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Abstract
Different types of microscopy are used to uncover signatures of cell adhesion and mechanics.
Automating the identification and analysis often involve sacrificial routines of cell manipulation
such as in vitro staining. Phase-contrast microscopy (PCM) is rarely used in automation due to
the difficulties with poor quality images. However, it is the least intrusive method to provide
insights into the dynamics of cells, where other types of microscopy are too destructive to
monitor. In this study, we propose an efficient workflow to automate cell counting and
morphology in PCM images. We introduce Cell Adhesion with Supervised Training and
Learning Environment (CASTLE), available as a series of additional plugins to ImageJ.
CASTLE combines effective techniques for phase-contrast image processing with statistical
analysis and machine learning algorithms to interpret the results. The proposed workflow was
validated by comparing the results to a manual count and manual segmentation of cells in
images investigating different adherent cell types, including monocytes, neutrophils and
platelets. In addition, the effect of different molecules on cell adhesion was characterised using
CASTLE. For example, we demonstate that Galectin-9 leads to differences in adhesion of
leukocytes. CASTLE also provides information using machine learning techniques, namely
principal component analysis and k-means clustering, to distinguish morphology currently
inaccessible with manual methods. All scripts and documentation are open-source and available
at the corresponding GitLab project.

Supplementary material for this article is available online

Keywords: machine learning, cell adhesion, cell morphology, galectins, imagej, ilastik, image
analysis

(Some figures may appear in colour only in the online journal)

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

1. Introduction

The function of almost all cell types, including leukocytes,
platelets, and cancer cells, critically involves a number of
mechanical processes [1]; these include the regulation of cell-
cell and cell-matrix adhesion, flow sensing and changes in
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morphology during cell migration [2]. A particularly import-
ant case, where adhesions need to dynamically change on short
time scales, involve the adherence of blood cells. For example,
leukocytes adhere to the endothelium and transmigrate out
into inflamed tissues, and platelets activate and adhere to a
substrate or to each other during wound closure. To invest-
igate the effect of specific adhesion molecules on leukocyte
behaviour, e.g. those appearing on the endothelium, biolo-
gists often employ flow based adhesion assays where cells
adhere to coated substrates, or to endothelial monolayers. Sub-
sequently, cells may migrate on the substrate or monolayer, or
form aggregates. To identify adhesive states or morphological
changes during migration, experimentalists frequently analyse
a large number of cells under different conditions.

Humans are highly perceptive in identifying patterns in
complex biological images. However, manual counting of the
same object over hundreds of images is exhausting and time-
consuming, increasing errors in the image analysis. Develop-
ments in computer power and algorithms therefore have great
potential to allow more efficient routes to automatically pro-
cess and analyse masses of data with limited human interven-
tion if a suitable methodology can be put into place. Moreover,
such automation can help to extract new quantitative features
from the images.

High-throughput microscopy is the acquisition and pro-
cessing of large volumes of data by automating sample prepar-
ation and data analysis techniques [3]. The methodology for
these types of study are referred to as workflows. Workflows
utilise the best combination of image analysis techniques, spe-
cific to a researcher’s problem, and follow the steps to ensure
the method is repeated exactly for all samples. The primary
objective of the methods chosen is in their accuracy for which
features of an image are converted into meaningful quantitat-
ive data [4]. Once validated as accurate, designing a workflow
with flexibility for similar research enables a larger impact.
To be considered more widely usable by the community of
bio-imaging researchers they need to excel in certain attrib-
utes. Carpenter et al [5] list the criteria that such research soft-
ware should meet. The criteria can be summarised into five
key attributes:user-friendly, modular, developer-friendly, val-
idated and interoperable. All of these must be considered for
a successfully designed workflow.

In our study, we are considering the images acquired by
phase-contrast microscopy (PCM). Since most thin biological
samples are optically transparent in visible light, amplitude
information does not provide good contrast for imaging. How-
ever, even these transparent samples provide a significant
optical phase delay. PCM utilises both types of information in
the transmitted light, whereas conventional bright-field ima-
ging only measures the amplitude. Full details of quantitative
phase imaging techniques can be found elsewhere [6].

Once the images are uploaded to a digital form, the auto-
mated workflow processes the image into its constituent parts.
There are many techniques in image processing for pixel clas-
sification [7, 8]. In addition, amethodology to interpret the vast
amounts of statistics produced is necessary to prevent a back-
log of valuable information going unused or slowing down
the research. Again, techniques in machine learning can help

automate the process with little human intervention to increase
both speed and objectivity [9, 10].

In the present study, we test our workflow on different
types of recently acquired data sets: we quantify adhesion and
morphology of peripheral blood mononuclear cells (PBMCs)
and polymorphonuclear leukocytes (PMNs) in dependence on
galectins, and platelet adhesion depending on von Willebrand
factor (vWF) with stimulation by a platelet agonist, adenosine
diphosphate (ADP). Galectins are a family of ß-galactoside
binding proteins which have a range of immunomodulatory
functions [11]. More recently, Galectin-9 (Gal-9), a tandem
repeat type galectin, has been proposed to play a role in mod-
ulating leukocyte trafficking [12]. However, its precise role
in this process, in particular the way it regulates adhesion,
remains elusive. Similarly, platelets need to adhere to sub-
strates and to other platelets to perform their function. ADP is
a known activator of platelets that switches on their GPIIb/IIIa
receptors [13, 14], allowing them to bind to vWF that is present
in the endothelium and subendothelial tissue [15]. Studying
the response of adherent cells to stimuli such as ADP, or pro-
teins such as vWF or Gal-9 that are involved in cell adhesions,
is therefore critical to understanding cell adhesion.

This paper introduces a novel workflow to analyse images
of adherent cells for images that are commonly obtained in
experimental setups modelling blood cell recruitment within
the vasculature towards sites of infections, chronic inflam-
mation or wounds and coagulation. We demonstrate that our
workflow is capable of identifying changes in cell adhesion as
well as morphology depending on different experimental con-
ditions; however, these adhesive and morphological changes
are very common to many cell types involved in recruitment
and migration assays and will therefore benefit a wide range
of researchers in these areas.

In the following we will first describe the algorithms and
techniques in image processing that are implemented by Cell
Adhesion with Supervised Training and Learning Environ-
ment (CASTLE), leading to the subsequent ImageJ plugins
that implements the workflow developed in this paper. Then,
we explain the methods used in evaluating the results. Finally,
we gauge the performance of the designed workflow and ana-
lyse the results produced in relation to our biological applic-
ation. Specifically, we evaluate the precision and recall of
our automatic segmentation, and demonstrate how our high
throughput analysis can be used to extract new information
from data through the machine learning techniques: principal
component analysis and k-means clustering.

2. Methods and materials

In this section, the methodology of the investigation is
explained. This includes details of the final automated work-
flow, image acquisition, and the validation process used to
gauge the performance.

Images are commonly stored as a matrix with entries for
each pixel. An entry’s value represent the brightness intensity.
In our study we consider 8-bit grayscale images. This means
each pixel varies in shade from 0 to 255, with 0 representing
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absolute black and 255 absolute white. The objective of image
processing is to prepare an image for analysis, in our case by
obtaining a binary image that identifies exactly the regions of
interest (ROI). A binary image here is one where we assign
pixels part of the ROI with a value of 1, and other pixels with
a value of 0. For images with more than one type of ROI,
multiple binary images are created and organised into chan-
nels for the respective ROI. To convert our image into the
desired form, we must first pass our matrix under a series of
transformations to reduce noise and to accurately identify the
pixels truly part of a ROI. These algorithms of transformation
broadly fit under three classes: pre-processing, segmentation
and post-processing. For each we will identify the obstacles in
the acquired data; then explain the techniques used to resolve
them.

Figure 1 shows a typical image used in this investigation.
This image is obtained from a co-culture system where peri-
pheral blood mononuclear cells (PBMCs) and platelets flow
over an adhesive substrate. Note that the PBMCs which are
initially adhered appear almost perfectly spherical and very
bright, while the PBMCs in firm adhesion are comparatively
dark with highly heterogeneous shape. Because of these dif-
ferences, the stages of the cell are often referred to as phase
bright and phase dark for initial adhesion and firm adhesion,
respectively.

2.1. Pre-processing

Pre-processing uses routines to convert raw, heterogeneous
images into a set of standardised images with as few unwanted
artefacts and accentuate features for separation in segmenta-
tion. The techniques of PCM do introduce certain artefacts in
an image which could be incorrectly identified as a ROI. Dur-
ing this stagewe consider techniques that are used to normalise
image-to-image brightness and account uneven illumination,
which images like figure 1 and figure 2 contain.

Image-to-image brightness heterogeneity. To begin eradic-
ating the various artefacts in the image, we first normalise
the pixel values so later processing techniques are repeatable
across images capturedwith varying illumination. The average
pixel intensity across a set of images, in our case sampled from
the training set, and the individual difference in mean pixel
intensity in each subsequent image is corrected by adding the
difference to every pixel in an image so that the mean becomes
that of the set. This works well for images that are considered
reasonably similar. However, an image with a high proportion
of ROIs which are either really bright or really dark will skew
the set’s mean. This drawback could reduce the range of the
pixel intensities in other images as negative values are made
equal to 0 and those over 255 reduced to the maximum and
so previous variations in pixel intensity are lost, which is also
known as contrast.

Uneven image illumination. Now,we address the uneven illu-
mination of the image and the ways to account for it. We can
observe in figure 2 that there exists an uneven illumination of

the image from one side of the image to the other. We consider
a technique described by Russ [8] using an averaging kernel
operation with an array of large dimensions followed by image
arithmetic.

The averaging filter is an iterative application of a kernel
operation. The kernel operation is usually a square array of
dimension (2 m+1)×(2n+ 1), so that there is a central pixel,
with each cell containing an integer weight. The array is put
over an initial pixel at its centre. The centre and neighbouring
pixels are then multiplied by the weight overlaying it. The res-
ult is summed and divided by the sum of the weights to fit the
same 8-bit scale. This is then put as the value of the central
pixel in the output image. This is repeated for every pixel in
the input image. This can be expressed for an input image f,
transformed to g by the kernel ω of dimension a× b as:

g(x,y) = ω ∗ f(x,y) (1)

=
∑a

s=−a

∑b
t=−bω(s,t)f(x−s,y−t)∑s=a

−a

∑b
t=−bω(s,t)

(2)

for all pixels (x, y) in f.
For pixels close to the boundary the array will extend out-

side the perimeter of the image. To account for this a simple
method is to mirror the pixels from the boundary up to the 2
m pixel in the horizontal and the 2n pixel in the vertical as
padding around the image.

The techniques described by Russ is to take the average of a
large area of the image, so that extreme intensities from indi-
vidual ROIs do not skew the kernel operation, this is known
as the Mean kernel. However, the area cannot be too large so
that the overall differences in illumination are not lost in the
output. The array of weights in ω need all pixels in the array
to have an equal contribution, so for a 3× 3 region we have:

ω =

 1 1 1
1 1 1
1 1 1

 . (3)

By applying a similar array with larger dimensions, fitting
the properties as mentioned before, results in an output show-
ing the changes in the background illumination. Then, the ori-
ginal image is divided by this background to account for the
illumination across the image.

2.2. Segmentation

Segmentation is the identification of pixels as either associ-
ated with a ROI or not. The segmentation process works most
efficiently on images which have had noise and other imper-
fections removed to allow for the most accurate separation of
pixels to be categorised. Techniques for this stage may differ
in three key areas: detection efficiency, user-operability and
computational cost. The first of these relates to the success in
correctly identifying the ROI. The second relates to the amount
of user knowledge needed in being able to use the routine. The
last analyses the time taken to execute once the program is
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Figure 1. A cropped area of a representative image that can be analysed through our workflow. The image shows co-cultures with
peripheral blood mononuclear cells (PBMCs) and platelets on adhesive substrates, where the PBMCs and platelets appear in different
adhesive states. The image has been labelled with a number of key features identified. First, the cells we are identifying are considered to be
at two different phases of adhesion, rolling adhesion (red) and firm adhesion (blue). Moreover, cells may be in a transition state between
these two phases (green). All cells produce the characteristic ‘halo’ as an emanating set of bright pixels surrounding the cell. However,
sometimes the ‘halo’ effect is overcompensated and can cause a following darkness in pixels (green arrow). The uneven illumination is not
obvious in this image but is normally more prominent, such as in figure 2. Irregular objects in the image are also pointed out with arrows.
The orange arrows identify platelets adhered to the surface. The magenta arrow identifies a disruption in the coating of the protein causing a
significant phase delay similar to a halo.

running. These were the properties considered when design-
ing this automated workflow. We first describe the alternative
techniques considered for this methodology before describing
the active learning segmentation used in the final methodo-
logy.

Thresholding. A key component of segmentation is
thresholding. Thresholding involves an input of minimum
or maximum pixel intensities which a ROI has been identified
to have. If the information for setting such limits is known,
then the process is simple: pixel-by-pixel, an if-statement
transforms an 8-bit image to a binary image with the pixels
part of the ROI as 1 and the rest 0. However, in many cases the
best thresholds to choose are unknown, or they are required to
be automated. There are many published algorithms that try to

resolve this problem as they depend on the type of image histo-
grams produced after pre-processing [16–18]. These have then
been integrated into workflows to form some of the current
techniques used for segmentation, known here as automated
thresholding workflows.

Automated thresholding workflows. Usually a single or mul-
tiple threshold value is unable to differentiate between ROI
and other artefacts that may have pixels of similar intensity.
Therefore, other techniques are used to utilise common fea-
tures in a set of images to aid the classification of a true ROI.

Two very common effects in phase contrast images are
the characteristic ‘halo’ corresponding to the refractive index
and thickness values between the cell and the surrounding
medium.
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Figure 2. A cropped area taken from another representative image with the values of the pixels plotted against the path across the width of
the image (yellow). Here we can see an uneven illumination from a light source, where the background illumination decreases in brightness
the further left we go.

The halo effect is exploited in the work of Selinummi
et al [19] and Flight et al [20] in dense colonies of epithelial
cells. The intuition behind both techniques is by applying a
Gaussian blur orMean kernel operation for a variety of differ-
ent dimensions and then monitor the variation in pixel intens-
ities. When the blur is applied, the halos are already close to
maximum pixel intensity so do not vary but the darker region
of the epithelial cell quickly become brighter as the surround-
ing halo encroaches on the ROI. Therefore, the image is trans-
formed to one with higher pixel intensity representing higher
variations. A subsequent application of Otsu thresholding [16]
determines the threshold value to separate the halo, and thus
background, from the ROI. This was combined with fluores-
cent dyes identifying constituent parts of the ROI, such as the
nucleus, and discrete mereotopology to validate the segmen-
ted area as a ROI [21]. However, the dependency on densely
packed cell colonies made these techniques unsuitable for the
images captured here.

Active learning segmentation. Active learning is a type of
machine learning method where a user iteratively adds train-
ing data to a supervised learning algorithm until the desired
classification is achieved. In image analysis, a classifier is a
set of rules based on active learning methods to identify the

constituent parts of images not originally trained upon. The
constituent parts are the different types of ROI mentioned
before, and are referred to as classes in classification. The pro-
cess can be applied in our workflow by creating a classifier
from a random sample of the data and then using it during our
segmentation step to identify the different classes of ROIs in
the rest of the images.

There are many active learning software tools for seg-
mentation already available in the bio-imaging community
[3, 4]. The majority of these use an algorithm called a random
decision forest as the foundation for the classifier [22]. This is
whereby a multitude of decision trees are constructed during
training. Then, when applied to a new object to classify, the
output class is the modal class from all of the decision trees.

Ilastik is one such interactive learning and segmenta-
tion toolkit [23]. The Pixel Classification module calculates
35 classification features from an image matrix to interpret
information about intensity, edge, texture and orientation.
These help produce a classifier to be applied to other images
to provide a prediction of the designated class for every pixel.
Adjacent pixels of the same class then form our ROIs. So,
unlike before, we are able to train the classifier to the kinds
of images specifically collected with our research. In addition,
the user-friendly graphical user interface (GUI) is well-suited
for easy operation and limited user knowledge. Finally, there is

5
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some additional computational cost with the added complexity
of the algorithm although this was still significantly faster than
the current manual approach, mentioned later in the results.

2.3. Post-processing

Post-processing describes the type of techniques used to sieve
through a binary image produced by segmentation to remove
ROI that are in fact irregular particles. An example are the
platelets pointed out in figure 1. These cells could be detected
as smaller versions of cells as they undergo respective stages of
adhesion albeit on a smaller scale. Such techniques range from
counting only those ROIs that are above a minimum and/or
maximum number of pixels to machine learning algorithms
separating unusual artefacts by measuring multiple morpholo-
gical features. In our final workflow, a minimum and/or max-
imum threshold for the number of pixels in a ROI is set as the
method used in post-processing. This is because the cells being
identified follow fairly homogeneous measurements in size
for the adhered area or are significantly distinct from particles
other than that being considered.

2.4. Analysis

We now demonstrate the effectiveness of our approach by ana-
lysing images with adherent cells. We first quantify the num-
ber of cells depending on their adhesion status. This is done for
different experimental conditions; e.g. by varying concentra-
tions of molecules that are suspected to affect cell adhesion.
Afterwards, we utilise a by-product of the automated work-
flow and begin to quantify the morphology of the cells at the
different experimental conditions.

As the images are segmented pixel-by-pixel, to whether a
pixel belongs to the ROI or not, we have a representation of
the adhered surface area of each cell. As seen in figure 1, dur-
ing initial adhesion the cell remains in a highly circular form,
however during firm adhesion the cell migrates on the sur-
face looking to pass through. The shape of the cell can also be
affected by surface proteins and can therefore provide useful
information about the impact of molecules on the cells. Thus,
an interest is to categorise the morphology of the firm adhesion
cells to investigate the effect of different levels of molecules
in this process. We describe the machine learning techniques
used to analyse the morphology of phase dark cells.

Principal component analysis. Principal component analysis
(PCA) is a methodology to reduce the dimensionality of a data
set in which there are a large number of interrelated variables.
The methodology is explained in more detail by Jolliffe [24]
or Goodfellow et al [25]. Here each ROI identified has 10 val-
ues calculated from shape descriptor formulae, refer to shape
descriptor for exact formulae. The result is a representation
whose elements have no linear correlation with each other.
The order depends on the variance in that dimension. The rep-
resentations, called principal components, provide a summary
ordering themost influential factors in describingmorphology.
Here it was reasonable to not reduce the dimensionality of the

data, however the technique is useful to to display themost sig-
nificant contributions to the variability for a user to interpret.
The relationship between variance and information is that, the
larger the variance carried along the axis, the larger the dis-
persion of the data points along it. Therefore, if the dispersion
in that dimension is larger, the particles are more likely distin-
guishable.

k-means clustering. The k-means clustering algorithm
divides the data set into k different clusters of data-points
that are considered close to each other. First, each ROI is
represented by a vector with each entry corresponding to the
value of a feature. The algorithm works by initialising k differ-
ent centroids to some ROI. Afterwards, the algorithm assigns
each ROI to the cluster with minimal Euclidean distance in
the feature space to the centroid of that cluster. Then, each
centroid µi is updated to the ROI closest to the mean of all
the training examples assigned to cluster i. The algorithm
alternates between the two steps until convergence or the
maximum number of iterations is achieved. The methodology
is explained in more detail by Lloyd [26].

Statistical testing and inference. In our investigation, we
are looking to classify the morphology of the cells of firmly
adhered cells depending on the different concentrations of
molecules. Therefore, using the null hypothesis that groupings
are independent of the molecule we are investigating, we can
test the statistical significance of the outcome in the analysis. If
proven significantly different, then the shape descriptors con-
tributing the most to the principal components from the PCA
indicate the features most effected by these differences.

2.5. Validation

The success of classification was measured by the workflow’s
precision, recall and combined score of the two as described
by Powers [27]. This is similar to the validation process used
by many publications of the area [19, 28, 29] and hence gives a
comparative statistic between different automated workflows.
The statistics necessary for these calculations describe all the
possible outcomes for a classifier. These possibilities are:

• true positive (TP) - correctly identifies the adhered cell of
interest as a ROI.

• true negative (TN) - correctly does not identify noise as a
ROI.

• false positive (FP) - incorrectly identifies noise as an ROI.
• false negative (FN) - incorrectly identifies adhered cell as
not a ROI.

Classification precision (p), or positive predictive value,
indicates the fraction of objects correctly classified as a ROI
out of the total number detected, and is calculated as:

p=
TP

TP+FP
. (4)

6



J. Phys. D: Appl. Phys. 53 (2020) 424002 S Gilbert et al

Classification recall (r), or sensitivity, indicates the fraction
of objects correctly classified as a ROI out of all adhered cells,
and is calculated as:

r=
TP

TP+FN
. (5)

The proportions for r and p are expressed as percentages.
The F1 score is the harmonic mean of precision and recall:

F1 = 2

(
pr
p+ r

)
. (6)

An F1 score of 0 indicates no agreement for the automated
and manual analysis, while 1 indicates complete agreement.
The final F1 score, precision and recall is calculated as the
average of the scores from both phases. Next we investigate
where the automated workflow can be improved with image-
by-image comparisons of the manual and automated number
of ROI. We can categorise the incorrect detection of adhered
cells into four categories: missing, noise, merged and split.
Missing describes those cells that are not detected by CASTLE
but counted by a human expert. Noise are the particles identi-
fied as a ROI by the automatedworkflowbut are not counted by
the expert. Merged detections are the number of adhered cells
that are counted as being part of another detected ROI. Finally,
a split observation is a single adhered cell that is detected as
two distinct ROIs.

2.6. Image acquisition

Here we describe briefly the specific experiments performed
to acquire the images used to validate our workflow.

Blood sample collection. Blood samples were obtained from
donations of volunteers who have given written informed
consent. Approval was obtained from the University of
Birmingham or Queen Mary University of London Local Eth-
ics Review Committee.

Gal-9 experiments. A flow chamber assay was used to
investigate the adhesion behaviour of PBMCs and purified
PMNs for different amounts of Gal-9 under physiological flow
conditions.

Channels in an Ibidi chamber were coated with either 20,
50 or 100 µg/ml Gal-9 or 1.5 % bovine serum albumin (BSA)
in Phosphate-buffered saline (PBS) as the control. During
the experiment, the isolated PBMCs or PMNs were perfused
through the channels at a concentration of 1× 106 in PBS con-
taining Ca2+ and Mg2+ for 4 min before a wash out period
of 1 min. A shear wall stress of 0.1 Pa was applied throughout
the perfusion to mimic physiological conditions.

After the wash out period, a series of images was taken
under continuous flow across the channel. The cell number
adhered per mm2 and per 1× 106 cells was calculated from
the series of images.

ICAM-1 experiments. A flow chamber assay was used to
investigate the adhesion behaviour of purified PMNs on
ICAM-1 under physiological flow conditions.

Channels in an Ibidi chamber were coated with 10 µg/ml
ICAM-1-Fc. During the experiment, the isolated PMNs were
perfused through the channels at a concentration of 1× 106

in PBS containing Ca2+ and Mg2+ . PMNs were allowed to
enter the chamber and then flow was suspended for 5 mins to
allow adhesion of cells to ICAM-1-Fc. Flowwas then restarted
at a wall shear stress of 0.1 Pa, which was applied throughout
the perfusion to mimic physiological conditions.

After the wash out period, a series of images was taken
under continuous flow across the channel. The total cell num-
ber adhered was calculated from the series of images.

vWF experiments. A flow chamber assay was used to meas-
ure adhesion of platelets to the vMF under physiological flow
conditions.

Glass microslides were coated with 0.1 mg/ml vWF and
blocked using PBS containing 2% BSA. During the experi-
ment, a flow rate of 0.8 ml/min was maintained to give the
desired wall shear stress of 0.1 Pa. Anti-coagulated human
whole blood was perfused for 2 minutes over vWF. The
microslides were then washed with PBS 0.1% BSA with or
without 30 µmol/l ADP, a platelet activating agent.

After the wash out period, a series of images and videos
were taken under continuous flow across the microslide. Plate-
let coverage was calculated as the number of cells adhered.
Phase bright platelets were classed as initially adhered plate-
lets and phase dark platelets were classed as activated platelets.

2.7. Image processing and analysis using CASTLE

The automated workflow is visualised in figure S1 (see
supplementary material, available online at (stacks.iop.org/
JPD/53/424002/mmedia)). The batch processingwas designed
as a script in the ImageJ Macro language and implemented
as a plugin in Fiji is Just ImageJ 2.0.0 [30]. The Mean and
Image Calculator plugins were used in Pre-processing [31].
Training of the classifier and segmentation was carried out
using Ilastik 1.3.2post2 [23]. Post-processing and data collec-
tion for analysis were completed using the Analyse Particles...
plugin [31]. Analysis was carried out in R 3.6.1. [32]. The
final automated workflow is available as a collection of open-
source plugins on the Cell Adhesion with Supervised Training
and Learning Environment (CASTLE) GitLab project, refer
to section 5. The computer used in the implementation of the
CASTLE plugins had an Intel(R) Core(TM) i7-9850 H CPU
at 2.60GHz with 16GB RAM.

3. Results

We now apply our workflow to several data sets. We focus
most of our discussion to the analysis of PMNs and PBMCs
depending on concentrations of Gal-9, since these data sets
are the most challenging to the algorithms and involve
different cell types with quantitatively varying concentrations
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of molecules. We then demonstrate that our workflow can sim-
ilarly be applied to the same cell types stimulated with other
molecules (here, ICAM-1), or very different cell types (here,
platelets).

3.1. Validation of workflow

Validation of cell count. The automated workflow, CASTLE,
was applied to the images from an ongoing study of the role of
the protein Gal-9 on leukocyte adhesion. For each of the five
different levels of protein exposure, we obtained a sample of
seven different images. One image from each protein expos-
ure was chosen for the classifier to be trained upon. After the
automated workflow was applied, the plugin took under 11
minutes for all 35 images to be processed (see table S1). One
image was excluded from the validation after statistical ana-
lysis identified the image as an anomaly compared to similar
images of the same protein exposure (see figure S2). The final
F1 score was 87.0%, with a 81.2% classification precision and
an 93.7% classification recall.

The final validation scores were the result of introducing
a third ROI for classification. This was identified in figure 1
as a cell transitioning from initial adhesion to firm adhesion,
which in manual counts were associated with the latter but
were considered still too bright in the automated workflow.
Before the new class was introduced, the F1 score was 86.2%
with a classification precision of 89.9% and a classification
recall of 82.8%.

Besides the increase in F1 score for the count, the introduc-
tion of the new class was preferred as the following analysis
into morphology depended on correctly identifying all of the
cell that forms its shape. Using the same classifiers, a valida-
tion on all the classified pixels was carried out on a sample of
five images, one from each of the different cell type and pro-
tein exposures. The five images were segmented manually by
an expert to identify the phase dark cells. The same five images
were processed by CASTLE. The images were then compared
pixel-by-pixel. Before the introduction of the transition class
during training, the F1 score was 69.6% with a classification
precision of 85.0% and a classification recall of 59.0%. The
F1 score remained similar at 69.3% but with a higher classi-
fication precision of 89.2%, the outcome preferred, and a clas-
sification recall of 56.7% .

Figure 3 shows the analysis carried out on the perform-
ance of the automated workflow compared to that counted
by an expert. A perfect identification of the number of cells
would result in the percentage of correctly identified cells in
the respective phases equal to 100% of the true count. We
see across the phases of cells identified that the majority of
incorrect counts are due to noise and missed cells. Noise adds
to the total count by leading to false positives, while missed
cells reduce the final count. Figure 3(a) confirms that the intro-
duction of a class for transitioning cells significantly reduces
the number of incorrectly classified cells (i.e. improving the
precision) and the number of cells missed (i.e improving the
recall) compared to the classification based on two classes in
figure 3(b).

Similar analysis for the validation of CASTLE was carried
out on the other studies, one on leukocytes exposed to the pro-
tein ICAM-1 and another on platelets exposed to the protein
vWF. The final F1 score was 87.0% and 80.7%, respectively.
Similar observations were made to that already discussed (see
tables S2, S3 and figures S3, S4). This time the iterations
of training were carried out to demonstrate the application
of CASTLE. First, we validated how CASTLE processed the
images using the final training used in the study of the role of
the protein Gal-9 on leukocyte adhesion. Then, we validated
how CASTLE processed the images with an additional image
from the new data set, respectively. The rationale was to show
how CASTLE may be applied to new data sets: by adding to
the original data set of a similar study. The result is a more
thorough training due to more images identifying the variabil-
ity in cell appearance yet not at the expense of the researcher’s
time, who would have otherwise trained the data themselves.

Comparison to other methods. To confirm that the perform-
ance of CASTLEwas an improvement to other available work-
flows, we compared the software to a comparable plugin in
ImageJ/Fiji. The plugin is called Trainable WEKA Segment-
ation (TWS) [33] and forms part of the Waikato Environment
for Knowledge Analysis (WEKA) collection for data mining
with open-source machine learning tools [34]. Using the same
pre-processing and post-processing techniques as CASTLE on
the same 35 images, TWS produced a final F1 score of 63%
with 48% precision and 95% recall (see table S1). TWS iden-
tified a similar number of correct cells as CASTLE. How-
ever, for this data set, TWS seemed to mis-identify as many
objects which increased the final number detected by about
twice as many for both phases of cell (see figure S5). Also,
the time to run TWS to batch process all 35 images took 6
times longer than the comparable application by CASTLE (see
table S1). Therefore, the CASTLE workflow would appear to
be an improvement in accuracy and speed than what is cur-
rently available.

Distinguishing cells types and experimental conditions. In
addition to the total count across all of the images, an investig-
ation into the performance of the program for the full range of
cells in a particular image is presented in figures 4 and 5. These
plots display the number of cells counted manually against
those detected by CASTLE. A line of least square regression is
drawn to predict the program’s performance across the range
of cell numbers in comparison to another line for what would
be considered a perfect count, where the detected number of
cells equal those identified by the expert.

Figure 4 is the series of least regression plots when compar-
ing the performance of CASTLE to a manual analysis when
confronted with the images of our study for phase bright leuk-
ocytes. Figure 4(a) is the phase bright analysis for all of the
images when CASTLE is trained without a transition class.
However, the performance of the program was seen to still
be detecting more cells which would be considered as trans-
itioning from phase bright to phase dark, which an expert
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Figure 3. Validation of the automated workflow against manually counted and verified results from the study into the role of the protein
Gal-9 on leukocyte adhesion. (a) CASTLE validation with no transition class during training. (b) CASTLE validation with a transition class
during training. One image from both analyses was excluded after being identified as anomalous. The stacked bar chart shows, of all the
manually counted cells, how the automated workflow performed, including how mis-identified cells of the automated workflow effected
performance as a percentage of the true number of cells.

(a) (b) (c)

Figure 4. Comparison of automatic to manual detection of adherent phase bright cells for each image in the study into the role of the
protein Gal-9 on leukocyte adhesion. (a) CASTLE validation with no transition class during training. (b) CASTLE validation with a
transition class during training. (c) CASTLE validation with transition class during training and the anomalous image removed from
analysis. The regression line (blue, dashed) shows a prediction for the detected counts across the range of cells in any one image. The line of
perfect agreement (black, solid) is the desired outcome with the manual count equal to the automatic count.

would consider as phase dark in their counts. After introdu-
cing a Transition class in the training, we see in figure 4(b) an
improvement in the accuracy reflected by the closer alignment
of the regression line to the line representing a perfect count.
Nonetheless, we can see that an image with PBMCs exposed
to the control protein BSA has a significantly larger number
of cells detected in comparison to the other six images of the
same experiment. On investigation of this group of images,
an image appeared to have many irregular particles seemingly
trapped under the surface of the protein which induced enough
of a phase difference to create the ‘halo’ effect of adhered cells

(see figure S2). After excluding the anomalous images from
the input data we produce the results in figure 4(c). There-
fore, with the introduction of a new training class and the
exclusion of the anomalous image the final performance across
the different cell types and their respective protein exposures
produced a significant improvement in the correct number of
detected cells.

Figure 5 is the series of least regression plot for com-
paring the performance of CASTLE to a manual analysis
when confronted with images from our study for phase dark
leukocytes. Figure 5(a) shows the performance when both the
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(a) (b) (c)

Figure 5. Comparison of automatic to manual detection of adherent phase dark cells for each image in the study into the role of the protein
Gal-9 on leukocyte adhesion. (a) CASTLE validation with no transition class during training. (b) CASTLE validation with a transition class
during training. (c) CASTLE validation with transition class during training and the series of PBMC BSA images removed from analysis.
The regression line (blue, dashed) shows a prediction for the detected counts across the range of cells in any one image. The line of perfect
agreement (black, solid) is the desired outcome with the manual count equal to the automatic count.

Transition class is yet to be introduced to the training and
before the images of PBMCs exposed to BSA were analysed
for anomalies. The regression line indicates that CASTLE
was for the majority of images accurate but diverges to under-
estimate the counts for ever larger numbers of cells. Then,
the transition class was introduced into the training and the
performance across the images is shown in figure 5(b). Here
we are unable to observe the point representing the anomalous
image mentioned before as the 521 detected exceeds the limits
of the axes, the axes chosen to focus on comparing regression
lines between each stage (for the inclusion of the anomalous
image, see figure S6). The regression line here shows the trend
of CASTLE consistently over-estimating the number of detec-
ted cells. In addition to identifying the anomalous image, after
further investigation, all the images with PBMCs exposed to
the protein BSA were found to have no phase dark cells and so
were subsequently excluded from further analysis using phase
dark cells. Using this knowledge, figure 5(c) shows the final
comparison after excluding these images. We know from our
earlier validation that this final iteration is an improvement in
F1 score from the first. For larger numbers of adhered cells in
an image, the regression line is above rather than below the
line of perfect count. However, in the final iteration, larger
values detected do not exceed more than 14% of the manual
count, unlike the 16% from before, and thus represent a lower
proportion of additions and reason for improvement from the
first iteration.

3.2. Effect of galectin-9 on leukocyte adhesion

We now demonstrate how our workflow can lead to new bio-
logical insights by further analysis of the segmented images
from the data set investigating the effect of Gal-9 on leuko-
cyte adhesion.

Count. The purpose of the data that we analysed with
CASTLE was to determine the effects of Gal-9 on cell

adhesion. We now present the analysis performed by
CASTLE. This is to demonstrate the ability of the program
to process images into information easily interpreted by a
researcher. The result is a comparison between the protein
exposures within each cell type. This was carried out in the
form of a student’s t-test, where the sample variance was
assumed to be unequal for each series of images. This was an
assumption made in the analysis and any future use of the R
script provided on the GitLab project (see section 5) allows
the use of images assumed to have an equal variance.

Our primary goal was to investigate the role of Gal-9 on
the adhesion of PBMCs and PMNs. Table S4 displays the
results from the Student’s t-test for each pairwise compar-
ison of protein exposures between similar cells. At the 99%
confidence level, we can conclude that for PBMCs there is
a statistically significant effect on adhesion when a surface
is coated with either 50 or 100µg/ml of Gal-9 compared to
the control. There is no statistically significant difference in
adhesion between 50 or 100µg/ml Gal-9 applied, at either the
99% or 95% confidence level. For PMN, the difference in
cell adhesion between 20µg/ml of Gal-9 compared to the con-
trol is considered statistically significant at the 99% confid-
ence level. Figure 6 is a visual representation of these differ-
ences between protein exposure and their effect on the num-
ber of adhered cells per mm2 per 106 cells flown through the
chamber.

A secondary outcome of the research was to discern
whether more cells were remaining in a state of initial adhe-
sion or whether they would form a firm adhesion in the period
between perfusion and when the images were taken.

First, we consider table S5 which displays the results of
the student’s t-test for cells during initial adhesion, known as
phase bright cells. We are able to conclude, at the 95% con-
fidence level, that there is a statistically significant difference
between the mean number of phase bright cells when exposed
to Gal-9 compared to the control. However, the difference at
either the 99% or 95% confidence level is not considered stat-
istically significant for distinct levels of Gal-9. For PMN, the
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Figure 6. Boxplot for the total number of cells adhered per mm2 × 106 from the sample of seven images taken for each protein exposure.
This excludes the previously discovered anomalous image from the PBMC BSA group (see figure S2).

difference in phase bright occurrence for 20µg/ml of Gal-9
compared to the control is also not considered statistically sig-
nificant at the 99% or 95% confidence levels.

Second, we compare the number of firmly adhered cells,
known as phase dark cells, between similar cells that have
been exposed to the different levels of Gal-9. Table S6 displays
the results of the Student’s t-test for each combination of pair-
wise comparisons. For PBMCs, we can conclude at the 99%
confidence level that there is a statistically significant differ-
ence in the number of adhered cells that are phase dark when
Gal-9 is present on the surface at both levels. On the other
hand, the number of phase dark cells between the two amounts
of Gal-9 were considered not to be statistically significant at
either the 99% or 95% confidence level. For PMNs, the num-
ber of adhered cells that were phase dark when 20 µg/ml Gal-9
was applied, is considered statistically significant at the 99%
confidence level.

Figure S7 allows us to visualise the differences in the total
number of adhered cells detected for each protein exposure,
with the number of phase bright and phase dark cells that
contribute to the total shown. Here we can see the different
effects that Gal-9 appears to have on the differing cell types.
For PBMCs, the Gal-9 appears to have the largest effect on the
number of phase bright cells detected in the image compared
to PMNs having an enormous increase in the number of phase
dark cells.

Table 1. Results of the k-means clustering on all 2496 phase dark
cells detected by CASTLE. The values represent the proportion of
cells compared to all phase dark cells detected. We then compare to
the number of each cell type and their exposure to the subsequent
clusters that cells with similar morphological features have.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

PBMC 50 0.028 0 0.002 1 0.004 2 0.010 2
PBMC 100 0.028 5 0.006 3 0.008 0 0.028 5
PMN 20 0.078 7 0.212 7 0.287 6 0.254 0
PMN BSA 0.016 5 0.00 127 0.011 9 0.020 8

Morphology: The final analysis for the series of images is
the shape of the adhered area between the cell and the surface
coated in the protein. The following are the results from this
analysis.

Table 1 displays the categorisation of the cell morphology
across all protein exposures for each type of cell. First, observe
that the series of images taken for PBMC cells exposed to the
control protein are not present. Similar to before, after invest-
igating the anomalous image it was seen that the correspond-
ing series of images contained no phase dark cells. Therefore,
none are in this analysis. Next, the k-means clustering was per-
formed on four groups and so k= 4 in this analysis. Consider
the row reflecting on the categorisation of phase dark PMN
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Figure 7. Morphology of adhered cells considered phase dark by CASTLE plotted in the first and second principal components for each of
the PCAs. (a) All types of phase dark cells detected in the study. The first two principal components capture 73.27% of the total variation in
cell morphology. (b) PBMC type cells only. The first two principal components capture 76.39% of the total variation in PBMC morphology.
(c) PMN type cells only. The first two principal components capture 72.13% of the total variation in PMN morphology.

cells exposed to 20µg/ml of Gal-9 to observe how well the k-
means clustering has been able to separate the cells depending
on their morphology. We see that out of the phase dark leuko-
cytes detected, the majority are split evenly between the 2nd,
3rd and 4th cluster. This suggests that the k-means clustering
was unable to differentiate the morphology compared to the
other cells and protein exposures. However, the majority of the
detected PMN cells exposed to the control were also grouped

into the 4th cluster. This suggests that there may be similarit-
ies within each of the different cell types which are interfering
with the heterogeneity between protein exposures. Two more
k-means clustering analyses were carried out considering only
the same type of phase dark cells.

Table 2 shows the analysis in morphology of the PBMC
cells exposed to the different levels of Gal-9. The first obser-
vation is the relatively even distribution of cells between both

12



J. Phys. D: Appl. Phys. 53 (2020) 424002 S Gilbert et al

Table 2. Results of the k-means clustering on the 298 phase dark
PBMCs detected by CASTLE. The values represent the proportion
of cells compared to the number of phase dark PBMCs detected. We
then compare to the number of each cell type and their exposure to
the subsequent clusters that cells with similar morphological
features have.

Cluster 1 Cluster 2

PBMC 50 0.161 1 0.223 4
PBMC 100 0.369 9 0.245 4

Table 3. Results of the k-means clustering on only the 2112 phase
dark PMNs detected by CASTLE. The values represent the
proportion of cells compared to the number of phase dark PMN
cells detected. We then compare to the number of each cell type and
their exposure to the subsequent clusters that cells with similar
morphological features have.

Cluster 1 Cluster 2

PMN 20 0.380 6 0.548 6
PMN BSA 0.034 1 0.036 5

clusters for each level of protein exposure. Thus, there appears
to be a difference in morphology within the class of phase dark
cells which is more apparent than the difference caused by the
adhesion to Gal-9.

Table 3 is the result in the k-means clustering for phase dark
PMNs. It appears that PMN cells exposed to 20µg/ml of Gal-
9 is still evenly distributed between the two clusters although
those exposed to Gal-9 are more similar to the second cluster
than the first. However, no significant distinction can be made
from this analysis.

In all of the k-means clustering analyses of morphology we
have been unable to determine a separation of a cell’s mor-
phology depending on their protein exposure. To better under-
stand this, we show the first two principal components in fig-
ure 7. This shows the first two independent dimensions that
capture the highest variance to help separate the data and feed
into the k-means clustering algorithm. We choose the first two
components only as they can be easily displayed. For the first
analysis, shown here as figure 7(a), the PCA is not able to sep-
arate the data sufficiently enough to be easily distinguished
into the different groups of cells. This seems similar to the
figures 7(b) and (c) for the PCA for PBMC and PMN cells,
respectively. However, these plots are still able to convey rela-
tionships between the morphology and the protein exposure.
For example, figure 7(a) can begin to identify characteristics
between the two types of cell through their morphology. Here,
we are able to see in the first principal component that PBMCs
appear with a negative value in the first principal component
for all but a few points. This is in contrast to PMNs which the
majority exposed to Gal-9 appear above 0 and those exposed
to the control appearing across the full range. When consider-
ing the second principal component, there appears to be 2 gen-
eral sub-classifications formingwith a cluster of points centred
about (1,-1) and the rest sparsely centred about (-4,0).

Figure 7(b) is a PCA on PBMCs only. We observe that
although both groups of Gal-9 exposure have values distrib-
uted across the range of first and second principal component
values, that there could be some trend. This trend is in refer-
ence to many of the PBMCs with 50 µg/ml are more apparent
from just lower that -5 to 2.5 in the first principal component
but for mainly positive values in the second component. This
is compared to the more apparent regimes for PBMCs appear-
ing between 0 to 2.5 in the first principal component and from
lower than -5 to 2.5. This is a result not obvious in figure 7(a)
but is more obvious with the individual analysis, most likely
due to less cell heterogeneity.

In figure 7(c), inferences in trend can be made about the
differences from exposure to Gal-9 to the control for PMNs.
Many of the points are dispersed closely about (0,0). How-
ever, the majority of points appear for positive values in the
first principal component for those exposed to Gal-9 than those
that do not. On the other hand, those exposed to the control,
although some begin to cluster about (-1,-1), have many val-
ues at the extremes of one or both of the principal compon-
ents. Referring back to figure 7(a), this appears to be the case
too. This observation could suggest that instead of exposure to
Gal-9 causing new or more extreme phenotypes in the cell that
it encourages a specific morphology already possible by the
cells under normal adhesion. To understand what morphology
a cluster represents, referring back to the shape descriptors that
contribute the most to the first and second components can
identify which are less variable to exposures of Gal-9.

3.3. Application of CASTLE to other data sets

We now demonstrate the applicability of our workflow to two
other studies of cell adhesion: one investigating the effect of
ICAM-1 on PMN adhesion, and the other investigating the
adhesion of platelets in dependence on vWF and ADP. The
biological interpretation of these results are not discussed here,
but the results from CASTLE are reproduced in the supple-
mentary materials to show the applicability of CASTLE to dif-
ferent data sets. Using a similar flow assay as for the studies
into Gal-9 (see section 2.6), we quantify the number of adher-
ent cells in the images from both studies.

In the study introducing ICAM-1 exposure on PMNs, each
image was from a repeated flow assay experiment. The results
produced by CASTLE are displayed in figure S8, showing the
total number of adhered cells and the proportions of which are
phase bright and phase dark.

In the study on platelets, an investigation into the role of
vWF in the adhesion of platelets is considered, in depend-
ence of ADP. As in the application of CASTLE to the first
study, figure S9 shows the total number of adhered cells and
the proportions of which are phase bright and phase dark. In
addition, as there was a dependence on ADP between images,
figure S10 shows the number of adherent platelets obtained
at different time points within the same experiment with and
without ADP. We observe a higher number of adherent cells
in the presence of ADP. Moreover, table S7 shows that the
difference in total, phase bright and phase dark adhered plate-
lets when ADP was introduced is statistically significant at the
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99% confidence level. This is expected, since ADP is known
to activate platelets, allowing them to bind to vWF [13, 14].

4. Discussion

We have introduced a newworkflow for the automatic analysis
of PCM images of adherent cells. We demonstrated that the
performance of CASTLE is comparable to methods already
established in the detection of cells undergoing similar pro-
cesses. One such example are the methods used by Huh et al
[29] in the detection of mitosis in PCM images for stem cell
populations. In their study, the method at greatest accuracy
achieved an average F1 score of 88.6% with a 91.0% preci-
sion and 86.7% recall on a population of stem cells. Therefore
a final F1 score of 87.0%with a 81.2% precision and an 93.8%
recall describes a system ready for use in future research, if not
a benchmark to improve upon.

The most successful property of the program is the reduc-
tion in manual interaction. For a similar analysis of the 35
images counted in the the Gal-9 study, the process takes
approximately 1.5 hours to count and analyse by hand. In com-
parison, CASTLE is recorded taking under 12 minutes on a
conventional laptop computer. Moreover, CASTLE provides
tools for the analysis of shape, yielding additional information
beyond simple cell counts.

CASTLE was able to give a succinct set of results for quan-
tifying the number and proportion of cells adhered to a surface
exposed to varying levels of molecules compared to a control.
The CASTLE workflow determined a statistically significant
difference in the number of adhered cells for both PBMCs
and PMN cells depending on Gal-9 presented on the cham-
ber surface. In addition, the case study was able to reference
for which phase of cell the protein had the most impact on
cell adhesion. By distinguishing between the number of phase
bright and phase dark adhered cells, inferences can bemade on
cell exposure to Gal-9. However, the program currently has a
reduced statistical power due to the accuracy of cells currently
detected, demonstrated by the lower classification precision.
Methods have already been considered to improve CASTLE
in this aspect. One such method would be to use a series of
pixel classifiers and include their output as an additional chan-
nel of information in a final pixel classifier. The intuition is
called Auto-context and the core algorithm was introduced by
Tu and Bai [35]. In addition, the validation process has proven
that further understanding of the problem at hand and refining
the workflow produces improved results. The final iteration of
least square regression plots, figures 4(c) and 5(c), are prime
examples for where the line of regression between each previ-
ous iteration improves with each resolution of the processing
problems. First, a new class was introduced in training, with
the majority of spurious ROI eradicated. Then, the anomalous
images were excluded and an improvement in the final per-
formance of CASTLE.

The pixel-by-pixel output by CASTLE was lower in classi-
fication precision and recall than the counting performance.
This is to be expected as detection holds a lower threshold
than the additional identification of each pixel within that cell.

This can be seen as one of the inaccuracies in the subsequent
morphology analysis. Without a higher F1 score the statist-
ical power of the k-means clustering remains lower. Like-
wise, the aforementioned auto-context process would be able
to improve the identification of pixels belonging to a cell in
addition to detecting a cell as a ROI. The morphology of the
phase dark cell still gives an insight into the effect of Gal-9 on
the cell’s migration across the surface. Despite the methods
used being unable to distinguish differences between the mor-
phology, the workflowwas able to efficiently process each cell
and the 10 features describing their morphology into clusters
to show their similarity clearly to a user, with the first prin-
cipal component in the PCA describing the most influential
factors in that separation. Without the use of the machine
learning algorithms both computation and interpretation of the
10 dimensional data set would be too inefficient to process
and the information forfeited. Nonetheless, limitations in the
assessment of morphology are apparent.

The shape descriptors used as features could be considered
insufficient for describing the complex and heterogeneous
shape displayed by the migrating cell. While Area and Peri-
meter are tangible measures of shape, the remaining features
are approximations of how similar the appearance is to well-
defined shapes. The measures can become problematic when
the indicator has a result at neither extreme: either the region
in question is almost exactly the same as the comparable shape
or not at all. When this occurs a small difference in the calcu-
lation can indicate vastly different outcomes in the true shape.
Examples comparing and contrasting different dimensionless
statistics of shape are described by Russ and Russ [36]. To
avoid misconceptions on shape, either the features chosen
should be verified by the user, then exposing the analysis to
human bias, or more interpretations of shape need to be con-
sidered to lessen the weight of other measures, thus reducing
the chance of peculiar similarities between heterogeneous cell
shapes.

An alternative approach is to rethink the current morpho-
logical analysis and integrate previously validated machine
learning techniques from similar fields. A candidate for this
proposal is the work of Yin et al [37] where a support vector
machine, a supervised machine learning model, was used to
identify discrete shapes from 211 geometric and texture prop-
erties of each segmentedDrosphiliaKc cell. Another example
is the work of Wu et al [38] with their image analysis tool
VAMPIRE. The tool reduces the morphological description
for an outline into similar modes of shape using PCA before
analysing their distribution in cancer metastasis. This work
also introduces analysis of cell–cell contact, possibly relevant
to the aggregation of platelets. Finally, a work that does not
depend on machine learning, or even human intervention, is
that of Sanchez et al [39]. Here, they develop a method called
lobe contribution elliptical Fourier analysis (LOCO-EFA), an
extension of elliptical Fourier analysis, whereby a contour is
reconstructed from an infinite summation of related ellipses.
The summation of ellipses then infer information about the
original shape of the cell, in this case complex shaped pave-
ment cells of Arabidopsis thaliana wild-type and speechless
leaves, and Drosophila amnioserosa cells. Future extensions
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of the automated workflow could consider incorporating these
morphological analysis tools.

Alongside the quantification of still images, the workflow
used in CASTLE can be easily applied to videos. Videos are
characterised by computers as a series of still images with a
time dependence. Hence, the successful classification of mul-
tiple images is similar to a classification of a whole video with
an ordering. Combined with other programs in cell tracking,
such as Mosaic Suite’s Particle Tracker [40], the work can be
extended to observe the whole duration of adhesion for a par-
ticular cell. Thus, other features like migration tracking can be
investigated.

The methodology behind CASTLE is not limited to cell
classification. The Ilastik program allows for the possibility
of other types of images to be segmented into any number of
classes. The utilisation of the automated workflow is only lim-
ited by the universality of pre- and post-processing techniques.
The larger impact of the work is yet to be tested in other areas,
such as introducing a monolayer of endothelial cells to mon-
itor extravasation.

Here we have designed an automated workflow, from data
acquisition to analysis, which can be applied to numerous
PCM images. A fundamental understanding of the biological
processes allowed for the method to be refined to obtain an
accurate conclusion. It was shown that the results were com-
parable to the manual analysis of the same data set and pro-
duced information beyond what was previously available. In
addition, these conclusions can be reached significantly faster
than the alternative manual method with minimal expense to
a researcher’s time. Potential ways to enhance the perform-
ance are already being investigated and new lines of interest
are being considered for application.

While much of our discussions focused on the investigation
of adhesion of PMNs and PBMCs in dependence on Gal-9,
we demonstrate the applicability of our workflow to other cell
types and other experimental conditions. Notably, we invest-
igated lecukocyte adhesion in dependence on ICAM-1, and
platelet adhesion to vWF in dependence on ADP. Strikingly,
cells were well recognised even when using the training set
from the Gal-9 studies. Recognition can then be improved
by adding single annotated images to the training set, minim-
ising themanual input for this automatic analysis. This demon-
strates the utility of CASTLE for the analysis of a wide range
of adherent cells under various conditions.

5. Software availability

The ImageJ macro scripts created for the purposes of this
research, namely CASTLE, are available to download from the
following project on GitLab: https://gitlab.bham.ac.uk/spillf-
leukocytes-image-analysis/castle. The R script to perform the
PCA and k-means clustering algorithms, to analyse the results
from CASTLE, are available at the same location. Finally, the
validation performed is also available as a series of spread-
sheets at the same location.
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