)m
(this assumption is easily removed). Fix k ∈ [0, q − p − 1] and let k′

≡ k − pm(mod (q − p)) where k′
∈ [0, q − p − 1].

Pick a random ordering of [n] which we denote by (a1, a2, . . . , aqm, b1, . . . , bpm). Given this ordering let Ci = {aj : j ∈

[qi+ k′
]} ∪ {bj : j ∈ [pi+ 1, pm]} and let C = {Ci : i ∈ [0,m− 1]}. (Here if k′

= 0 we additionally adjoin Cm to C.) By choice
of k′, we have |Ci| ∈ Jk for all i ∈ [0,m − 1].

Again for any Ci and Cj with i < jwe have q|Ci \ Cj| = p|Cj \ Ci|, which implies that A contains at most one element of C.
Using this the rest of the proof is as in Lemma 2. �

The proof of Theorem 3 is now identical to the proof of Theorem 1 taking Lemma 4 in place of Lemma 2.
For simplicity we have given in Lemma 4 only the inequalities that we needed in order to prove Theorem 3. Further

inequalities involving smaller level sets analogous to those in Lemma 2 can also be obtained in a similar fashion. While we
have not done so here, we note that it is possible to use these inequalities to again find an exact extremal family for any
given ratio p : q as in Theorem 1, provided q − p and n have the opposite parity and n is sufficiently large.

3. Forbidding a fixed distance

In this final section we consider how large a family A can be if for all A, B ∈ A we do not allow A to have a constant
distance from the bottom of the subcube formedwith B. For ‘distance exactly 1’ this wouldmean that we exclude |A\B| = 1
for A, B ∈ A. Here the following family A∗ provides a lower bound: let A∗ consist of all sets A of size ⌊n/2⌋ such that

i∈A i ≡ r(mod n), where r ∈ {0, . . . , n − 1} is chosen to maximise |A∗
|. Such a choice of r gives |A∗

| ≥
1
n


n

⌊n/2⌋


. Note

that if we had |A \ B| = 1 for some A, B ∈ A∗ then, since |A| = |B|, we would also have |B \ A| = 1. Letting A \ B = {i} and
B \ A = {j} we then have i − j ≡ 0(mod n), giving i = j, a contradiction.
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We suspect that this bound is best.

Conjecture 5. Let A ⊂ P [n] be a family which satisfies |A \ B| ≠ 1 for all A, B ∈ A. Then |A| ≤ (1 + o(1)) 1
n


n

⌊n/2⌋


.

The following gives an upper bound that is a factor n1/2 larger than this.

Theorem 6. Let A ⊂ P [n] be a family such that |A \ B| ≠ 1 for all A, B ∈ A. Then there exists a constant C independent of n
such that |A| ≤

C
n 2

n.

Proof. An easy estimate gives that the number of subsets of A in [n](≤n/3) 
[n](≥2n/3) is at most 4


n

n/3


= o( 2n

n ). Therefore

it suffices to show that |Ai| ≤
C
n

 n
i


for all i ∈ [

n
3 ,

2n
3 ].

To see this, note that since |A \ A′
| ≠ 1 for all A, A′

∈ A, each B ∈ [n](i+1) contains at most one A ∈ Ai. Double counting,
we have

n
3
|Ai| ≤ (n − i)|Ai| = |{(A, B) : A ∈ Ai, B ∈ [n](i+1), A ⊂ B}|

≤


n

i + 1


≤ 3

n
i


as required. �

Our final result gives an upper bound on the size of a familyA in which we forbid ‘distance at most 1’ instead of ‘distance
exactly 1’, i.e. wherewe have |A\B| > 1 for all A, B ∈ A. Again, the familyA∗ constructed above gives a lower bound for this
problem. In general, if we forbid ‘distance at most k’ then it is easily seen that the following family A∗

k gives a lower bound

of 1
nk


n

⌊n/2⌋


: supposing n is prime, let A∗

k consist of all sets A of ⌊n/2⌋ which satisfy


i∈A i
d

≡ 0(mod n) for all 1 ≤ d ≤ k.
Our last result provides a upper bound which matches this up to a multiplicative constant. The proof is again a Katona-

type argument. Here the condition |A \ B| > k rather than |A \ B| ≠ k seems to be crucial.

Theorem 7. Let k ∈ N. Suppose A is a set system on [n] such that |A \ B| > k for all distinct A, B ∈ A. Then |A| ≤

(2k−o(1))
nk


n

⌊n/2⌋


.

Proof. Consider the family ∂ (k)A, the k-shadow of A, where

∂ (k)A = {B ∈ P [n] : B = A \ C for some A ∈ A and C ⊂ Awith |C | = k}.

SinceA does not contain A, Bwith |A\B| ≤ k, every element of ∂ (k)A is contained in at most one element ofA. Therefore
we have

|∂ (k)A| =

n
i=0

(i)k|Ai| (4)

where ik = i (i− 1) · · · (i− k+ 1). Now, since A does not contain A, Bwith |A \ B| ≤ k, it follows that ∂ (k)A is an antichain,
and so by Sperner’s theorem we have

|∂ (k)A| ≤


n

⌊n/2⌋


. (5)

Finally, an estimate of the sum of binomial coefficients (Appendix A of [1]) gives

n
2 −n2/3
i=0

|Ai| ≤

n
2 −n2/3
i=0

n
i


≤ e−n1/32n. (6)

Combining (4)–(6) we obtain
n

⌊n/2⌋


≥

n
2 −n2/3
i=0

(i)k|Ai| +

n
i= n

2 −n2/3
(i)k|Ai|

≥

n
2 −n2/3
i=0

n
2

− n2/3

k
|Ai| −

n
2

− n2/3

k
e−n1/32n

+

n
i= n

2 −n2/3

n
2

− n2/3

k
|Ai|

=

n
2

− o(n)
k

|A| − o


n
⌊n/2⌋


which gives the desired result. �
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Taking k = 1 in Theorem 7 we obtain an upper bound which differs by a factor of 2 from the lower bound given by the
family A∗. It would be interesting to close this gap.
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