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 15 

Abstract  16 

Current treatments for rheumatoid arthritis (RA) do not work well for a large 17 

proportion of patients, they do not work at all in some people, nor can they cure or 18 

prevent this disease.   One major obstacle to developing better drugs is lack of a 19 

complete understanding of how inflammatory joint disease arises and progresses.   20 

Here, we discuss emerging evidence as to how the tissue microenvironment impacts 21 

RA pathogenesis.   Each tissue is made up of cells surrounded and supported by a 22 

unique extracellular matrix.  These complex molecular networks define tissue 23 

architecture and provide environmental signals that programme site-specific cell 24 

behaviour.  In the synovium, a major site of disease activity in RA, both positional 25 
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and disease stage-specific cellular diversity exists.   Improved resolution of the 26 

architecture of the synovium, from gross anatomy to the single cell level, in parallel 27 

with evidence demonstrating how the synovial extracellular matrix is vital for 28 

synovial homeostasis, and how dysregulated signals from the matrix drive chronic 29 

inflammation and tissue destruction in the RA joint,  have opened up new ways to 30 

think about RA pathogenesis, and offer novel therapeutic approaches for people 31 

with hard to treat disease, or as a means of disease prevention.   32 

 33 

 34 

Introduction  35 

Tissue specialization is essential for life.  However, the fundamental principles that 36 

drive tissue-specific cell behaviour are not fully understood.  For example, why are 37 

fibroblasts in the gut so different to those in the skin, and why do macrophages 38 

resident in the brain behave differently to those in the liver?  Technologies that can 39 

interrogate tissues at the single cell level are being used to generate an encyclopedic 40 

inventory of the different cell populations comprising each tissue of the body, 41 

revealing extraordinary levels of cellular complexity and phenotypic plasticity.  42 

Mapping the anatomic location, and the interaction networks, of newly discovered 43 

cell subsets will be the next essential step towards understanding tissue structure 44 

and function. Moreover, cells do not exist in a vacuum. The tissue microenvironment 45 

is a key determinant of cell behaviour, enabling cells to perform distinct roles 46 

dictated by their anatomical location, as well as specifically by their location within 47 

tissues.  But what defines the microenvironment?  Cells in tissues are surrounded 48 

and supported by an extracellular matrix.  In each tissue the matrix is made up of a 49 

combination of more than 1000 different secreted molecules that is unique to that 50 
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tissue, assembled into a complex 3D network, providing external cues that govern 51 

cell behaviour.  Understanding how tissues function in health and disease therefore 52 

requires knowing both the identity of resident cell populations and how complex 53 

external microenvironments cohesively define cell phenotype in situ. 54 

 55 

In this review we focus on the synovium, and examine how changes in both the 56 

cellular and extracellular compartments of this tissue play a causal role in driving 57 

chronic inflammation during rheumatoid arthritis (RA). We will review how recent 58 

single-cell transcriptional analysis has revealed extraordinary microanatomical 59 

complexity within the RA synovium, identifying at least 18 distinct cell phenotypes, 60 

amongst which diverse subpopulations exhibit striking positional and functional 61 

segregation.  We discuss how these studies provide compelling new insights into the 62 

cellular basis of inflammatory joint disease.  We also highlight the evidence that 63 

extracellular networks create anatomically distinct sub-synovial niches within which 64 

environmental cues dictate site-specific behaviour, that is behaviour that is unique 65 

to the position of any cell within a tissue.   We detail how these networks directly 66 

contribute to chronic inflammation in the inflamed joint, and we examine why this 67 

information changes the way we think about how inflammatory joint disease arises 68 

and progresses, offering new methods of patient stratification, as well as novel 69 

classes of therapeutic drugs.  Finally, we highlight the key questions and challenges 70 

that remain.  71 

 72 

What exactly is the tissue microenvironment?   73 
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All tissues consist of cells surrounded by an intricate extracellular matrix.  This 3D 74 

network of secreted molecules provides structural support for cells and dictates 75 

their spatial organization within tissues.  However, the matrix is not simply an inert 76 

scaffold, it also a key determinant of cell phenotype, providing environmental cues 77 

that enable cells to move relative to each other as well as perform distinct roles 78 

determined by their anatomic location1,2.  Extracellular matrices are made from a 79 

selection of more than 1000 molecules collectively called the matrisome.  Genes in 80 

the matrisome code for all of the proteins that can be secreted by cells, 81 

encompassing extracellular matrix molecules, matrix-associated proteins, soluble 82 

growth factors, chemokines and cytokines, and enzymes including proteases and 83 

kinases3 (http://matrisomeproject.mit.edu/).     84 

 85 

Expression of site-specific combinations of matrisome molecules, and their assembly 86 

into networks around cells, creates unique tissue microenvironments, as well as local 87 

niches within tissues.  Integrated mechanical and biochemical cues from each type of 88 

matrix provide essential context for cell behavior, wherein distinct combinations of 89 

extracellular molecules cohesively define cell differentiation and specialization.   For 90 

example, joints are specialized multi-tissue organs that provide the structures by 91 

which bones move relative to each other, and by which muscles mediate 92 

coordinated locomotion.  The components of a classical human synovial joint include 93 

tissues such as the synovium, tendons, muscle, ligaments, bursae, menisci, articular 94 

cartilage and subchondral bone.  Each constituent tissue of the joint is made up of a 95 

unique combination of matrisomal molecules that confer the distinctive physical 96 

properties that together are essential for effective joint function (Box 1).  97 

http://matrisomeproject.mit.edu/).
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 98 

The extracellular matrix is as dynamic as it is complex, changing throughout 99 

development and ageing, as well as during inflammation and disease.  However, for 100 

most human tissues, including the joint, we lack a detailed understanding of the 101 

molecular and topological organization of the extracellular networks surrounding 102 

cells.  It is also not clear how tissue architecture changes during inflammation, nor 103 

the functional implications of these changes.   Here, we review emerging data that 104 

highlight the importance of understanding the complex interplay between cells and 105 

their matrix microenvironment in defining cell behaviour within the synovium,  and 106 

in controlling joint inflammation. 107 

 108 

Complex tissue architecture within the synovium 109 

The synovium is an intricate tissue, made up of a number of cell types including 110 

tissue resident macrophages, fibroblasts, nerve and endothelial cells. Even at the 111 

gross histological level, subcellular compartmentalization within the synovium is 112 

evident forming two distinct zones; the intima lining layer and the subintima (Box 1). 113 

In a healthy joint the intima is only 1-3 cells thick, and is composed of tissue resident 114 

macrophages and fibroblasts supported by a porous basement-like membrane. This 115 

zone of the synovium controls cellular and molecular ingress and egress between the 116 

synovium and the joint cavity, playing a key role in maintaining joint integrity and the 117 

composition of synovial fluid, ensuring effective joint lubrication and nutrient 118 

exchange.  The subintima, comprising fibroblasts distributed throughout a looser 119 

collagenous extracellular matrix, and containing blood and lymphatic vessels, and 120 
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nerves serves to vascularise and enervate the synovium, and provide transport 121 

routes for cells, nutrients and lymph into and out of synovial tissue4.    122 

 123 

The synovium becomes markedly expanded in RA, with the intimal layer increasing 124 

up to as much as 10-20 cells in thickness.  Infiltrating immune cells join resident 125 

macrophages and proliferating fibroblasts to cause synovial hyperplasia.  This 126 

quantitative change in the cellular ecosystem is accompanied by qualitative changes 127 

in cell phenotype; expansion and activation of lymphocytic, myeloid and fibroblast 128 

subpopulations that promote inflammation and tissue destruction, alongside 129 

suppression of cell subsets that mediate the resolution of inflammation, occurs, 130 

driving the immune status of the joint towards chronic inflammation5,6. 131 

 132 

Changes in the organization of the synovial architecture are also evident in RA. There 133 

is not just vast and random cellular influx and expansion; a specific selection of cells 134 

only enter the joint, organized by the chemokine repertoire of the synovium.  135 

Moreover the tissue is markedly reorganized, creating new compartmentalized 136 

niches within which pathogenic cell behaviour is confined5,6.  For example, ectopic 137 

(or tertiary) lymphoid structures develop in the synovium during RA in around 40% 138 

of patients, with around 10-25% of samples exhibiting germinal center-like 139 

structures7.  These aggregates of lymphocytes resemble secondary lymphoid organs, 140 

albeit with varying degrees of organization, characterized by a T cell-rich zone 141 

enclosing a central B cell-rich zone, served by a network of high endothelial venules 142 

that enhances naïve T and B cell recruitment to the synovium (reviewed in 8).  Biopsy 143 

studies have shown the existence of gradients of CXCL13 and CCL19/CCL21 which 144 
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support cellular segregation, and where B cells differentiate in situ into plasma cells, 145 

supporting autoantibody production8.  Lymphoid-rich synovitis, defined by a distinct 146 

transcriptomic profile, and by high serum CXCL13, represents a histologically distinct 147 

subset of patients with high disease activity, who are difficult to treat9.  These data 148 

exemplify how disease pathotypes or endotypes can be categorized based on 149 

synovial cell ecosystems. 150 

 151 

The pannus is also a well-described architectural feature of the inflamed synovium.  152 

Although used historically, the term pannus is likely to be replaced with ‘activated 153 

aggressive RA synovium’. This region of hypertrophic synovium, often called the 154 

aggressive front, is composed of macrophages and fibroblasts that release tissue 155 

degrading enzymes responsible for invasion of cartilage and bone6 (Figure 1a).   156 

Most interestingly is the fact that RA synovial fibroblasts attach to the cartilage 157 

matrix and invade it progressively and destructively, a close relationship that has 158 

been observed in  studies of the MLR/lpr mouse model10, as well as models using 159 

engraftment of human synovial tissue or isolated synovial fibroblasts together with 160 

human cartilage in SCID mice11,12.  These areas of invasive pannus formation have 161 

been well studied at the molecular level, revealing that this tissue niche is hypoxic13, 162 

and displays discreet patterns of gene expression.  This encompasses upregaulation 163 

of genes such as MMPs14,15, TLRs16, p5317,18 and SUMO/Sentrin19, and down 164 

regulation of the tumor suppressor gene PTEN20, which combine to create a 165 

destructive milieu in which aggressive pannus-resident cells are protected from 166 

apoptosis.  Moreover, changes in epigenetic marks have been suggested to 167 

contribute to the aggressive phenotype of synovial fibroblasts at the site of invasion 168 
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into cartilage21.    Expression of tissue degrading enzymes and apoptosis-inhibiting 169 

factors in RA synovial fibroblasts found at the sites of cartilage destruction is 170 

associated with gene hypomethylation; and this altered epigenetic landscape might 171 

explain why therapeutically targeting the progression of RA joint destruction is 172 

extremely difficult22.  Some studies have also reported how the tissue 173 

microenvironment itself changes within the pannus, and the consequences of 174 

altered extracellular protein expression on localized tissue invasion.  For example, 175 

galectin-3, a secreted beta‐galactoside‐binding protein that is elevated early in RA 176 

pathogenesis, localizes almost exclusively to the pannus in the inflamed synovium 177 

(Figure 1b)23,24.   Galectin-3 directly activates synovial fibroblasts, stimulating 178 

secretion of inflammatory cytokines, such as interleukin‐6 (IL‐6), and chemokines, 179 

such as IL‐8, CCL2, CCL3, and CCL5, as well as MMP3, via activation of MAPK and 180 

phosphatidylinositol 3‐kinase (PI 3‐kinase) signalling pathways25.  Moreover, 181 

galectin-3 expression by RA synovial fibroblasts is required for IL6 synthesis 182 

downstream of TLR226, a pattern recognition receptor that also localizes to the 183 

pannus in inflamed synovia (Figure 1c)16.  Together these data imply that local 184 

interplay between galectin-3 and TLR2 serves to activate pannus-resident synovial 185 

fibroblasts, in a cytokine-independent manner, and recruit immune cell infiltration to 186 

reinforce inflammation specifically at this key pathogenic site.  187 

 188 

Thus it becomes apparent how localized changes in the tissue occurring in RA direct 189 

site-specific aspects of pathology, and might explain the fact that targeting cytokines 190 

in RA is not enough to cure this disease. However, a systematic cellular atlas that 191 

describes the spatio-temporal organization of synovial cells is missing; little is known 192 
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about how many different cell subsets make up this tissue, nor their organization 193 

into functional networks. 194 

 195 

Single cell resolution of the RA synovium   196 

 A step change in our ability to perform a cellular census of the cell types present in 197 

synovial joints has occurred because of advances in minimally invasive ultrasound-198 

guided biopsy techniques, coupled with tissue digestion and single cell (sc) RNA 199 

sequencing 27-29.   Using these precision molecular analytics, multiparameter imaging 200 

and state of the art bioinformatics, recent work from tissue in the inflamed joint has 201 

revealed further insight into the complexity of the synovium, showing the RA 202 

synovium to be comprised of at least 18 distinct types of types of T cells, B cells, 203 

macrophages and fibroblasts29 and allowing us to compile for the first time a 204 

synovial map of the leucocyte and stromal cells in the synovium in diseases such as 205 

OA and RA29,30(Figure 2).    206 

 207 

These studies have revealed unprecedented insight into anatomical and functional 208 

specialization of synovial cells. It has long been known that not only T cell number, 209 

but also the balance amongst T cell polarization, is a key determinant of immune 210 

status, for example lower ratios of Tregs compared to Th17 subsets contribute to 211 

impaired immune restraint and chronicity of inflammation31.  Now, in the human RA 212 

joint, the existence of a pathogenic T cell population (termed TPh) that express high 213 

levels of PD1 but not CXCR5, has been identified to be  highly expanded in 214 

seropositive RA patients and not seronegative32.   These data indicate complexity in 215 

the rheumatoid T cell compartment that have not been  previously appreciated. 216 
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 217 

It is also now clear that synovial fibroblasts exhibit striking positional and phenotypic 218 

segregation, with inflammatory Thy1 positive  populations predominating in the 219 

sublining layer and destructive populations in the intima or lining layer, together 220 

with a further, distinct, subpopulation populating the perivascular space.   221 

Moreover, inflammatory populations of synovial fibroblasts have been shown to 222 

expand in the synovial sublining layer in RA compared to OA, contributing to immune 223 

dysregulation, whilst destructive populations in the lining layer are responsible for 224 

cartilage and bone destruction during disease30 (Table 1, top panel).  This degree of 225 

cellular resolution and functional delegation starts to unravel disease progression at 226 

a new level. 227 

 228 

New details are also emerging around macrophage populations in the RA joint.  229 

Evidence suggests that tissue resident macrophages in the intima serve a barrier 230 

function that maintains immune privilege in the joint.  This becomes compromised in 231 

RA, allowing unrestricted infiltration of monocyte-derived cells, whilst preventing 232 

inflammation in OA. In contrast, subintimal macrophages comprise heterogeneous 233 

monocyte- and tissue-derived populations, amongst which pro-inflammatory 234 

phenotypes dominate in RA33 (Table 1, bottom panel).  An independent study also 235 

highlighted RA synovial macrophage heterogeneity, in this instance with a focus on 236 

comparative analysis of disease remission and disease flare.  Four distinct 237 

subpopulations were identified, comprising nine discrete phenotypic states, amongst 238 

which two subpopulations (MerTK+TREM2hi and MerTK+LYVE1+) were enriched in 239 

people whose RA was in remission compared to those with active disease, and 240 

chris buckley
See reply 

Kim Midwood
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CB – can you help here?



12 
 

whose contraction was associated with increased risk of disease flare.  These subsets 241 

can induce synovial repair responses via production of inflammation-resolving lipid 242 

mediators34.   Finally, the existence of HBEFG(+) macrophages and fibroblasts in the 243 

rheumatoid synovium that induce fibroblast invasiveness has provided insight into 244 

functional, pathogenic cellular interaction networks across subpopulations from 245 

different lineages35. 246 

 247 

Together these studies demonstrate how our understanding of the architecture of 248 

the joint has progressed from gross anatomy, through subsynovial structures, 249 

including pannus tissue and tertiary lymphoid structures, to the single cell level, and 250 

how this has enabled the emergence of a more complete cell atlas of the joint.  251 

These data have also shown how changes in the balance of synovial cellular 252 

ecosystems underpin chronic inflammation during the onset and progression of RA 253 

compared to OA.  Some of the underlying drives of these changes are beginning to 254 

emerge, for example, the expansion of Thy1 positive fibroblasts in the RA sublining is 255 

NOTCH3 dependent36, compared to the lining layer, where Thy1 negative fibroblasts, 256 

along with lining layer MerTK positive macrophages, contract in active disease.  257 

Moreover, the increases in the ratio of MertK positive to negative macrophages in 258 

the RA synovium  in patients in disease  remission suggests that lining layer 259 

macrophages regulate remission in RA34.   260 

 261 

These data may aid in therapeutic strategies that target pathogenic cell populations 262 

in RA. For example, functional subclasses of fibroblasts have proven difficult to 263 

define, characterize and study in health and disease. Consequently, there are no 264 



13 
 

approved drugs that specifically target fibroblasts in human diseases. The recent 265 

identification of “pathogenic” fibroblast subpopulations30 offers an attractive new, 266 

non-immunosuppressive therapeutic target. However, fibroblasts are a functionally 267 

heterogeneous group of cells that support discrete biological functions within the 268 

joint tissue. This has led to a therapeutic dilemma: which fibroblast subsets should 269 

be targeted and suppressed and which should be retained and augmented? A clear 270 

understanding of the biology and clinical significance of fibroblast heterogeneity is 271 

therefore essential to provide a coherent rationale for their therapeutic targeting in 272 

treatment of diseases such as RA. The selective targeting of pathogenic fibroblast 273 

subsets using anti-fibroblast monoclonal antibodies, analogous to B cell depletion 274 

using CD20 (rituximab), would complement other targeted therapies commonly used 275 

against leucocytes and their cell products37,38.   Improved resolution of RA synovial 276 

macrophage subsets also now offers the potential for additional arsenal in 277 

modulating pathogenic myeloid cell behaviour, with MerTK+ subsets, or anti-278 

inflammatory mediators released by these cells during disease remission, offering 279 

tractable targets for boosting synovial repair processes34.    280 

 281 

However, despite a clearer picture of the cellular networks inhabiting the RA 282 

synovium, it still remains uncertain what initiates and maintains pathogenic 283 

behaviour in different cell subsets in RA.   284 

 285 

Immunological geography 286 

It is now clear that synovial cell networks compartmentalize in distinct microdomains 287 

within the healthy joint, and that distinct, sub-synovial, niches arise in the RA 288 
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synovium compared to OA during disease progression. It is also clear that synovial 289 

cells do not exist in a vacuum, and an understanding the microenvironmental cues 290 

that shape their phenotype will provide key insight into joint tissue homeostasis and 291 

disease.  The extracellular matrix can impact cell behavior via a diverse range of 292 

mechanisms39, all of which contribute to defining synovial tissue biology, discussed 293 

below and summarized in Table 2 and Figure 3. 294 

 295 

Physical properties and mechanical cues 296 

The extracellular matrix defines the physical properties of tissues.  For example, 297 

synovial fluid is the richest source of hyaluronic acid (HA), a glycosaminoglycan 298 

(GAG) comprising polymeric disaccharide repeats, which protects cartilage from 299 

frictional damage40.  Coating of articular surfaces with lubricin, or proteoglycan 4, a 300 

mucinous glycoprotein also found in synovial fluid, is the major means of effective 301 

joint lubrication41.  Matrix molecules also bind to other matrix molecules to form 302 

complex, multicomponent structural networks.  For example the thin membrane of 303 

the synovial lining layer comprises types III, IV, V and VI collagen and laminin, which 304 

supports intimal cells and acts as a molecular sieve, controlling bidirectional solute 305 

transfer between the synovium and synovial fluid4,42.  This specific architecture is key 306 

to allowing controlled, bidirectional flow of cells and molecules between the 307 

synovium and the joint cavity, maintaining tissue structure and integrity, controlling 308 

synovial fluid content and volume, clearing up debris and maintaining immunological 309 

homeostasis43.    310 

 311 



15 
 

In addition to structural functionalization, the mechanical properties of the matrix 312 

also provide key environmental cues to tissue resident cells.  In this way, not only the 313 

molecular content of the matrix dictates cell behaviour, but also the physical 314 

structure of the matrix itself defines the mechanical cues derived from the tissue44.   315 

For example, interstitial cell migration within the fibrous synovial microenvironment 316 

is regulated both by tissue microstructure, such as matrix alignment and porosity, 317 

and tissue micromechanics, such as tensile, compressive and shear moduli, which 318 

cells use directly to sense biophysical cues via integrin receptors45.   Emerging data 319 

also shows how changes in tissue mechanics controls immune cell plasticity and 320 

polarization. For example, spatial confinement restricts late events in the activation 321 

of pro-inflammatory macrophages46, which may have implications in how immune 322 

responses are modulated as tissue stiffness changes with synovial hyperplasia and 323 

fibrosis.  In a manner analogous to matrix stiffness within the tumor 324 

microenvironment emerging as a key determinant of cancer progression and 325 

treatment response47,48, so too the influence of the mechanical properties of the 326 

synovium, derived from the matrix content and higher order organization, on 327 

disease progression in RA should be considered. 328 

 329 

Tissue architecture and spatial positioning 330 

The extracellular matrix controls the spatial positioning of cells within tissues.  For 331 

example, both lubricin and HA exert anti-adhesive properties which prevents cell 332 

adhesion at smooth articulated surfaces within joints that would be impeded by cell 333 

occupancy4.  Conversely, deposition of the pro-adhesive matrix molecule fibronectin 334 

within the synovial lining layer membrane helps to maintain cellular interaction 335 
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networks by anchoring synovial fibroblasts to their surrounding matrix49.  Ectopic 336 

expression of fibronectin in the RA joint enables aberrant cell adhesion, for example, 337 

high levels of fibronectin in the pannus enhance synovial fibroblast adhesion to 338 

cartilage, stabilizing invadopodia, actin-rich protrusions of the plasma membrane 339 

that are associated with tissue degradation, by promoting coherent points of 340 

anchorage that facilitate cartilage invasion50.   Expression of fibronectin at the basal 341 

lamina and at the endothelial surface in inflamed synovium has also been proposed 342 

to serve as a permissive migration track for infiltrating lymphocytes, enabling T cells 343 

to cross the endothelial basement membrane in RA51,52.  The matrix also plays a key 344 

role in restricting cell migration, with the synovial membrane serving a barrier 345 

function to maintain immune privilege in the synovium, which is disrupted in RA33.    346 

 347 

Patterning of soluble factors 348 

Soluble factors such as cytokines, chemokines and growth factors, by virtue of their 349 

being secreted by cells, are part of the matrisome (Box 1).  The role of several of 350 

these inflammatory mediators in RA is well documented, and forms the basis for a 351 

number of key current biological therapies used to treat people with RA53.  However, 352 

within tissues these molecules often require interaction with other matrisomal 353 

components to signal, and their presentation, concentration and bio-availability 354 

throughout the synovium provides key context for their function. Indeed, core 355 

matrisomal molecules have been shown to control the localization of soluble factors 356 

in tissues, and are key determinants of their activity.  Chemokine immobilization by 357 

GAGs, in particular heparan sulfate proteoglycans (HSPGs), at the luminal endothelial 358 

surface of blood vessels establishes chemokine gradients for migrating leukocytes54, 359 
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as well as protecting these soluble factors from degradation55, and facilitating 360 

oligomerization required for optimal activity56.  For example, in the RA synovium 361 

elevated expression of the HSPG syndecan-3 tethers CXCL8 in the endothelial lumen, 362 

and this interaction has been shown to promote leukocyte trafficking into the 363 

inflamed tissue in vivo during antigen-induced arthritis57,58.  The matrix is an 364 

essential reservoir for other soluble factors including cytokines, bone morphogenetic 365 

proteins (BMPs), Wnts and growth factors, where binding is often promiscuous, but 366 

is specific. For example, fibronectin, vitronectin, tenascin-C, osteopontin, type I 367 

collagen and fibrinogen each bind to several soluble factors from amongst the 368 

vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), 369 

fibroblast growth factor (FGF), transforming growth factor (TGF), insulin-like growth 370 

factor (IGF) and BMP families.  However, each matrix molecule has a distinct set of 371 

soluble binding partners. Moreover, these molecules bind with different affinities 372 

across each family of growth factors; e.g. tenascin-C binds to VEGF-B but not VEGF-A, 373 

vitronectin binds to FGF-18, whilst tenascin-C does not, and neither bind to FGF-1 or 374 

-6 59.  These interactions not only control tissue levels and locations of soluble 375 

factors, but are also essential for their function by serving as co-receptors.  376 

Proteoglycans in particular are well documented accessory molecules60,  with 377 

syndecans playing key roles in cartilage breakdown and synovial inflammation61.  For 378 

example, optimal activity of FGF2, a growth factor up-regulated in RA, where it 379 

contributes to driving fibroblast activation during disease progression62, requires the 380 

formation of a ternary complex between the HS chains of syndecan-4 and the FGF 381 

receptor, as well as signaling via cytoplasmic domain of syndecan-4 to strengthen 382 

the duration and intensity of downstream signaling upon ligand binding63.  As such, 383 
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the role of many soluble factors may not be fully understood without examining how 384 

they interact with other extracellular tissue components.  Moreover, simply 385 

targeting the activity of individual soluble factors in RA may not represent the most 386 

effective, or tissue-specific means of modulating their activity. 387 

 388 

Direct signalling to cells 389 

Matrix molecules provide key biochemical signals directly to cells.  By virtue of their 390 

ability to interact with a large repertoire of cell surface receptors, including integrins, 391 

they can influence cellular behaviour ranging from proliferation to survival to cell 392 

death, and differentiation.  Small, soluble effector molecules tend to evoke relatively 393 

simple signaling pathways, for example TNF at 17kDa activates just two receptors, 394 

TNFR1 and TNFR264. In contrast, matrix molecules are much larger, multimodular 395 

molecules, with far more complex interaction partners.  For example 396 

thrombospondin-1 is a 450kDa secreted glycoprotein with seven modular domains, 397 

that is elevated in RA serum and synovium65,66, and which has at least 83 different 398 

ligands, including other matrix molecules and soluble factors, as well as a plethora of 399 

cell surface receptors67.   Direct cues from the tissue microenvironment play a key in 400 

maintaining tissue homeostasis.  Endogenous danger signals are immunologically 401 

silent in healthy tissues, but which trigger inflammatory responses upon cellular 402 

stress or tissue damage.  These can include alarmins, intracellular molecules that are 403 

released to the extracellular milieu during cell activation or death68, as well as 404 

extracellular matrix molecules whose expression is upregulated or modulated upon 405 

tissue injury, or which undergo post-translation modification69.  These damage 406 

associated molecular patterns (DAMPs) are sensed by pattern receptors such as TLRs 407 
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and integrins, triggering innate immunity and shaping adaptive responses designed 408 

to restore homeostasis and activate tissue repair.  In the joints of people who do not 409 

have RA, these signals are essential in order for cells to detect and respond to injury 410 

and insult.  However, dysregulation of these pathways is emerging as a major cause 411 

of chronic inflammation and tissue destruction in RA.  For example, tenascin-C is an 412 

extracellular matrix molecule that is not expressed in most healthy tissues including 413 

the joint, but is transiently upregulated following tissue injury where it activates 414 

TLR4-mediated inflammation.  Typically downregulated and cleared from tissues 415 

following repair, tenascin-C accumulates at high levels in the synovium of people 416 

with RA.  Expression of this pro-inflammatory matrix molecule is required for the 417 

persistence of joint inflammation and tissue destruction in several different models 418 

of arthritis70-72. 419 

 420 

These studies collectively exemplify how the extracellular matrix surrounding and 421 

supporting synovial cells plays a key role in dictating site-specific behavior within the 422 

synovium. Emerging data also indicate dysregulated signals from the matrix drive 423 

chronic inflammation in the joint during the pathogenesis of RA, and that targeting 424 

these signals may provide an effective means of restoring immune control.   425 

 426 

The extracellular matrix in the pathogenesis of RA 427 

Whole exome sequencing has identified new genetic variants associated with RA 428 

susceptibility, amongst which genes in extracellular matrix-receptor pathways were 429 

most highly enriched (COL4A4, COL6A5, COL11A1, COL11A2, HSPG2, ITGB5, LAMC1, 430 

THBS1, RASGRF1, FLNB, MYL5)73.  Microarray analysis comparing healthy and RA 431 
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synovium also revealed differentially expressed genes involved in cell adhesion and 432 

organization of the extracellular matrix (PTPRC, SDC1, CD8A, CD2, HLA-DPA1, ITGA4, 433 

HLA-DMB, CD6, HLA-DOB, PDCD1LG2, COL3A1, SDC1, COL1A2, INTGB2)74.  Whilst the 434 

impact of sequence variation, or up-regulation, of these genes in people with RA is 435 

not known, these data implicate changes in the matrix and microenvironment in 436 

disease pathogenesis.  437 

 438 

Altered tissue turnover has long been a pathological hallmark of RA5,6,75,76, and 439 

serum levels of matrix metabolites are commonly used biomarkers for joint 440 

remodeling and bone degradation77,78.  For example, the C-telopeptide fragment of 441 

type I collagen (CTX-I) generated by osteoclast-derived cathepsin K reflects bone 442 

resorption79, whilst osteocalcin produced by mature osteoblasts, and the N-terminal 443 

type I procollagen propeptide (PINP) released during collagen fibril synthesis, reflect 444 

bone formation80.  Cartilage degradation is assayed by examining serum levels of 445 

cartilage oligomeric matrix protein (COMP)81, the C-terminal telopeptide of type II 446 

collagen (CTX-II)82, and C2M, a fragment of type II collagen83.  Synovial remodelling is 447 

reflected by high circulating C1M, C3M and C4M, fragments of type I, type III and 448 

type IV collagen generated by MMP cleavage84-87, or proteases implicated in tissue 449 

destruction, such as total MMP-3 or the activated form of MMP-388,89.   A reduction 450 

in serum matrix metabolites accompanies positive response to therapies including 451 

tocilizumab, etanercept, methotrexate, adalimumab, and tofacitinib (for example; 452 

86,90-93).  Analysis of these biomarkers at baseline can also predict people who will 453 

respond well to tocilizumab90, as well as predicting lack of efficacy of Syk inhibition 454 

via fostamatinib on structural end points94.  These serological markers therefore 455 
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serve as reliable surrogates of tissue destruction in RA, and may prove useful in 456 

stratifying patient treatment response.  Emerging data also show that matrix 457 

metabolites are not simply inert collateral damage released from joint tissue as 458 

disease progresses, but active players in RA pathogenesis.  459 

 460 

Expression of the tissue-degrading enzyme MT1-MMP is elevated in the RA joint, at 461 

sites of pannus invasion into cartilage15.  Collagen-induced upregulation of MT1-462 

MMP via DDR2 activation on synovial fibroblasts is more pronounced in variants 463 

missing non-helical telopeptides compared with intact collagen fibrils, and is 464 

enhanced in response to damaged cartilage95, suggesting a positive feedback loop in 465 

which collagen degradation reinforces further tissue destruction.  Fragments of 466 

hyaluronic acid (HA) are also detected in RA synovial fluid96.  The size of HA 467 

fragments dictates the function of this glycan, for example low molecular weight 468 

(MW), but not high MW, fragments activate TLR2-mediated inflammation in 469 

macrophages97.  Fragments of osteopontin are also elevated in synovial fluid from 470 

people with RA98. Thrombin cleavage of this matrix molecule creates a C-terminal 471 

fragment that induces CD44-dependent macrophage chemotaxis, and an N-terminal 472 

fragment that promotes β3 integrin-mediated macrophage spreading and 473 

activation99,100.  These data suggest that elevated levels of matrix metabolites 474 

contribute to both tissue remodeling and inflammation in RA.  475 

 476 

The pro-inflammatory activity of osteopontin fragments is further regulated by 477 

phosphorylation; whilst the chemotactic activity of the C-terminal fragment is 478 

independent of modification, macrophage activation leading to cytokine and MMP 479 
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release by the N-terminal fragment requires phosphorylation99,100.  Higher levels of 480 

phosphorylated osteopontin, and phosphorylated osteopontin fragments, were 481 

observed in synovial fluid from people with RA compared to OA patients, whilst total 482 

osteopontin levels did not discriminate RA from OA101, suggesting that both 483 

proteolytic processing and post-translational modification of the matrix contributes 484 

to disease activity.  Indeed, autoantibodies recognizing citrullinated proteins (ACPA), 485 

the post-translational conversion of arginine to citrulline catalyzed by peptidyl 486 

arginine deiminases, are gold-standard diagnostic markers for RA102.  ACPA recognize 487 

a number of modified matrix molecules (reviewed in 103,104), including citrullinated 488 

epitopes in type II collagen105, well-established pathogenic drivers of joint disease in 489 

vivo106,107; citrullinated fibrinogen108, levels of which predict higher DAS 28 scores109; 490 

citrullinated tenascin-C110, which may delineate different disease aetiologies111; 491 

citrullinated aggrecan, which correlate with higher frequencies of cit-aggrecan-492 

specific T cells in people with RA112, and citrullinated fibronectin113.  Intra-articular 493 

injection of citrullinated collagen and fibrinogen enhances their arthritogenic 494 

potential compared to unmodified protein114-116.   Moreover, citrullination of 495 

fibrin(ogen) and fibronectin in vitro enhances their pro-inflammatory capabilities117-496 

119, whilst citrullination of collagen and fibronectin alters their integrin binding 497 

repertoire and capacity to support synovial cell adhesion113,118,120. Citrullinated 498 

fibronectin also effectively promotes cell survival, in contrast to induction of 499 

apoptosis by the native molecule 49,117, whilst the modified form exhibits increased 500 

affinity for VEGF but is less effective at binding to, and inhibiting, the aggrecanase 501 

ADAMTS4121,122.  As such matrix modification can not only break tolerance, i.e. 502 

create novel antigen epitopes that lead to the generation of T and B cell responses 503 
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against endogenous molecules, it can also generate pathological protein variants 504 

that may exacerbate inflammation in the RA joint.    505 

 506 

RA diagnosis: the truth is in the tissue 507 

One question arising from the study of circulating matrix metabolites, or antibodies 508 

recognizing modified matrix, is how well these markers reflect tissue pathology in 509 

the joint.  Examining collagen, fibrinogen and fibronectin ex vivo in synovial biopsies 510 

by immunohistochemistry has been used to assess the degree of fibrosis in the RA 511 

synovium123.   This approach, whilst more invasive than serological analysis, takes 512 

into account that synovial pathology is compartmentalized, allowing examination of 513 

disease pathogenesis in the context of synovial anatomy.  These details are likely to 514 

be important.  For example, microfibrillar-associated protein 4 (MFAP4), a matrix 515 

molecule that associates with elastin and collagen, is implicated in stromal 516 

hyperplasia and fibrosis in liver and lung disease124.  MFAP4 is found at similarly high 517 

levels in the serum and synovial fluid from people with RA and OA, compared to low 518 

levels in healthy controls.  In the tissue, it is detected in synovial sub-lining arteriole 519 

vessel walls and in adventitial tissue at sites of immune cell infiltration.  However, it 520 

is absent from the internal elastic membrane of vessels in RA synovia, whilst present 521 

at high levels at this site in OA synovia125.  The consequences of differential 522 

distribution of MFAP4 in OA and RA synovia are not yet clear, but these data 523 

highlight that alterations in local tissue architecture are not always reflected in ‘bulk’ 524 

serum or tissue analysis.   525 

 526 
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Whilst circulating biomarkers therefore can be correlative with tissue pathology, 527 

they are not always causal, and it is clear that changes in the serum do not mirror 528 

the totality of changes in the synovium.   Work examining the distribution of 529 

tenascin-C exemplifies how important mechanistic detail can be lost without the 530 

context of tissue anatomy.  Levels of this pro-inflammatory matrix molecule are 531 

elevated in RA serum and synovial fluid126,127, correlating with bone erosion during 532 

disease, and predicting poor improvement in pain in response to anti-TNF 533 

treatment127.  In the RA synovium, tenascin-C is found predominantly in the sublining 534 

layer, where it is restricted to two specific niches; a dense matrix surrounding CD34 535 

negative fibroblast populations, and close to CD34+ perivascular fibroblasts located 536 

underneath blood vessels at sites of lymphocyte infiltration128.  This highlights 537 

specific cellular targets for tenascin-C in the RA joint, which may have remained 538 

obscured without anatomical analysis, and directs further mechanistic investigation, 539 

for example what role tenascin-C might play in promoting prolonged activation of 540 

inflammatory signaling in fibroblasts71,129 or in modulating pericyte adhesion, 541 

migration130 or differentiation131 during RA.   542 

 543 

Considering the advances in our knowledge of the cellular and molecular basis of 544 

synovial inflammation, it is clear that analysis of cell subset interaction networks in 545 

the tissue (for example inflammatory versus destructive fibroblasts, TPh cell or 546 

HBEFG(+) macrophage burden), together with the microenvironmental cues that 547 

instruct their behavior, is likely the most accurate way to assess the underlying 548 

events driving RA, enabling more precise disease classification, leading to process 549 

driven patient stratification and better targeted therapeutic intervention.  However, 550 
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whilst advances in synovial biopsy methodology have enabled safer and more 551 

practicable tissue acquisition, sometimes involving two or more repeat samples132, 552 

by design interrogation of tissue micro-niches may be subject to sampling 553 

heterogeneity, and approaches designed to image the synovium  in vivo may provide 554 

a useful complement to tissue harvest.  Positron emission tomography (PET) using 555 

targeted radiotracers to visualize specific matrix components including collagen133  556 

or fibronectin134 is developing as a viable method to image tissue fibrosis in vivo 557 

(reviewed in 135,136).   PET imaging of GPVI-Fc, a fusion protein comprising the soluble 558 

human IgG1 Fc domain and the extracellular domain of platelet glycoprotein VI, a 559 

trans-membrane platelet glycoprotein that binds with high affinity to matrix 560 

molecules including collagen, fibronectin and fibrinogen is also emerging as a means 561 

to visualize changes in the synovium in vivo.  This chimeric molecule has been used 562 

to image nascent exposure of extracellular matrix during tissue damage, and 563 

synthesis of new fibrous tissue in GPI-serum induced experimental arthritis137.  These 564 

approaches constitute the first steps towards detailed molecular analysis of the 565 

synovial matrix in real time in vivo.  566 

 567 

Exploiting the tissue microenvironment for improved disease treatment   568 

Understanding the cells and the synovial microenvironment at unparalleled 569 

resolution not only illuminates our understanding of the tissue biology of the joint, 570 

and provides insight into disease status and disease mechanisms, it is also paving the 571 

way for new therapeutic strategies.  Targeting the extracellular matrix is being used 572 

to develop a wide variety of new treatments138, and these have been applied to RA 573 

in a number of different ways (Table 3).   574 
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 575 

Advances in drug delivery. Exploiting the tissue specificity of matrix molecule 576 

expression has led to new approaches in drug delivery.  Linking established anti-577 

inflammatory agents to antibodies that recognize matrix molecules, which are not 578 

found in healthy tissue but which are upregulated at disease sites, creates a new 579 

class of immunomodulatory agent that can home to areas of disease, and deliver 580 

localized, site-specific treatment.  This approach has been comprehensively 581 

reviewed in 139, and is most recently exemplified by F8-IL10.  F8-IL10, or DEKAVIL, is a 582 

cytokine-antibody fusion protein, comprising a single-chain antibody variable 583 

domain (Fv) fragment of antibody F8 and the anti-inflammatory cytokine IL10. F8 584 

recognizes the extra domain A (EDA) of fibronectin, a foetally restricted splice 585 

variant of this matrix molecule, which is re-expressed in adults at sites of 586 

inflammation and in cancer.  F8-IL10 exhibits targeted delivery of IL10 to the 587 

inflamed synovium in murine models of arthritis, and to both clinically and sub-588 

clinically inflamed joints in people with RA140.  Whilst PET-CT imaging revealed 589 

unexpected localization of F8-IL10 to the liver and spleen in people with RA, no 590 

safety issues were reported in Phase 1b clinical trials141.  This approach may 591 

effectively overcome the lack of efficacy of systemically administered IL10.   Indeed, 592 

this immunocytokine inhibited the progression of established arthritis in the 593 

collagen-induced mouse model when tested alone and in combination with 594 

methotrexate142 and early signs of therapeutic benefit in over half of people treated 595 

at Phase 1b141.   F8-IL10, and other immunocytokines designed to deliver anti-596 

inflammatory agents directly to inflamed sites represent a novel class of therapeutic 597 
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agents that effectively target antigens at the site of inflammation, followed by local 598 

activity of the cytokine139.    599 

 600 

Engineered matrix binding. Engineering matrix-binding capabilities to anti-TNF 601 

antibodies also shows promise in improving the efficacy of targeting TNF following 602 

intra-articular injection.  Whilst systemic TNF blockade can induce generalized 603 

immunosuppression, intra-articular administration of anti-TNF antibodies is limited 604 

by rapid drug clearance from inflamed joints. Chemical conjugation of the heparin 605 

binding domain of placenta-growth factor-1 (PIGF-2), which binds with high affinity 606 

to many different matrix molecules, to murine monoclonal anti-TNF antibodies 607 

increased antibody retention times in the joint and significantly improved clinical 608 

scores in collagen antibody induced arthritis (CAIA) compared to unconjugated 609 

antibody143.  Similarly, conjugating anti-TNF antibodies to the collagen binding 610 

domain of decorin improves antibody accumulation in inflamed paws during CAIA 611 

and suppressing disease progression more effectively that unmodified antibody144. 612 

This approach might make feasible intra-articular drug administration for 613 

monoarthritis, and help limit off target effects of systemic immune suppression.  TNF 614 

blockade has also been re-engineered using MMP-cleavable inhibitory peptides.  615 

Construction of a chimeric TNF receptor linking the trimerization domain of 616 

adiponectin (Acrp30) to the N-terminus of the extracellular domain of TNFR2 via an 617 

MMP2/9 substrate sequence creates a cap which blocks TNF access to TNFR, which 618 

is released by MMP cleavage.  In vitro this successfully allows controlled binding of 619 

TNFR2 to TNF. If this can be recapitulated in vivo, allowing elevated MMP activation 620 

at sites of inflammation to enable TNF binding to soluble chimeric receptors, 621 
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precluding activation of cellular TNFR, this could provide a powerful means of 622 

conferring inflamed tissue selective TNF blockade145.  623 

 624 

Preventing matrix degradation. An altogether different strategy in treating RA has 625 

been to directly target the activity of matrix degradation in order to prevent 626 

excessive joint tissue destruction (reviewed in 146,147).  Whilst early approaches using 627 

broad-spectrum small molecule MMP inhibitors were fraught with unacceptable side 628 

effects, more recent attempts with specific protease inhibitors appear more 629 

promising.  A recent phase 1b trial of MMP9 specific monoclonal antibodies showed 630 

this approach to be safe and well tolerated148, and pre-clinical data show how 631 

combining TNF and MT1-MMP blockade confers long-term protection from 632 

inflammation and tissue damage in mice with collagen induced arthritis149.  These 633 

data highlight how inhibiting both inflammatory and tissue destructive processes can 634 

exert synergistic effects in established disease.  However, targeting these mediators 635 

hits targets comparatively late events in RA pathogenesis, and new data have begun 636 

to reveal the possibility of intervening earlier in disease, before mis-regulated 637 

cytokine networks and tissue destruction are evident.  638 

 639 

Manipulating soluble factor binding to the matrix. One elegant way to intervene at 640 

the point of leukocyte invasion into the inflamed synovium may be to use decoy 641 

chemokines.  Engineered to have a higher affinity for GAG interaction sites, but to be 642 

incapable of competent signaling via chemokine receptors, these agents can 643 

effectively displace wild type chemokines from essential matrix binding sites, acting 644 

as powerful dominant negative chemokine inhibitors.  For example, CXCL8 variants 645 
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with enhanced HSPG binding, and ablated CXCR1 or CXCR2 binding, reduced peri-646 

articular neutrophil infiltration and inhibited leucocyte adhesion on the venule at the 647 

site of joint inflammation, resulting in inhibited leucocyte transmigration into the 648 

knee cavity during mBSA-induced experimental arthritis150.  Similarly, short-chain 649 

basic peptides representing the GAG-binding region of chemokines such as CXCL8 650 

bind to HSPG with high affinity, reduced leukocyte migration through the endothelial 651 

cell layer in vitro, compete with intact CXCL8 for binding around the endothelium in 652 

human RA tissue, and reduce inflammation and neutrophil infiltration during 653 

antigen-induced arthritis in vivo151.  Alternatively, administration of the soluble 654 

extracellular domain of syndecan-3 has been used to mop up unwanted chemokines 655 

in the joint.  Soluble syndecan-3 inhibited CCL7-activated leukocyte migration in 656 

vitro, and ameliorated histological disease severity, concomitantly reducing the 657 

number of blood vessels staining positive for CCL7 in the inflamed synovium, during 658 

antigen- and collagen-induced models of RA152.    659 

 660 

Targeting chronic pro-inflammatory signals from the matrix. Matrix molecules, 661 

however, are more than just postcode proteins with which to deliver existing drugs, 662 

placeholders for chemokines, or substrates for proteolytic degradation; they also 663 

play a key role in driving disease.  By creating distinct niches within the RA joint they 664 

deliver aberrant pro-inflammatory signal to resident cell networks.  Targeting these 665 

networks can be useful in early disease modulation.  For example, thrombin-cleaved 666 

osteopontin binding to fibronectin at the cell surface of synovial fibroblasts aids B 667 

cell adhesion and stimulates the production of inflammatory cytokines153.  A scFV 668 

antibody recognizing osteopontin, which blocks its interaction with fibronectin, 669 



30 
 

effectively reduced synovial fibroblast migration and adhesion to B cells in vitro, and 670 

improved clinical score, synovial hyperplasia, cartilage damage, cytokine levels when 671 

given early during collagen-antibody induced arthritis154.  These data show how 672 

targeting key matrix interactions during disease onset can be useful in preventing 673 

the formation of immune permissive environments. Moreover, it is increasingly 674 

apparent that changes in the synovial microenvironment take place long before any 675 

overt clinical symptoms.   For example, serum levels of both tenascin-C and ficolin-1, 676 

both secreted endogenous TLR4 agonists72, are elevated in people with early 677 

synovitis who go on to develop RA compared to people with synovitis that 678 

spontaneously resolves155,156.  Moreover, baseline levels of ficolin-1 predict disease 679 

remission155.  Furthermore, therapeutic monoclonal antibodies that inhibit TLR4 680 

activation by the fibrinogen–like globe of tenascin-C prevent chronic inflammation 681 

and halt disease progression when given early during collagen-induced arthritis128.  682 

These data suggest that identifying and targeting key events that precede disease 683 

development might pave the way for better outcomes by early intervention, and 684 

even raise the possibility of disease prevention in pre-symptomatic individuals.  This 685 

new matrix modifying drug class acts by blocking signals from the inflamed 686 

synovium, therefore also offering the advantage of selective blockade of tissue and 687 

disease specific cues, rather than global immune suppression, suppressing the true 688 

drivers of disease, but leaving intact our ability to respond to infection. 689 

 690 

Challenges and perspectives 691 

Whilst these therapeutic approaches appear promising, with some already in early 692 

clinical trials140, and others opening up potential windows for very early disease 693 



31 
 

intervention or even prevention157, many questions remain.  At the most 694 

fundamental level, we do not yet have a full picture of which combination of the 695 

>1000 strong matrisomal gene subset are expressed in the synovium, nor how the 696 

resultant proteins and proteoglycans are organized at the subsynovial level. 697 

Advances in proteomic analysis of extracellular matrix (for example 158,159) are 698 

providing much greater depth in interrogation of matrix constituents of tissues.  699 

However, proteomic deconstruction is challenging for the synovium because large 700 

amounts of tissue are rarely available, particularly from healthy joints or early RA. 701 

   702 

RNA sequencing of single cells from RA joints has provided striking resolution of 703 

gene expression at the subpopulation level.  However, this approach alone does not 704 

capture the full complexity of the tissue microenvironment, which necessitates 705 

understanding not only gene expression, but also post-transcriptional processing, 706 

and protein post-translational modification, all key factors in dictating matrix 707 

assembly and function.   Furthermore, high-resolution cellular analysis at a single 708 

snapshot in time makes it difficult to discern whether cell populations identified in 709 

this way represent distinct cell types (and lineages), or the same cell types at distinct 710 

points on a spectrum of phenotypic polarization.    711 

 712 

Another challenge lies in understanding precisely how target cells respond to the 713 

integrated biochemical and mechanical signals provided by multicomponent, 3D 714 

tissue microenvironments.   Many approaches to assessing cell phenotype require 715 

the isolation of cells from tissues, in order to assess, for example, their 716 

transcriptional status.  However, the process of cell isolation has a profound effect 717 
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on cell phenotype itself, accounting for as much as 40% of the transcriptome160,161.  718 

This makes it difficult to differentiate cell behaviour instructed in situ or that caused 719 

by the stress of cell purification.    Technologies such as NICHE-seq162 or spatial 720 

transcriptomics163 can now provide information about localized gene expression 721 

programs, whilst matrix assisted laser desorption/ionization mass spectrometry 722 

imaging (MALDI MSI) can visualise the spatial distribution of molecules, such glycans, 723 

peptides or proteins, by their molecular masses164.  Used in parallel with multiplex 724 

imaging and improved capabilities in optical sectioning provided by light sheet 725 

microscopy, which enables good resolution imaging of intact tissues and organs165, 726 

these methods can now be applied to better resolve the content of the matrix of the 727 

joint, and its organization at the single cell level in situ, and with this a potentially 728 

rich source of tractable new targets with which to diagnose and treat inflammatory 729 

joint disease. 730 

 731 

When thinking about cellular response to the tissue microenvironment, it is worth 732 

considering how external cues contribute both to programming cell identity, as well 733 

as to orchestrating transient cellular activation states required to respond to 734 

dynamically fluctuating tissue conditions.  It has been shown that in tissue-resident 735 

macrophages from different organs, the tissue environment is crucial in the creation 736 

and maintenance of organ-specific macrophage functions166, although the full extent 737 

of how integrated external signals programme this positional memory remains to be 738 

completely unravelled.  Most likely tissue-derived signals also shape fibroblasts from 739 

different organs and differences in the epigenetic landscape, gene expression and 740 

response to stimulus were found by comparing cultured synovial and dermal 741 
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fibroblasts, suggesting a stable imprinting of organ-specific gene expression even 742 

when dissociated from tissue architecture167-169. On the other hand, in synovial170, 743 

dermal171 and intestinal fibroblasts172 expression of HOX genes, which govern 744 

positional cellular identities during embryonic development, differs between 745 

different anatomical regions, which shows that also the anatomical site shapes 746 

cellular gene expression illustrated by the various differences found between hip, 747 

knee and ankle joints170,173-177.   Mechanical stimulation of joint cells is a well-748 

established driver of cell identity during embryonic development178 as well as 749 

postnatally and also influences the composition of the extracellular matrix179,180.  750 

Together these data implicate that at different anatomical sites, differences in 751 

embryonic development as well as environmental cues induce changes in the 752 

content and structure of the synovial microenvironment and define cell behaviour at 753 

a transcriptomic and epigenetic level, which could at least partly explain the specific 754 

pattern of joint involvement seen in many joint diseases (Figure 4).    755 

 756 

Conclusions 757 

Interrogation of synovial cell populations using single cell transcriptomics, and 758 

mapping the location of cell subsets identified by this approach within tissues, is 759 

revealing detailed anatomical complexity in the synovium.  Our understanding of the 760 

cellular basis of synovial health and disease has been accelerated by examination of 761 

how specialized cell networks function within discreet synovial neighbourhoods.  In 762 

parallel, analysis of the role of microenvironment in defining synovial tissue 763 

structure and function is starting to reveal how extracellular cues are essential in 764 

organizing cell networks, and directing niche-specific cell behavior.   These data also 765 
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change our thinking about how inflammatory joint disease arises and progresses, 766 

supporting more holistic consideration of synovial cell ecosystems, wherein 767 

communication between multiple different cell types and their surrounding matrix 768 

within discreet but interconnected neighbourhoods in the synovium, is essential for 769 

tissue homeostasis.   Perturbations in any aspect of these symbiotic ecosystems are 770 

deleterious to synovial homeostasis, and can be pathogenic.  We are already starting 771 

to see how this new perspective has the potential to change clinical practice.  This is 772 

evident both in terms of disease diagnosis and classification, for example in efforts 773 

to use local changes in synovial tissue to better assess patient disease status, as well 774 

as in offering new treatment options.  These may either improve the efficacy or 775 

specificity of drugs currently used to treat people with RA, or offer completely novel 776 

approaches to ameliorating disease. 777 
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 1279 

Key points 1280 

• All tissues are made up of cells surrounded by an extracellular matrix; this 1281 

intricate, 3D molecular network is a both a key determinant of tissue 1282 

architecture and cell behaviour. 1283 

• The synovium is a complex anatomical tissue comprising many different cell 1284 

(sub)populations, located in distinct subsynovial niches, where each are 1285 

specialized to perform unique roles in synovial homeostasis.  1286 

• In RA, infiltrating immune cells join tissue-resident cells; a quantum change 1287 

accompanied by qualitative changes in cell phenotype that promote 1288 

inflammation and tissue destruction, and suppress the resolution of 1289 

inflammation. 1290 

• The extracellular matrix plays a key role in dictating the organization of synovial 1291 

cell ecosystems and in programming synovial cell specialization. 1292 

• Changes in the synovial microenvironment start to occur early in the 1293 

development of RA, and these aberrant extracellular cues shape pathogenic cell 1294 

behaviour during the onset and progression of disease. 1295 

• Analysing localized changes in the synovial microenvironment can improve 1296 

disease classification and patient stratification, whilst targeting the extracellular 1297 

matrix holds promise for the development of new strategies to treat and prevent 1298 

RA. 1299 

 1300 

Figure legends 1301 
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Box 1 | Tissue specific extracellular matrix.  1302 

Tissues are made up of cells and extracellular matrix.  The matrix consists of a 3D network of 1303 

secreted molecules, coded for by genes that are collectively called the matrisome.  1304 

Matrisomal genes can be classified as: 1) core matrisomal genes, including: collagens, 1305 

glycoproteins (such as fibronectin, laminins, tenascins, thrombospondins), and 1306 

proteoglycans, and 2) matrisome-associated genes including matrix-affiliated molecules 1307 

(such as mucins, lectins, syndecans, and galectins), matrix regulators (for example, 1308 

crosslinking enzymes such as lysyl oxidases and transglutaminases, modifying enzymes such 1309 

as kinases and sulfatases, proteases such as matrix metalloproteases (MMPs) and 1310 

cathepsins, and protease inhibitors such as TIMPs and cystatins) and soluble factors (such as 1311 

growth factors, Wnts, cytokines and chemokines).  More than 1000 matrisomal genes exist.  1312 

Each tissue is formed by the assembly of a unique selection of these molecules into a 1313 

complex extracellular network.  These matrices confer different physical properties to 1314 

tissues, and dictate both cellular organization and cellular behaviour within tissues.   1315 

In the human synovial joint, subchondral bone consists of a layer of compact cortical bone 1316 

and underlying cancellous bone.  A hard, calcified, type I collagen-rich matrix enables bones 1317 

to provide anatomical support (a).  The articular surface of bone in synovial joints consists of 1318 

a smooth layer of hyaline articular cartilage, which provides compressive resistance in the 1319 

joint.  A matrix rich in type II collagen and proteoglycans confers the shock absorbing 1320 

capabilities of cartilage (b).  Tendons are the key functional anatomic bridges between 1321 

muscle and bone. They focus the force of muscle into localized areas on the bone, the 1322 

enthesis, and by splitting to form a number of insertions distribute the force of muscle 1323 

contraction to different bones.  A matrix comprising tightly packed parallel bundles of type I 1324 

collagen fibrils confer tensile strength to tendons (c). The synovium is a thin mesenchymal 1325 

membrane that encapsulates the joint space and provides boundary layer lubrication to 1326 

ensure frictionless movement.  A healthy synovium is composed of two distinct layers; an 1327 
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intimal layer that is 20-40 micron thick, and a fibrous-areolar subintima that can be up to 1328 

5mm in thickness.  The intima is composed of tissue resident macrophages and fibroblasts, 1329 

supported by a discontinuous membrane made of types III, IV, V and VI collagen and laminin, 1330 

which controls joint lubrication and nutrient exchange via the synovial fluid.  The subintima 1331 

contains blood and lymphatic vessels, as well as nerves and fibroblasts, in a looser 1332 

collagenous extracellular matrix (d).  Understanding tissue biology therefore requires 1333 

understanding patterns of matrisomal gene expression, and how the resultant proteins are 1334 

organized and modified to create distinct microenvironments.  1335 

 1336 

 1337 

Fig. 1 | The pannus is a key architectural feature of the inflamed synovium.  1338 

The region in the inflamed joint where hypertrophic synovium invades into adjacent 1339 

cartilage and bone is called the pannus, where synovial cells and chondrocytes are closely 1340 

juxtaposed. The left hand panel shows the overall architecture of the inflamed synovium, 1341 

and the red boxed area in the right hand panel focsues in on the specific zone of synovial-1342 

cartilage interaction (a).  In this relatively small anatomical zone, exquisitely site-specific 1343 

patterns of gene expression are observed. Examples of pannus restricted biology include 1344 

galectin-3 (b) and TLR2 (c) expression, both of which are upregulated specifically at these 1345 

sites of invasion into underlying bone, and mediate localized synovial fibrolast activation and 1346 

MMP synthesis, as well as localized chemokine synthesis that recuits infiltrating immune 1347 

cells to the area.  1348 

 1349 

Fig. 2| Distinct fibroblast populations in the RA synovium inhabit distinct tissue niches.  1350 

Single cell transcriptional analysis reveals 5 different fibroblast populations in the inflamed 1351 

mouse synovium (labelled F1-F5 here), three of which are conserved in human tissue.  1352 

XXXXXXX 1353 

Kim Midwood
Figure 2 suggests that these cell types are distinct subsets, but it is not yet known if they are the extremes of differentiation, part of a continuum, or fixed. It might be better to make that uncertainty clearer.

CB – please would you add some text?
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 1354 

Fig. 3 | Tissue microarchitecture in the healthy and RA joint.   1355 

Within sub-synovial niches, distinct combinations of matrix molecules define local tissue 1356 

structure and function.  The matrix confers physical properties to tissues, for example, at the 1357 

articular surface proteoglycans and GAGs ensure frictionless joint articulation, a property 1358 

diminished in RA as these molecules become degraded, creating pro-inflammatory matrix 1359 

fragments (a). The synovial membrane forms a porous meshwork, comprising points of 1360 

anchorage which organize lining layer cells into a cohesive network, together creating a 1361 

barrier restricting cell movement, whose integrity is lost in RA (b).  The matrix provides 1362 

mechanical cues that directly control cell phenotype, these become altered during synovial 1363 

hyperplasia and fibrosis, where changes in the orgnaization of the fibrous interstitial matrix 1364 

dictate stromal cell movement, whilst matrix stiffness impacts macrophage phenotype (c).   1365 

As well as controlling the spatial positioning of cells by providing points of adhesion and 1366 

migration barriers, the matrix also creates tracks which are permissive for cell migration, for 1367 

example in and around the endothelial basement membrane.  In RA, elevated expression of 1368 

proteoglycans also pattern gradients of soluble factors around blood vessels, and serve as 1369 

chemokine co-receptors, orchestrating enhanced cell infiltration via the perivascular niche 1370 

(d).   The matrix is a rich source of biochemical signals that are directly sensed by cell surface 1371 

receptors to dictate cell behaviour,  these signals may derive from complex multicomponent 1372 

networks of extracellular molcules or fragments of matrix molecules generated during tissue 1373 

remodelling. Both are exemplified in the pannus where ectopic matrix deposition provides a 1374 

cell substrate permissive for immune cell activation and fibroblast spreading and invasion, 1375 

whilst damaged matrix sustains signalling loops that perpetuate tissue destruction (f). 1376 

 1377 

Fig. 4| Shaping of joint specific cellular phentoypes.  1378 
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Positional memory in joint stroma cells can be modified at all stages of life. During 1379 

embryonic development joint-specific pathways and stimulatory signals such as fetal 1380 

movements work in concert with joint-specific HOX gene expression to shape the different 1381 

joint regions170. In early childhood, the transition to walking upright is associated with 1382 

substantial adaptation of motor and biomechanical processes that shape gene expression in 1383 

the tissues involved. Later in life, unphysiological load, trauma or other environmental 1384 

factors such as infection and inflammation, e.g. rheumatoid arthritis can lead to joint-1385 

specific changes. 1386 

 1387 

 1388 

 1389 

  1390 
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Table 1 | Conserved cell populations in the RA joint.   1391 

Cell subset Marker  
(human) 

Marker  
(mouse) 

Activation 
marker/effectors 

Fibroblasts 

Lining layer CD90- CD55+ PGR4+ 
F4 

CD90- 
PGR4+ 
F5 

RANKL:OPG ratio, CCL9, 
CLIC5, MMP1, MMP2, 
MMP3, MMP9, MMP13, 
HAS1, HTRA4, DNASE1L3 

Immunomodulatory  
sublining layer 

CD90+ CD34- HLA-DRAhi 
F2 
 
CD90+ CD34- DKK+ 
F3 

CD90+ 
CD34- 
F1 

IL6, IL33, IL34, IFI30, Lif, 
CXCL9, CXCL12, CXCL13, 
CCL2, CCL19, CCL21 

Perivascular  
sublining layer 

CD90+ CD34+ 
F1 

CD90+ 
CD34+ 
F3 

Macrophages 

Lining layer 
 

CX3CR1+ 
CFSR1- 
  

TREM2, VSIG4, AXL, 
MFGE8, JAM1, ZO-1, 
CLDN5, FAT4, VANGL2  

Interstitial NURP1+ 
CD11c- CD38- 
M2 

CX3CR1- 
CFSR1+ 
MHCII+ 
AQP1+  

MERTK, CTSK, HTRA1, 
GPNMB, ITGB5 

C1QA+ 
CD11c+ CD38+ 
M3 

CX3CR1- 
CFSR1+ 
RELMA+  

MRC1, CD163, MARCO 

Monocyte-derived 
infiltrating 

SPP1+ IFN-activated 
CD11c+ CCR2+ CD38+  
M4 
 
IL1b+  
CD11c+ CCR2+ CD38+  
M1 

CCR2+ 
Ly6c2- 
ARG1+ 
 
CCR2+ 
Ly6c2- IL1b+ 

ARG1, IFI6, IFI44L, 
LY6E, SPP1 
NR4A2, HBEGF, PLAUR, 
RGS2, IL1b, HTF3, 
CXCl2, EREG 

 1392 

Single cell transcriptional analysis of the human RA synovium has identified at least 1393 

18 different cell types, including fibroblast and macrophage subsets that are 1394 

conserved in the inflamed murine synovium.  Each cell subpopulation exhibits 1395 

strikingly different localization within the joint and distinct functional specialization. 1396 

Data summarised from references 27-30,33,35. 1397 

 1398 

 1399 

 1400 

  1401 
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Table 2 | How the tissue microenvironment can impact joint cell behaviour 1402 

 1403 

Matrix Effect and location Reference 

Physical properties and mechanical cues 

Hyaluronic acid High levels in synovial fluid prevent friction 
40 

Lubricin Distributed on the articular surface to lubricate the joint 
41  

Lining layer 
basement 
membrane  

Maintains synovial integrity and immune privilege, by regulating and 
restricting, molecular and cellular exchange, that is lost in RA 

4 43 33 

 

Sub-intimal 
interstitial 
matrix 

Controls matrix alignment and porosity, as well as tissue micromechanics, to 
regulate stromal cell adhesion and movement  

45 

Dictates tissue stiffness which impacts macrophage polarization and 
activation 

46 

Spatial positioning 

Hyaluronic acid 
and lubricin 

High levels in the synovial fluid prevent cell adhesion at the cartilage surface 
to facilitate unimpeded joint articulation  

4 

Fibronectin Within the lining layer basement membrane promotes cell adhesion to 
create cohesive barrier function  

49 

Ectopic expression in the RA pannus stabilizes cell invading machinery 
50 

Up-regulation in the endothelial basement membrane in RA provides 
permissive tracks that support T cell infiltration  

51,52 

Soluble factor patterning and activity 

GAGs High levels at the endothelial basement membrane in RA create chemokine 
gradients that enhance cell infiltration    

54 55 56-58 

HSPGs Expression at the cell surface serves as a co-receptor for chemokines and 
growth factors, potentiating signalling  

60 61 62 63 

Direct signalling to cells 

Tenascin-C Upregulation in the RA synovial sublining layer activates TLR4-mediated 
inflammation  

70-72 

Hyaluronic acid 
fragments 

In RA synovial fluid, low molecular weight fragments activate TLR2-mediated 
inflammatory signalling   

97 

Osteopontin 
fragments 

In RA synovial fluid, C-terminal fragments induce macrophage chemotaxis, 
and phosphorylated N-terminal fragments enhance macrophage spreading 
and activation  

  98 99,100 

Damaged 
collagen 

In the pannus, degradation of cartilage collagen increases localized MT1-
MMP expression by synovial fibroblasts 

95 



51 
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 1406 
 1407 

 1408 

Approach Mode of action Development  Reference 
Drug delivery  

Immunocytokine Cytokine-antibody fusion protein DEKAVIL (F8-

IL10): scFV of antibody F8 mediates delivery to 

inflamed joints via recognition of the EDA 

domain of fibronectin, where IL-10 exerts a 

localized anti-inflammatory effect. 

Phase Ib  141 

Chimeric 

antibodies 

Anti-TNF antibodies fused to the heparin 

binding domain of PIGF-2, or to the collagen 

binding domain of decorin, are preferentially 

retained in the inflamed joint  

Pre-clinical 

 

 

 

143 144 

Drug activity 

Chimeric  

cytokine 

receptors 

Soluble TNFR fused to MMP cleavable 

adiponectin-derived cap creates controllable 

TNFR-TNF binding, activated at sites of high 

protease activity 

In vitro  145 

Inhibition of pathological processes 

Tissue  

destruction 

Therapeutic monoclonal antibodies blocking 

the tissue degrading activity of specific 

proteases. 

Phase 1b 

(MMP9) 

Pre-clinical 

(MT1-MMP) 

148 

 
149   

Leukocyte 

infiltration  

Decoy chemokines:  signalling incompetent 

variants of CXCL8 with high HS affinity, or 

peptides comprising CXCL8 heparin binding 

domain, displace endogenous chemokine from 

tissue GAGs 

 

Decoy GAGs: soluble syndecan-3 competes for 

CXCL8 binding to endogenous syndecan at the 

endothelial lumen. 

Pre-clinical 

 

 

 

 

 

Pre-clinical 

 

150 151   

 

 

 

 

152 

 

Synovial 

inflammation  

Therapeutic monoclonal antibodies that block 

osteopontin-fibronectin interactions, or that 

prevent activation of TLR4 by the fibrinogen 

like globe domain of tenascin-C 

Pre-clinical 

 

 

128,154 


