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Abstract 

The increasing number of older adults has seen a corresponding growth in those affected by 

neurovascular diseases, including stroke and dementia. Since cures are currently 

unavailable, major efforts in improving brain health need to focus on prevention, with 

emphasis on modifiable risk factors such as promoting physical activity. Moderate-intensity 

continuous training (MICT) paradigms have been shown to confer vascular benefits 

translating into improved musculoskeletal, cardiopulmonary and cerebrovascular function. 

However, the time-commitment associated with MICT is a potential barrier to participation, 

and high-intensity interval training (HIIT) has since emerged as a more time-efficient mode 

of exercise that can promote similar if not indeed superior improvements in 

cardiorespiratory fitness for a given training volume and further promote vascular 

adaptation. However, randomised control trials (RCTs) investigating the impact of HIIT on 

the brain are surprisingly limited. The present review outlines how the HIIT paradigm has 

evolved from a historical perspective and describes the established physiological changes 

including its mechanistic bases. Given the dearth of RCTs, the vascular benefits of MICT are 

discussed with a focus on the translational neuroprotective benefits including their 

mechanistic bases that could be further potentiated through HIIT. Safety implications are 

highlighted and components of an optimal HIIT intervention are discussed including 

practical recommendations. Finally, statistical effect sizes have been calculated to allow 

prospective research to be appropriately powered and optimise the potential for detecting 

treatment effects. Future RCTs that focus on the potential clinical benefits of HIIT are 

encouraged given the prevalence of cognitive decline in an ever-ageing population. 
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Context 

Cognitive decline and dementia have emerged as one of the greatest health threats of the 

21st century affecting the way an older adult thinks, make decisions, uses language, learns 

and remembers information (Bishop et al., 2010). The most recent estimates indicate that 

~47 million people were living with dementia in 2015 at an annual cost of US$ 818 billion 

(~£ 623 billion). Incidence is set to almost treble by 2050 (Prince et al., 2015) in tandem with 

the rising number of older adults and healthcare expenditures are projected to surpass 

those for all other health conditions by as early as 2060 (Wimo et al., 2013). Since no 

curative treatments are available, major efforts need to focus on prevention with emphasis 

directed towards modifiable risk factors that include the promotion of physical activity. 

Indeed, physical inactivity was shown to contribute to 13%           g         A zh  m  ’  

Disease (AD) worldwide (accounting for ~4.3 million cases) and reducing inactivity by as little 

as 10-25% could potentially translate into a staggering 380,000-1,000,000 fewer cases of AD 

globally (Barnes & Yaffe, 2011).  

Unfortunately, dementia is not the only brain disease causing significant strain on society 

today, stroke also carries a burden. Broadly defined as a focal neurological deficit caused by 

an infarction or haemorrhage that can lead to disability or death, there are over 80 million 

individuals globally who have survived a stroke and 13.7 million new cases annually (Sacco 

et al., 2013; Lindsay et al., 2019). In the United States of America alone the associated cost 

of stroke was over US$ 71 billion (~£ 57 billion) in 2012 and is projected to rise to US$ 184 

billion (~£ 148 billion) by 2030 (Ovbiagele et al., 2013). The health implications in stroke 

survivors are multifaceted and vary between individuals, with some making a recovery and 

others living with permanent disabilities. As a result, preventative measures should be 
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advocated, including physical activity, that can reduce the risk of stroke by up to 64% (Lee et 

al., 2003). 

It is well established that moderate-intensity continuous training (MICT) can improve 

cardiorespiratory fitness (CRF), that associates with reduced risk of cardiovascular disease 

and all-cause mortality across the human ageing continuum (Garber et al., 2011). 

Accumulating evidence also attests to neuroprotective benefit given its capacity to improve 

cognitive function in older adults ranging from those with healthy cognition, subjective 

memory complaints, mild cognitive impairment, dementia and stroke (Quaney et al., 2009; 

Erickson et al., 2011; Liu-Ambrose et al., 2016; Cai et al., 2017; Northey et al., 2018). 

However, the optimal mode, frequency and duration remain a constant source of debate. 

Furthermore, time demands are deemed a potential barrier to participation (Costello et al., 

2011), with the World Health Organisation declaring that 27.5% of the adult population 

worldwide are not meeting recommended physical activity guidelines (Guthold et al., 2018), 

although this value has been reported to be greater than 90% in some Western societies 

(Tucker et al., 2011). Attention has since turned to an alternative paradigm, high-intensity 

interval training (HIIT), given its capacity to further potentiate metabolic, cardiopulmonary 

and systemic vascular adaptation with the added attraction of less time spent exercising 

(Weston et al., 2014).  

 

Knowledge gap 

However, the number of studies examining the impact of HIIT on the cerebrovasculature in 

both healthy and clinical populations is lacking (Drapeau et al., 2019; Northey et al., 2019). 
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This is surprising and highlights a startling paradox in that despite dementia being one of the 

leading causes of death, astonishingly few studies have been dedicated to understanding 

how HIIT could beneficially impact any aspect of cerebrovascular function and thus alter an 

          ’     j       towards neurodegenerative disease (Figure 1A/B).  

To address this knowledge gap, the current review outlines how the HIIT paradigm has 

evolved and critiques the underlying mechanisms with a translational focus on molecular-

haemodynamic-structural-clinical adaptations with the collective potential to attenuate the 

inexorable decline in cerebrovascular function often shown to accompany sedentary ageing. 

Components of an optimised HIIT intervention are presented including practical 

recommendations focused on safety, outcome measures, and statistical power to help guide 

and inform future HIIT research. 

 

What’s in a definition; HIIT and MICT 

Unlike the continuous steady-state nature of MICT, HIIT although poorly defined, 

incorporates periods of high exertion separated by recovery intervals of either low-intensity 

exercise or complete rest (Figure 2A). Contrary to popular opinion, this form of training is 

neither new nor revolutionary since reports from as early as the 19th century have described 

protocols incorporating intervals of running and walking (Bloomfield, 1962). Throughout the 

20th century, the popularity of HIIT as a means to improve athletic performance burgeoned, 

with Olympic gold medallist distance runners Emil Zatopek and Sebastian Coe employing it 

in their training regimes (Billat, 2001; Figure 2B). However, it is only in the last 15 years that 

focus has turned to the benefits of HIIT within the clinical setting (Gibala et al., 2012; Meyer 
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et al., 2013), popularised by accumulating evidence of benefits in patients with established 

cardiovascular disease (Wisløff et al., 2007), contributing to the exponential rise in scientific 

publications (Figure 2B).   

HIIT potentiates cardiovascular adaptation 

Studies in healthy participants and patients with established cardiometabolic disease have 

consistently demonstrated a greater increase in peak oxygen consumption (  O2Peak) in the 

order of ~1.7 mL O2/kg/min following HIIT compared to MICT (Helgerud et al., 2007; Weston 

et al., 2014; Milanovic et al., 2015). The superior cardiorespiratory benefits are in part 

attributed to an improvement in the heart’s pumping capacity (Wisløff et al., 2007).  

Systemic vascular function has also been shown to improve more markedly following HIIT 

(Ramos et al., 2015), the likely consequence of an ‘optimised’ blood flow-shear stress 

phenotype (see later), triggering calcium influx into hyperpolarised endothelial cells (Cooke 

et al., 1991) that upregulates endothelial nitric oxide synthase (Bolduc et al., 2013). 

Accordingly, post prandial lipaemia-induced systemic vascular endothelial dysfunction, a 

metabolic aberration involving a free radical-mediated reduction in the vascular 

bioavailability of nitric oxide (Marley et al., 2017), is reversed by HIIT but not MICT (Tyldum 

et al., 2009). Equally, HIIT has been shown to decrease low-density lipoprotein, increase 

high-density lipoprotein and improve insulin sensitivity more effectively than MICT (Racil et 

al., 2013; Sogaard et al., 2018). Collectively, these studies demonstrate that despite shorter 

bouts of activity, albeit performed at higher intensity, HIIT has the capacity to further 

potentiate physiological adaptation compared to MICT, which lies at the very heart (and 

potentially brain, the focus of the current review) of its current popularity.  
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Translational adaptation; from heart to brain  

Evidence indicates that regular physical activity and corresponding improvements in CRF can 

increase cerebral perfusion and vasoreactivity across the human lifespan (Ainslie et al., 

2008; Bailey et al., 2013), although this is not a universal finding (Intzandt et al., 2019; Miller 

et al., 2019). From a clinical perspective, moderate to high levels of CRF are associated with 

a markedly lower risk of stroke mortality and dementia (Prestgaard et al., 2019; Tari et al., 

2019), and improved cognition (Brown et al., 2010), further confirming the translational 

neuroprotective benefits of physical activity though the underlying mechanisms remain to 

be established. Several hypotheses have been proposed, however much of the evidence is 

based almost exclusively on animal research.  

The primary mechanisms include, though are not exclusively confined to: accelerated 

neurogenesis in particular of the hippocampal dentate gyrus that is especially vulnerable to 

ageing (Marlatt et al., 2012); reduction in β-amyloid (Brown et al., 2013) and neuro-

oxidative-inflammatory-nitrosative stress (Parachikova et al., 2008); proprioceptive 

adaptations incurred by movements that require sustained mental effort (Bak, 2011) and 

finally; increased brain-derived neurotrophic factor (BDNF) that modulates brain plasticity 

by promoting neuritic outgrowth and synaptic function (Berchtold et al., 2010). Figure 3 

provides a visual summary of the leading translational mechanisms suggested to promote 

exercise-induced neuroprotection. 

Despite burgeoning interest in BDNF (over 1,500 articles since 1995), it is important to 

emphasise that while brain tissue is directly accessible in rodents, methodological 

constraints dictate that exercise studies in humans are forced to rely on circulating blood-

borne concentrations that do not necessarily reflect local BDNF levels in the brain (Bejot et 
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al., 2011). Indeed, BDNF is unlikely to diffuse much at all beyond the presynaptic terminals 

releasing it; the protein is designed such that it can only act on immediately adjacent 

postsynaptic structures. Diffusion through the vascular endothelium is considered unlikely 

given the presence of truncated receptors preventing any long-range diffusion (DM Bailey, 

personal communication, Professor YA Barde, Cardiff University, UK) though peripheral to 

central diffusion could potentially occur subsequent to any transient (exercise-induced) 

increase in blood-brain barrier (BBB) permeability. Despite preliminary evidence for a 

transient opening of the BBB  subsequent to a free radical-mediated impairment in dynamic 

cerebral autoregulation (dCA) (Bailey et al., 2011) and net trans-cerebral output of BDNF 

(Rasmussen et al., 2009) during exercise, the tentative link between peripheral BDNF 

metabolism and exercise-induced neuroprotection warrants additional, arguably more 

critical examination.  

Considering that HIIT has the capacity to further compound metabolic, cardiac and systemic 

vascular adaptation, it is surprising to note that there are only two published studies (one as 

a pilot) (Drapeau et al., 2019; Northey et al., 2019) and no published RCTs exploring its 

impact on the human cerebral circulation. It is reasonable to speculate that the greater 

improvements in CRF (beyond those incurred through MICT for any given training volume) 

could simply confer additional neuroprotection through a translational ‘dose-response’ 

effect. This is not unreasonable given that research has demonstrated that incidental CRF in 

the form of elevated maximal oxygen uptake (  O2max) in more physically active individuals is 

linearly associated with improved cerebral perfusion and cerebrovascular reactivity 

             g  h       ’  ‘biological’ from ‘chronological’ age, reducing the former by up to 

as much as  a decade (Ainslie et al., 2008; Bailey et al., 2013). This is clinically relevant given 
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recent evidence that cerebral hypoperfusion likely precedes dementia (Wolters et al., 

2017a) implying a central pathogenic role for impaired oxygen (O2) and glucose delivery 

during sedentary ageing.  

Cerebral mechanisms; from shear stress to cell signalling 

B      ’         m    HIIT’  ‘direct’ potential to stimulate more local (i.e. cerebrovascular) 

mechanisms that could equally potentiate neuroprotection. Preliminary evidence, albeit 

confined to the systemic circulation, indicates that repeated exposure to the mechanical 

forces associated with acute exercise hyperaemia per se promotes complex changes in the 

pattern of pressure-strain-shear stress (Figure 4A) that can induce functional and structural 

adaptation of the vascular wall via endothelial cell mechanotransduction (Figure 4B). 

Precisely how the arterial endothelium recognises and transduces endothelial, longitudinal 

and circumferential stress is under investigation and likely involves multiple intracellular 

signalling cascades that are transmitted through the cytoskeleton to the intimal region at 

the basal endothelial surface (Green et al., 2017).  

Complex interactions between integrins, actin filaments, caveolae, the glycocalyx, primary 

cilia, adherence/gap junction proteins, ion channels, G protein-coupled receptors and 

receptor tyrosine kinases alter expression of genes governing endothelial/smooth muscle 

cell fate (i.e., proliferation, migration, and/or apoptosis) and release of key mediators 

regulating neurogenesis, synaptic plasticity and brain angiogenesis (e.g. BDNF, insulin-like 

growth factor 1, vascular endothelial growth factor (VEGF)). These molecular cascades are 

subject to ‘upstream’ redox-regulation, that is their expression/release is governed by 

‘quantum-fast’ changes in free radicals and associated reactive oxygen/nitrogen species 

(ROS/RNS) formation that exploit extraordinarily short half-lives and thus are best-placed 
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from a thermodynamic perspective to serve as upstream signal transductants (Bailey, 

2019a). Historically considered as toxic, mutagenic ‘accidents’ of in-vivo chemistry, 

constrained to cellular oxidative damage and pathophysiology, it is becoming increasingly 

clear that at physiological, albeit undefined concentrations, free radicals and associated 

ROS/RNS serve to maintain cerebrovascular O2 homeostasis (Bailey et al., 2018). Indeed, 

free radicals can upregulate antioxidant enzymes, BDNF, VEGF and IGF-1 and their 

‘hormetic’ effects are rapidly emerging as a primary mechanism underpinning exercise 

adaptation (Bailey et al., 2010).  

Yet the majority of this work is based on animal research, thus translation to the human 

brain remains at best, speculative. Future application of more invasive experimental 

exercise models measuring trans-cerebral gradients concomitantly across the arterial and 

jugular venous circulation (with an increase in the latter reflecting net cerebral formation 

and release) in response to targeted antioxidant prophylaxis will help address this 

knowledge gap. 

If the pattern of shear stress is indeed so important, specifically antegrade shear that is 

considered anti-atherogenic (unlike retrograde that is pro-atherogenic) notwithstanding the 

optimal rate-of-flow and rate-of-change in flow, to what extent does HIIT influence the 

(cerebral) blood flow-shear-strain ‘phenotype’?  

There are no studies, to the best of our knowledge, that have addressed this in the systemic 

circulation, let alone the cerebral circulation, due in part to the technical difficulties 

associated with contemporary techniques and constraints imposed by limb (and head) 

movement. Figure 5 provides experimental, albeit preliminary insight highlighting the more 

pronounced increases in regional shear stress (internal carotid artery) that can be achieved 
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through HIIT compared to an equivalent volume of MICT, due to the intermittency of more 

pronounced sinusoidal elevations in blood flow/velocity/pressure that prevail even in the 

face of progressive hyperventilation-induced hypocapnia that would typically be associated 

with cerebral vasoconstriction. Could it simply be that prolonged exposure to the 

intermittency of this flow-shear-strain differential explains its (potentially) superior 

neuroprotective benefits? This is not unreasonable since increased frequency of exposure to 

sinusoidal shear stress upregulates angiogenesis and anti-oxidative/inflammatory-related 

genes (Zhang & Friedman, 2013) and improves flow-mediated dilation more effectively than 

MICT. 

 

Regional heterogeneity; not all parts of the brain respond equally 

Importantly, cerebral perfusion during exercise is characterised by marked heterogeneity in 

the regional redistribution of flow between major cerebral arteries involving complex 

interactions between brain metabolic and neuronal activity, blood pressure, partial pressure 

of arterial carbon dioxide (CO2), cardiac output and sympathetic nervous system activity. In 

support, flow in the internal carotid and middle cerebral arteries increase proportionally 

with exercise intensity until ~60%   O2max, before gradually decreasing due to 

hyperventilation-induced hypocapnic cerebral vasoconstriction (Smith & Ainslie, 2017), 

although this may be different across varying exercise modalities (Faull et al., 2015).  

Furthermore, there is evidence to suggest that the hindbrain, in particular the brainstem, is 

one of the most primitive neuroanatomical regions of the human brain that has remained 

highly conserved across vertebrate evolution given that it houses (almost exclusively) all the 
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major cardiovascular and respiratory control centres essential for the integrated regulation 

of autonomic nervous control  (Northcutt, 2002).  With its development placed at ~300 

million years ago, it stands testament to the concept tha   h             ‘     ’        

changes in O2 and mount a defence against metabolic compromise and/or structural 

damage was one of the first roles of the CNS and probably represented a major driving force 

in the evolution of the human brain, thus providing a selective advantage (Bailey, 2019b). 

This provides a teleological basis to help explain the preferential cerebral 

p        /                               ph   g           ‘     ’   g         h           -

served by the posterior circulation in response              x              h   ‘O2-         ’ 

challenges including hypoxia (Binks et al., 2008), hypercapnia (Ito et al., 2000) and 

hypotension (Lewis et al., 2015).  

From a clinical perspective, the posterior circulation appears more susceptible to 

deterioration than its anterior counterpart (Kim et al., 2017), a predilection site for several 

  m        p           g   w  B          A zh  m  ’ , that are confined to the posterior 

parietal cortex and cingulate gyrus (Minoshima et al., 1997; Ruffmann et al., 2016). Thus, by 

favouring the posterior circulation, HIIT could be considered an exciting prospect, though 

equally, it could prove a ‘double-edged’ sword (see below). 

 

Walking the tightrope; risk versus reward 

The safety aspects of HIIT, particularly its impact on the cerebrovasculature, are yet to be 

systematically explored raising concerns that continue to represent a major barrier toward 

its (more) widespread clinical implementation. The perceived increased risk of HIIT to 
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patient safety is based on the notion that high-intensity exercise acutely increases the risk of 

acute myocardial infarction and sudden cardiac death, particularly in habitually sedentary 

individuals. However, the evidence to date, albeit in patients with coronary artery disease or 

heart failure, challenges this concern. Indeed, in their most recent meta-analysis, Wewege 

et al. (2018) examined 23 studies involving 1,117 patients and reported 1 adverse event per 

3,417 sessions (2,227 training hours) for HIIT protocols that typically incorporated the 

‘Scandinavian’ approach of 4 × 4-minute intervals with 3-minute recovery intervals and/or 

protocols that ranged in interval duration from 30 seconds to 3 minutes. This compares to 

MICT protocols that ranged from 30-60 minutes/session that reported 1 adverse event per 

7,134 sessions (5,606 training hours) with no risk difference between training modalities. In 

contrast, the rewards in terms of health gains and potential cost savings conferred by HIIT 

over MICT are compelling with meta-analyses consistently reporting more marked 

improvements in CRF ranging from 1.2-1.8 mL O2/kg/min, significant given that an 

improvement in CRF of 3.5 mL O2/kg/min (1 metabolic equivalent) associates with a 15% 

lower risk in all-cause and cardiovascular-related mortality (Kodama et al., 2009).    

However, it is important to emphasise that these data are based on studies in patients 

exercising in the cardiac rehabilitation setting supported by 12-lead electrocardiography to 

screen for cardiovascular abnormalities. Surprisingly, equivalent screening does not exist for 

the cerebrovasculature, hence the need for continued caution. Perhaps the most pressing 

cause for concern relates to the rapid increase in systemic blood pressure and 

hyperventilation induced vasoconstriction once HIIT commences. Unless these actions are 

countered by the ‘shock-absorbing’ effects of increased sympathetic activation or CA, 

constrained by temporal delays of ~5 s, HIIT could potentially increase the risk of cerebral 
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hyperperfusion injury predisposing to stroke or blood-brain barrier (BBB) disruption. 

Resultantly, those with ineffective/inefficient dCA or reduced cerebrovascular reactivity to 

CO2 may be at a greater risk of cerebrovascular events during exercise.  

Barrier disruption can cause extracellular vasogenic oedema and is further compounded by 

exercise-induced free radical formation resulting in a regional O2 diffusion limitation with 

the potential to adversely affect cerebral bioenergetics and cognition (Bailey et al., 2011). 

This is especially relevant for patients already suffering from impaired CA/autonomic 

dysfunction including the older adults, notwithstanding patients diagnosed with diabetes, 

hypertension, stroke and AD. While potentially benefitting from elevated flow and shear, 

posterior regions of the brain such as the midbrain and cerebellum may equally prove more 

prone to HIIT-induced autoregulatory breakthrough given that compared to the anterior 

circulation supplied by the internal carotid arteries, the vertebral arteries are characterised 

by blunted reactivity to CO2 and lower CA. It is precisely for these reasons that we have 

previously recommended a conservative approach that includes a gradual increase in 

exercise intensity to ‘prime-and-prepare’ the cerebrovasculature during the first 10 s of the 

high-intensity period(s) (Lucas et al., 2015). If these potential risks are circumvented, the 

neuroprotective benefits conferred have the potential to be pronounced,  as the observed 

improvements in cognition and preservation of brain structure/function following lifelong 

exercise and/or in masters athletes stand testament to (Ainslie et al., 2008; Erickson et al., 

2009; Bailey et al., 2013; Tseng et al., 2013). 
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Practical recommendations; towards the optimal intervention  

Given that cardiovascular risks align closely with cognitive impairment and dementia, the 

potentiating effects of HIIT on CRF have the capacity to further optimise brain health in 

adults and contribute to current health promotion and disease prevention strategies 

(Gorelick et al., 2017). However, defining the optimal HIIT paradigm is challenging given the 

marked lack of published data combined with the fact that dosage involves the complex 

interaction between duration, frequency, intensity and mode of exercise. Specifically, the 

term HIIT is often employed to describe protocols that incorporate high-intensity periods at 

80-100% HRMAX for 60-240 s. However, another term is regularly used to further define HIIT; 

sprint interval training (SIT), which incorporates short ‘all out’ high-intensity periods 

(Keating et al., 2017).  While both paradigms have been associated with superior elevations 

in CRF compared to MICT (Esfarjani & Laursen, 2007; Wisløff et al., 2007), findings from two 

meta-analyses evaluating HIIT in populations characterised by vascular endothelial 

dysfunction indicate that HIIT performed at a higher intensity equivalent to ~85-95% of peak 

heart rate (HRPEAK) for 4 × 4 minute intervals separated by active recovery periods at an 

intensity of ~50-70% HRPEAK for 3 minutes (Weston et al., 2014; Ramos et al., 2015) may 

provide the optimal stimulus.  

These findings are noteworthy given that vascular endothelial dysfunction is associated with 

increased cardiovascular risk and often a precursor of ischaemic events including stroke, 

cognitive impairment and dementia (see Gorelick et al., 2011). However, the HIIT protocol 

described was designed to match energy expenditure of traditional MICT training at ~70% 

  O2max (Weston et al., 2014) with comparable time-demands (HIIT; 38 minutes vs MICT; 46 

minutes) that could threaten compliance. This has stimulated researchers to explore 
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alternative (low-volume) HIIT paradigms that incorporate, for example, ten intervals that 

each last for 60 seconds at 90% HRPEAK with 60 seconds of recovery at low-intensity exercise 

or rest (Hood et al., 2011). However, it remains unclear whether low-volume HIIT is as 

effective as high-volume HIIT.  

The beneficial effects of HIIT have been documented in a variety of chronic diseases 

including stroke, hypertension, diabetes and cancer (Molmen-Hansen et al., 2012; Askim et 

al., 2014; Støa et al., 2017; Rose et al., 2020). Furthermore, exercise prehabilitation with 

HIIT has the potential to be especially beneficial for the surgical patient given that poor CRF 

( h             w m    p   ‘ h   h   ’ m      ) is associated with an increased risk of adverse 

peri-operative outcomes including major morbidity, mortality, increased length of stay in 

hospital and reduced health-related quality of life (Davies et al., 2018; Rose et al., 2018a; 

Rose et al., 2018b). In support, HIIT was recently shown to be a feasible, safe and highly 

effective intervention with the potential to optimise peri- p             m      h  ‘  -   k’ 

surgical patient defined by multiple co-morbidities (Rose et al., 2020). In contrast, the 

evidence for benefit in dementia patients remains equivocal, although trials conducted to 

date have focused on moderate to high-intensity interventions and not HIIT (Hoffmann et 

al., 2016; Lamb et al., 2018). Though more research is encouraged, HIIT is likely to be more 

effective as a preventative rather than a post-diagnosis treatment for dementia patients.  

However, in order to identify the optimal intervention, it is important that studies include 

measurement techniques/biomarkers that fully establish the efficacy of HIIT. The integrated 

assessment of CBF using a variety of established biometrics (Willie et al., 2011; Willie et al., 

2014b; Tymko et al., 2018) is eminently justified given the relationship between 

hypoperfusion and dementia (Wolters et al., 2017b). However, perfusion alone fails to 
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reveal the full extent of adaptation, given that impaired cerebrovascular reactivity (CVR) is 

also observed in dementia patients and those at a greater risk of stroke (Vicenzini et al., 

2007; Reinhard et al., 2014). While CO2 is often favoured as a stimulus in CVR assessments 

due to its relative ease of application, there is a general need for more consistent 

methodological approaches to optimise application (Burley et al., 2020).  

Finally, since cognitive impairment is a hallmark feature of dementia with ~30% of stroke 

patients developing dementia within the first year of the onset of stroke (Henon et al., 

2001), any potential HIIT intervention needs to assess cognitive function. While the 

abundance of assessments currently available can make it difficult for researchers to select 

the tests that are most appropriate, Th  N        I            Ag  g      h  A zh  m  ’  

Association have advocated incorporation of tests that assess memory, executive function, 

language, visuospatial skills and attention for those at risk of cognitive impairment (Albert et 

al., 2011) that may also include a more global assessment using the Montreal Cognitive 

Assessment tool (Nasreddine et al., 2005).  

A question of power 

The number of participants required to adequately power an RCT investigating the impact of 

HIIT on the molecular/metabolic, haemodynamic or structural determinants of 

cerebrovascular function and corresponding implications for cognitive function remains 

equally unclear. With this in mind, it is important to apply sound rationale when conducting 

prospective sample size calculations. For example, researchers have traditionally focused on 

  O2Peak as the primary endpoint without statistical justification for the magnitude of change 

that constitutes the minimal clinically important difference (MCID, smallest change in 
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treatment outcome considered important), often relying on arbitrary estimates to 

authenticate a ‘genuine’ improvement in CRF (McGregor et al., 2016).  

We have more accurately defined the MCID of related CRF metrics by determining the 

critical difference, a concept that accounts for the underlying imprecision associated with 

analytical (CVA) and (mostly) biological (CVB) or natural variation (Rose et al., 2018b). This 

approach has identified a CD of 13% for   O2Peak (CVA: 2.2%, CVB: 3.6%) (Rose et al., 2018b) 

that when applied to published values (24 ± 4 mL/kg/min) in sedentary older male adults 

(aged 68 ± 5y) (Bailey et al., 2013) indicates that the MCID would be 3.12 mL O2/kg/min. 

This translates into a sample size of 15 participants/patients per arm, as illustrated in Figure 

6.  

Prospective sample size estimates have also been calculated for remaining determinants of 

molecular/haemodynamic/structural/clinical function to help inform the design of future 

RCTs (Figure 6). While the CD has not been formally assessed for these metrics, calculations 

are based on (retrospectively calculated) effect sizes obtained from the albeit limited HIIT 

studies and in the absence of data, occasional MICT studies. Sample size estimates range 

between 6-252 participants/patients, excluding loss to follow-up that conservative 

estimates suggest range between ~20-25% (Lautenschlager et al., 2008; Morris et al., 2009), 

highlighting the logistic and economic challenges faced by researchers during recruitment. 

 

Conclusions 

Physical inactivity continues to be a major cause of morbidity and mortality with 

overwhelming evidence supporting the musculoskeletal, cardiovascular and cerebrovascular 
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benefits of regular exercise that are comparable to drug interventions in a number of 

chronic conditions. However, healthcare professionals face the constant challenge of having 

to deal with poor adherence and implementation of exercise interventions that lead to 

more sustained behaviour. The HIIT paradigm has since emerged as a safe and more time-

efficient mode of exercise that can promote further improvements in CRF, molecular and 

vascular function for an equivalent volume of MICT. However, to what extent HIIT can 

further compound cerebrovascular adaptation and potentiate neuroprotection remains 

largely unexplored. The current review provides a mechanistic basis justifying clinical 

implementation of an optimised RCT that includes practical recommendations focused on 

safety and statistical power to help guide and inform future HIIT research. Establishing these 

mechanisms more clearly will provide an evidence-base for the prescription and future 

optimisation of HIIT interventions that have arguably more potential to promote healthy 

ageing by delaying stroke, cognitive decline and dementia with corresponding benefits for 

individuals, their families and society in general. 
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Abstract figure legend  

Summary of the integrated mechanisms and functional adaptations underpinning high-

intensity interval training-induced neuroprotection.   

High-intensity interval training (HIIT) represents a more time-efficient mode of exercise that 
can potentiate cardiorespiratory fitness and further enhance neuroprotection compared to 
more traditional moderate-intensity continuous training paradigms. While the precise 
mechanisms remain unclear, prolonged exposure to the mechanical forces associated with 
the intermittency of HIIT-induced sinusoidal hyperaemia can promote complex changes in 
the cerebral pressure-strain-shear stress phenotype to induce functional-structural 
adaptation of the vascular wall subsequent to endothelial cell mechanotransduction. Redox-
activation of complex intracellular signalling cascades can translate into molecular, 
haemodynamic and structural adaptations that ultimately enhance neuroprotection. 
Establishing these mechanisms more clearly will provide an evidence-base for the 
prescription and future optimisation of HIIT interventions that have arguably more potential 
to promote healthy ageing by delaying stroke, cognitive decline and dementia. Digits below 
each of the integrated functionally adaptive benefits proposed (bottom of figure) highlight 
sample size estimates (number of participants/patients required to achieve adequate 
statistical power) to inform the design of future randomised control trials. 
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Figure 1. Leading causes of death in the UK and globally (A) and number of published 
articles focused on high-intensity interval training categorised by clinical subspeciality (B). 

UK data obtained from the Office for National Statistics (Patel, 2017); global data obtained 
from the World Health Organization (2019). All searches retrieved from PubMed (10-09-
2019). n = number; IHD, ischaemic heart disease; COPD, chronic pulmonary disease; LRI, 
lower respiratory infections; AD, Alzheimer’  Disease and other dementias. 
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Figure 2A. Schematic of typical high-intensity interval (HIIT) compared to traditional 
moderate intensity continuous training (MICT) paradigms recommended by leading health 
agencies. 

Applied paradigm (left panel): Protocol consists of 6 repetitions of 30-second all-out exercise 
efforts performed at a power output equivalent to 200 % of that achieved at the point of 

maximal oxygen uptake ( ̇O2MAX) interspersed by 4 1/2 min active recovery at a very low 
exercise intensity. This protocol is typically performed three times per week, compared to 

MICT, typically performed at 65 %  ̇O2MAX for 60 minutes, five times per week consistent 
with recommended guidelines (WHO, 2010; Garber et al., 2011). Note that HIIT training 
volume is ~90% lower and time commitment ~1/3 lower compared to MICT. Clinical 
paradigm (right panel): Protocol consists of 4 repetitions of 4 min intervals at 85-95 % 

 ̇O2MAX, interspersed by 3 min active recovery at low intensity (adapted from Lucas et al. 
(2015)).  
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Figure 2B. Historical timeline summarising how high-intensity interval training (HIIT) has 
developed and exponential increase in publications since the first paper (Lesmes et al., 
1978). 

All searches retrieved from PubMed (10-04-2020). 
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Figure 3. Integrated link between molecular, haemodynamic and structural adaptations 
underpinning exercise neuroprotection.  

Each column summarises the functionally integrated mechanisms/adaptations (connected 
by dashed lines) common to each of the (four) primary pathways that ultimately converge 
on a reduction in disease prevalence (highlighted in red). ROS/RNS, reactive 
oxygen/nitrogen species; NO, nitric oxide; O2, oxygen.     
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Figure 4A. Haemodynamic forces acting on the arterial wall during high-intensity interval 
training that may alter the pressure-strain-shear phenotype. 

Pt, tensile pressure; Cs, circumferential stress; Wss, wall shear stress; Ls, longitudinal stress; 
Ec, external compression; Ess, endothelial shear stress; Pi, intravascular pressure. Brain image 
is used with permission (Willie et al., 2014a). 
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Figure 4B. Molecular transduction of shear stress to the arterial endothelium is “sensed” 
by mechanoreceptors activating multiple intracellular signalling pathways involved in 
neuroprotection. 

ROS/RNS, reactive oxygen/nitrogen species; ASK, apoptosis signal-regulating kinase; NF-𝛫B, 
nuclear factor kappa-light-chain-enhancer of activated B cells; MAPK, mitogen-activated 
protein kinases; JNK, c-Jun N-terminal kinase; eNOS, endothelial nitric oxide synthase; Nrf, 
nuclear factor erythroid-related factor; KLF, Krüppel-like Factor; MKP, mitogen-activated 
protein kinase phosphatase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; p53, 
tumor protein p53; RhoA, rat sarcoma homolog gene family, member A; Ca2+, calcium ions; 
VE, vascular endothelial; VEGFR, vascular endothelial growth factor receptors; PECAM, 
platelet endothelial cell adhesion molecule. Brain image is used with permission (Willie et 
al., 2014a). 
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Figure 5. Elevated shear stress response during high-intensity interval (HIIT) compared to 
moderate-intensity steady-state (MICT) training. 

Pilot data obtained from a single healthy male participant. Participant performed HIIT and 
an identical volume (MICT) of semi-recumbent cycling exercise (as illustrated) during which 
time blood flow in the (right) internal carotid artery (ICA) was determined 1.5 cm above the 
carotid bifurcation using duplex ultrasound (Vivid-I; GE Healthcare, Tokyo, Japan) equipped 
with an 8 MHz linear transducer. Mean ICA diameter was calculated as: 
                                             

 
 , ICA flow as: Time averaged mean blood flow velocity 

(BFV) × [𝜋 (0.5 ×   ̅)2] × 60 (where   ̅ refers to mean arterial diameter) and shear rate as:  

                     

  ̅
 averaged over the last 4 minutes of each respective intervention 

(highlighted in red cross-hatches). Note the almost doubling in shear rate *∆           

exercise/rest × 100 (%)] during HIIT compared to MICT that was primarily attributable to the 

(observed) elevation in blood flow/velocity given that arterial diameter changes were 

comparable. Brain image is used with permission (Willie et al., 2014a). 
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Figure 6. Effect sizes observed and sample sizes required for select components of high-
intensity interval training-induced cerebrovascular adaptation.  

Top of Figure highlights estimation of the minimal clinically important difference (MCID, 
smallest change in treatment outcome considered important) for peak oxygen uptake 
(  O2Peak). This was based on calculation of the critical difference (CD), a metric that accounts 
for the underlying imprecision associated with analytical and biological/natural variation 
(    ‘A q           p w  ’). This approach has identified a CD of 13% for   O2Peak (CVA: 2.2%, 
CVB: 3.6%) (Rose et al., 2018b) that when applied to published values (24 ± 4 mL/kg/min) in 
sedentary older male adults (aged 68 ± 5y) (Bailey et al., 2013) indicates that the MCID 
would be 3.12 mL O2/kg/min, equating to a sample size of 15 participants/patients per arm 
(calculated using G* Power, V. 3.1) Critical difference calculations have not been performed 
for any of the remaining molecular/haemodynamic/structural/clinical metrics that underpin 
neuroprotection. As an alternative, effect sizes (SMD, standardised mean differences) were 
calculated based on data outlined in published randomised control trials (RCTs sourced 
through PubMed and MEDLINE online databases) with prospective calculation of the 
minimum sample size required to detect a treatment effect (i.e. exercise improvement 
relative to control intervention) with 0.80 power at P < 0.05 using RevMan software (V. 5.3). 
Note that given the lack of published data, effect sizes for cerebrovascular reactivity to 
carbon dioxide and hippocampal volume were determined based on moderate-intensity 
continuous training RCTs and the final sample sizes exclude loss to follow-up with 
conservative estimates ranging between ~20-25% (Lautenschlager et al., 2008; Morris et al., 
2009). NO, nitric oxide; BDNF, brain-derived neurotrophic factor; FMD, flow-mediated 
dilation; CVRCO2, cerebrovascular reactivity to carbon dioxide. Studies for each outcome 
measure were obtained from RCTs or previously conducted meta-analyses as follows; nitric 
oxide (Mitranun et al., 2014; all RCTs; Ghardashi Afousi et al., 2018; Izadi et al., 2018), 
insulin resistance (Jelleyman et al., 2015; meta-analysis), BDNF (Hebisz et al., 2018; Rentería 
et al., 2019; RCTs), FMD (Ramos et al., 2015; meta-analysis), CVRCO2 (Vicente-Campos et al., 
2012; RCT), hippocampal volume (Firth et al., 2018; meta-analysis), memory (Connolly et al., 
2017; RCT). Please note, pilot studies, non-human studies and studies that incorporated 
participants with cerebrovascular disease were excluded from the analyses. 
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