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22 Abstract

23 Study question: How are progesterone (P4)-induced repetitive intracellular Ca2+ concentration 

24 ([Ca2+]i) signals (oscillations) in human sperm generated?

25 Summary answer: P4-induced [Ca2+]i oscillations are generated in the flagellum by membrane-

26 potential (Vm)-dependent Ca2+-influx through CatSper channels, which then induce secondary Ca2+ 

27 mobilisation at the sperm head/neck region.

28 What is known already: A subset of human sperm display [Ca2+]i oscillations that regulate flagellar 

29 beating and acrosome reaction. Though pharmacological manipulations indicate involvement of 

30 stored Ca2+ in these oscillations, influx of extracellular Ca2+ is also required.

31 Study design, size, duration: This was a laboratory study, that used >20 sperm donors and involved 

32 more than 100 separate experiments and analysis of more than 1,000 individual cells over a period of 

33 2 years.

34 Participants/materials, setting, methods: Semen donors and patients were recruited in accordance 

35 with local ethics approval from Birmingham University and Tayside ethics committees. [Ca2+]i 

36 responses and Vm of individual cells were examined by fluorescence imaging and whole-cell current 

37 clamp.

38 Main results and the role of chance: P4-induced [Ca2+]i oscillations originated in the flagellum, 

39 spreading to the neck and head (latency of 1-2 s). K+-ionophore valinomycin (1 M) was used to 

40 investigate the role of membrane potential (Vm). Direct assessment by whole-cell current-clamp 

41 confirmed that Vm in valinomycin-exposed cells was determined primarily by K+ equilibrium 

42 potential (EK) and was rapidly ‘reset’ upon manipulation of [K+]o.  Pretreatment of sperm with 

43 valinomycin ([K+]o=5.4 mM) had no effect on the P4-induced [Ca2+] transient (P=0.95; 8 

44 experiments), but application of valinomycin to P4-pretreated sperm suppressed activity in 82% of 

45 oscillating  cells (n=257; P=5*10-55 compared to control) and significantly reduced both amplitude 

46 and frequency of persisting oscillations (p=0.0001). Upon valinomycin washout oscillations re-started 

47 in most cells. When valinomycin was applied in saline with elevated [K+] the inhibitory effect of 
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48 valinomycin was reduced and was dependent on EK (P=10-25). Amplitude and frequency of [Ca2+]i 

49 oscillations that persisted in the presence of valinomycin showed similar sensitivity to EK (P<0.01). 

50 The CatSper inhibitor RU1968 (4.8 and 11 M) caused immediate and reversible arrest of activity in 

51 36% and 96% of oscillating cells respectively (P<10-10). 300 M quinidine which blocks the sperm K+ 

52 current (Ksper) completely inhibited [Ca2+]i oscillations.

53 Large scale data: n/a

54 Limitations, reasons for caution: This was an in-vitro study and caution must be taken when 

55 extrapolating these results to in vivo regulation of sperm. 

56 Wider implications of the findings: [Ca2+]i oscillations in human sperm are functionally important 

57 and their absence is associated with failed fertilisation at IVF. The data reported here provide new 

58 understanding of the mechanisms that underlie the generation (or failure) and regulation of these 

59 oscillations.  

60 Study funding/competing interest(s): ET was in receipt of a postgraduate scholarship from the 

61 CAPES Foundation (Ministry of Education, Brazil). The authors have no conflicts of interest.

62
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63 Introduction

64 Ca2+-signalling plays an essential role in the regulation of sperm cell function. Key activities, 

65 including motility, acrosome reaction and capacitation (acquisition of fertilising ability) are regulated 

66 through intracellular calcium concentration ([Ca2+]i) and can be modified by artificial manipulation of 

67 Ca2+-signalling processes (Darszon, et al., 2011, Publicover, et al., 2007, Suarez, 2008). In most 

68 animal phyla the primary plasma membrane Ca2+ channel of sperm is CatSper (Cai and Clapham, 

69 2008, Ren, et al., 2001), which can be activated upon encountering a stimulus, generating an 

70 immediate increase in cytoplasmic [Ca2+] and a consequent change in the activity of the cell. For 

71 instance, in sea urchin sperm, activation of CatSper induced by binding of chemoattractant molecules 

72 to their receptors (Seifert, et al., 2015) induces a transient elevation of [Ca2+]i that causes the sperm to 

73 re-orientate its path up the chemoattractant gradient (Guerrero, et al., 2010, Kaupp, et al., 2008). 

74 Similarly, in human sperm activation of CatSper channels by progesterone (P4) results in a [Ca2+]i 

75 transient which induces a brief, but marked, modification of flagellar beating (Bedu-Addo, et al., 

76 2007, Schiffer, et al., 2014, Smith, et al., 2013). 

77 As well as phasic Ca2+ signals that are induced upon presentation of a stimulus, human sperm 

78 generate repetitive [Ca2+]i spikes or oscillations, either during prolonged exposure to a stimulus or 

79 even ‘spontaneously’, in the absence of any applied stimulus (Harper, et al., 2004, Mata-Martinez, et 

80 al., 2018). The functional significance of these signals is not clear. Initial observations on loosely 

81 immobilised cells exposed to a prolonged P4 stimulus showed that each [Ca2+]i spike or oscillation 

82 peak was associated with a temporary increase in the amplitude of flagellar excursion (Harper, et al., 

83 2004), suggesting that these signals may be involved in regulation of flagellar beat mode. More 

84 recently it has been shown that occurrence of acrosome reaction is suppressed in cells displaying 

85 spontaneous [Ca2+]i oscillations (Sanchez-Cardenas, et al., 2014) and that ability to undergo acrosome 

86 reaction can be restored by inhibition of these [Ca2+]i signals (Mata-Martinez et al, 2018). The 

87 occurrence of samples that completely failed to generate [Ca2+]i oscillations in response to P4 was 

88 significantly higher in men who failed to fertilise at IVF compared to samples from donors and 

89 patients who fertilised (Kelly, et al., 2018).
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90 Repetitive [Ca2+]i activity in somatic cells is typically generated by mobilisation of Ca2+ stored in 

91 intracellular organelles, such as the endoplasmic reticulum. Upon stimulation the storage organelles 

92 are cyclically emptied (by activation of Ca2+ channels) and refilled (by activity of Ca2+-ATPases) 

93 resulting in an oscillatory Ca2+ signal (Berridge, et al., 1988, Berridge, et al., 2003). Sperm cells 

94 appear to possess at least two Ca2+ storage organelles which have Ca2+ channels and Ca2+-ATPases 

95 similar to those in somatic cells (Correia, et al., 2015, Costello, et al., 2009) and pharmacological 

96 studies indicate that these stores are involved in the generation of oscillatory Ca2+ signals in human 

97 sperm (Harper, et al., 2004, Mata-Martinez, et al., 2018). However, in both excitable and non-

98 excitable cells, oscillation of [Ca2+]i can also occur due to interaction between voltage-sensitive Ca2+-

99 channels and Ca2+ sensitive K+ channels, resulting in cyclic changes in membrane potential (Vm) and 

100 consequent bursts of Ca2+-influx (e.g. Gorman and Thomas, 1978, Lopez, et al., 1995, Schlegel, et al., 

101 1987). Significantly, though stored Ca2+ is implicated in the mechanism underlying Ca2+ oscillations 

102 in human sperm, extracellular Ca2+ is required for their generation and/or persistence (Harper, et al., 

103 2004, Mata-Martinez, et al., 2018) suggesting that regulation of membrane Ca2+ permeability is 

104 involved in generating or shaping repetitive [Ca2+]i activity. We have therefore investigated the 

105 initiation of [Ca2+]i oscillations in human sperm and the potential involvement of CatSper and 

106 regulation by Vm.

107
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108 Methods

109 Materials All chemicals were obtained from Sigma-Aldrich (Poole, UK) except fluo4-AM 

110 (acetoxymethylester), which was from Thermo Fisher Scientific, UK. Fluo4-AM was prepared in 

111 dimethylsuphoxide (DMSO) containing 20% Pluronic F-127 (Thermo Fisher). P4 and RU1968 were 

112 dissolved in DMSO at 10 mM and diluted in sEBBS prior to use. Quinidine was dissolved in DMSO at 

113 100 mM and diluted in sEBBS prior to use. RU1968 was a kind gift of Dr Timo Strünker, Centre of 

114 Reproductive Medicine and Andrology, Münster, Germany,

115

116 Salines  The standard incubation medium used in this study was supplemented Earle’s balanced salt 

117 solution (sEBSS), containing NaCl (90 mM), KCl (5.4 mM), CaCl2 (1.8 mM), MgCl2 (1 mM), 

118 glucose (5.5 mM), NaHCO3 (25 mM), Na pyruvate (2.5 mM), Na lactate (19 mM), MgSO4 (0.81 

119 mM), HEPES (15 mM) and 0.3% bovine serum albumin (BSA). The pH was adjusted to 7.4 with 

120 NaOH and osmolarity was than adjusted to 291-294 mOsm as necessary by adding NaCl. Salines with 

121 increased [K+] were made by isotonic replacement of NaCl with KCl. ‘Ca2+-free’ saline was made by 

122 omission of CaCl2 ([Ca2+]<5 M; Harper, et al., 2004) and in EGTA-buffered saline CaCl2 was 

123 omitted and 2 mM EGTA was added (calculated [Ca2+]=2.6*10-10M; Maxchelator (Webmaxc 

124 standard); UC, Davis). Intracellular (pipette) solution for current clamp recordings contained NaCl 

125 (10 mM), KCl (18 mM), K gluconate (92 mM), MgCl2 (0.5 mM), CaCl2 (0.6 mM), EGTA (1 mM), 

126 HEPES (10 mM), pH adjusted to 7.4 using KOH, which brought [K+] to 114 mM and [Ca2+]i to 0.11 

127 M (Webmaxc standard).

128

129 Selection and preparation of spermatozoa Written consent was obtained from donors in accordance 

130 with the Human Fertilisation and Embryology Authority (HFEA) Code of Practice (version 8) under 

131 local ethical approval (University of Birmingham (ERN 07-009 and ERN-12-0570) and Tayside 

132 Committee of Medical Research Ethics (13/ES/0091)). Semen samples were from donors with normal 

133 sperm concentration and motility (measured parameters for all samples exceeded the lower reference 

134 limits; WHO 2010; table S1).  Samples were obtained by masturbation after 2-3 days sexual 
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135 abstinence. After liquefaction (30 min), sperm were swum up into sEBSS (60 min), adjusted to a 

136 maximum of ≈6 million/ml and  left to capacitate (36°C, 5.5% CO2) for 5 hours.

137 Current Clamp 

138 To monitor membrane Vm directly, electrophysiological recordings were conducted on sperm, bathed 

139 in sEBBS, using whole-cell, zero current clamp. Recording pipettes were filled with standard 

140 intracellular solution and gigaseals were achieved by carefully manoeuvring the tip of the pipette onto 

141 the neck region of the sperm and applying gentle suction. This was followed by another brief suction 

142 to achieve the whole-cell configuration. Data were acquired at 5 KHz and low pass filtered at 3 KHz 

143 using an Axopatch 200B (Molecular Devices). Data presented are adjusted for liquid junction 

144 potential. 

145 Collection and analysis of imaging data. Imaging was carried out essentially as described in (Nash, et 

146 al., 2010). Briefly, after adjusting cell concentration to 1.5 x 106 million/ml the cell suspension was 

147 divided into aliquots of 200 μL and incubated with fluo4-AM (5 μM) for 30 min (36°C, 5.5% CO2). 

148 Cells were then transferred to a perfusable imaging chamber, the base of which was a coverslip coated 

149 with 0.001% poly-D-lysine and incubated for an additional 5 minutes to allow cells to settle. The 

150 chamber was installed on the stage of an inverted fluorescence microscope (Nikon TE300) and 

151 perfused with sEBSS to remove unattached cells and excess dye. All experiments were performed at 

152 25°C in a continuous flow of sEBSS, with a perfusion rate of 0.6 ml/minute. Fluorescence excitation 

153 was at 470 nm (OptoLED, Cairn, UK) and emission at 520 nm. Images were captured at 0.2 Hz 

154 except for localisation of signal initiation (2.5 Hz) using a 40× or 60x oil-immersion objective and an 

155 Andor Ixon 897 EMCCD camera controlled by iQ3 software (Andor Technology, Belfast). Stimuli 

156 were applied to the cells by inclusion in the perfusing medium. In experiments where valinomycin 

157 exposure was combined with modified [K+]o the cells were maintained in standard sEBSS except 

158 during the period of exposure to valinomycin.

159 Analysis of images and background correction was done using iQ3 software. Regions of interest were 

160 drawn around the required area(s) and the background subtracted. Average intensity was obtained for 

161 each area. Analysed and plotted data refer to the signal obtained from the posterior head/neck except 
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162 where more detailed regional analysis is described. For comparison of fluorescence in multiple 

163 regions within the sperm, cells with an adequately-immobilised flagellum were selected for analysis 

164 in order that fluorescence could be recorded from regions of interest in the flagellum as well as from 

165 the sperm neck and post-acrosomal head. Raw intensity values were imported into Microsoft Excel 

166 and normalized by calculating percentage change in fluorescence (F) using the equation:

167 F = [(F − Frest)/Frest] × 100%

168 where F is the percentage change in fluorescence intensity at time t, F is fluorescence intensity at 

169 time t and Frest is the mean of ≥10 determinations of F during the control period before application of 

170 P4. 

171 Repetitive [Ca2+]i activity (oscillations) induced by 3 M P4 stimulation was analysed for amplitude 

172 and frequency. Oscillation (and P4-induced transient) amplitudes were calculated, for each event, as 

173 the increment in F (calculated as the difference between the F values at the signal peak and 

174 immediately before onset of the signal). For each cell mean amplitude for the experimental 

175 (treatment) period was then calculated and either normalised to the equivalent mean for the preceding 

176 control period or expressed a % of the amplitude of the initial P4-indued transient.  Background 

177 [Ca2+]i noise or ‘ripples’ with amplitude <20% of the amplitude of the preceding P4-induced transient 

178 peak were not considered oscillations. Latency of [Ca2+]i signals in the sperm head and neck 

179 (compared to the proximal flagellum) was estimated directly from the traces by identifying the start of 

180 the rising phase of the fluorescence signal (inflexion in the fluorescence trace) in each of  the different 

181 regions. Oscillation frequency was estimated by counting the number of [Ca2+]i spikes and dividing by 

182 time. Oscillation duration was assessed by taking the period between initiation and complete decay of 

183 the [Ca2+]i signal.

184 Calculation of effective dose of RU1968. We have previously reported that compounds applied by 

185 superfusion may be present in the imaging chamber at concentrations significantly lower than that 

186 applied to the perfusion inflow (Brown, et al., 2017). In pilot experiments, the potency of RU1968 

187 was lower than previously reported (Rennhack, et al., 2018). We therefore carried out parallel 
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188 experiments to compare the efficacy of RU1968 (1, 10, 20 and 30 M), when applied by superfusion 

189 of the imaging chamber and when used in a static incubation chamber (multiwell plate; Achikanu, et 

190 al., 2018), in blocking the [Ca2+]i transient induced by 3 M P4. Data obtained with each method were 

191 fitted with a four parameter logistic regression model (Y = min + (max-min)/1 + (X/IC50)* Hill 

192 coefficient) using https://mycurvefit.com/. 

193 When RU1968 was applied by addition to a static chamber the calculated IC50 was 6.9 μM, 

194 similar to the previously reported value of 5.5 M (Rennhack, et al., 2018). However, when applied 

195 by superfusion IC50 was 18.4 μM (fig S1). From the fitted curves we estimate that effective 

196 concentrations achieved by adding 10 and 30 M RU1968 to the perfusing medium were 4.8 and 11.0 

197 M respectively (fig S1).

198

199 Statistics. Data were assessed for normality using the Anderson-Darling method and tested 

200 accordingly. Chi-square test was used for categorical variables (with adjustment for multiple testing 

201 as appropriate). t-test (paired or independent), Mann-Whitney or Wilcoxon test, with adjustment for 

202 multiple testing as appropriate, were used for continuous variables. ANOVA or Kruskal-Wallis test 

203 was used for comparing multiple groups.
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204 Results

205 Following stimulation with 3 M P4, repetitive [Ca2+]i activity (repetitive spiking or oscillatory 

206 activity) was observed in a sub-population of human sperm, occurrence varying between samples (10-

207 50% of cells). Mean amplitude was 53.2±1.3% of the preceding P4-induced transient (310 oscillations 

208 in 101 cells) and mean frequency was 0.46±0.02 cycles.min-1 (101 cells). 

209 [Ca2+]i oscillations initiate in the flagellum. In order to investigate how repetitive Ca2+ signals are 

210 generated, we first assessed their point of origin and spread within the sperm cell. Images were 

211 captured at 2.5 Hz and regions of interest were analysed in the head, neck region/midpiece and in the 

212 principal piece of the flagellum at points approximately 1/3 (≈15 M; proximal) and 2/3 (≈30 m, 

213 distal) of the distance from midpiece to tip. Examination of traces obtained from the different regions 

214 of interest showed that elevation of [Ca2+]i consistently initiated in the principal piece. Start time of 

215 the [Ca2+]i signal in the proximal and distal flagellum were similar  (P>0.1) but the signals in the neck 

216 and head occurred with a latency of 1.47 ±0.14  and 2.21 ±0.20 s respectively, compared to the 

217 proximal flagellum (P<0.001; 21 cells; Wilcoxon; fig 1a,b, video 1, fig S2a). Latency of signal spread 

218 from the principal piece to the head showed no dependence on the order of occurrence in the 

219 oscillation series (first 4 oscillations, P>0.8; Kruskal-Wallis with post hoc comparison). For 

220 comparison, we also examined the preceding P4-induced [Ca2+]i transient. The transient initiated in 

221 the principal piece with latencies to the neck and head of 1.40± 0.34 s (n=18 cells; p>0.8 compared to 

222 oscillations) and 2.30± 0.35 s respectively (n=21 cells; P>0.8 compared to oscillations; fig 1b, video 

223 2; fig S2a). 

224 Signal amplitude (increment in F calculated as the difference between the F values at the signal 

225 peak and immediately before onset of the signal) was also assessed at the four regions of interest. 

226 Fluorescence increments in the head and neck were significantly greater than in the flagellum 

227 (P=2.2*10-5; ANOVA with Tukey post hoc comparison; fig 1c). Equivalent analysis of the amplitude 

228 of the initial P4-induced [Ca2+]i transient showed that though the mean amplitude was slightly larger 
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229 at the head and neck than in the flagellum, there was no significant difference between regions within 

230 the cell (P=0.67, ANOVA; fig 1d)

231 Since [Ca2+]i oscillations originate in the principal piece of the flagellum, the most likely source for 

232 this initial Ca2+ increase is influx at the plasma membrane. In previous studies we showed that [Ca2+]i 

233 oscillations are rapidly terminated in saline with no added Ca2+ and buffered with 2 mM EGTA, 

234 suggesting that mobilisation of stored Ca2+ cannot sustain oscillations in the absence of Ca2+ influx. 

235 However, when Ca2+ was simply omitted from the saline (‘Ca2+ free’ - [Ca2+] <5 M), oscillations 

236 persisted and were often enlarged, primarily because the troughs between peaks approached more 

237 nearly to resting [Ca2+]i (Harper, et al., 2004). Since EGTA buffered saline may cause rapid depletion 

238 of stored Ca2+ (Bedu-Addo et al., 2007), the inhibitory effect of EGTA-buffered saline on oscillations 

239 cannot be considered proof that Ca2+-influx is essential, leaving the possibility that repeated 

240 mobilisation of stored Ca2+ (and consequent oscillation of [Ca2+]i) can occur under conditions of 

241 greatly reduced Ca2+ influx. To investigate this further we observed the effect on oscillations of 

242 prolonged superfusion with ‘Ca2+-free’ saline. As described previously (Harper, et al., 2004), after a 

243 brief hiatus, oscillations persisted in cells superfused with ‘Ca2+ free’ saline. However, after a further 

244 5-15 min both rise and decay time of oscillations slowed and [Ca2+]i eventually settled at a level close 

245 to or below the initial resting value (fig 1e blue shading; mean time to arrest=12.3±0.5 min; max 

246 =22.7 min; n=51 cells from 3 experiments). Subsequent addition of EGTA caused an immediate fall 

247 in [Ca2+]i to very low levels (fluo4 fluorescence was 30-80% below the initial resting value; fig 1e 

248 grey shading). As reported previously, [Ca2+]i did not recover when EGTA was removed (Bedu-Addo 

249 et al., 2007, Harper, et al., 2004) but upon return to standard sEBSS [Ca2+]i immediately rose to a 

250 plateau level that exceeded the amplitude of the P4-induced transient (20-200% greater). 

251 Hyperpolarisation of Vm inhibits [Ca2+]i oscillations. Since [Ca2+]i oscillations originate in the 

252 flagellum, where Ca2+ signals will be generated by influx at the plasma membrane, we investigated 

253 the possible involvement of Vm in regulating membrane Ca2+ channels, by using the K+ ionophore 

254 valinomycin (1 M) to ‘clamp’ the membrane at EK (≈-78 mV assuming [K+]i=120 mM). 

255 Valinomycin uncouples mitochondria (e.g. Felber and Brand, 1982, Salvioli, et al., 2000) and can 
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256 cause a small increase in [Ca2+]i in human sperm, but we have shown previously that mitochondrial 

257 uncouplers do not inhibit generation of [Ca2+]i oscillations in human sperm (Harper, et al., 2004, 

258 Machado-Oliveira, et al., 2008). We first assessed the efficacy of valinomycin by directly observing 

259 Vm of cells held in whole cell current clamp. In cells bathed in standard sEBSS ([K+]=5.4 mM), mean 

260 Vm of dialysed cells (1 min after breakthrough into whole cell recording mode) was -42.7 ±3.7 mV 

261 (n=6). Upon exposure to valinomycin, Vm rapidly hyperpolarised (fig 2a), settling at -72.5 ±1.6 mV 

262 within ≈2 min (fig 2). Subsequent change to valinomycin saline containing 100 mM K+ induced a 

263 rapid (within 1 min) shift to a stable value of -9.0±1.5 mV, which could be reversed by return to 

264 standard saline (fig 2a). These values fall close to those for EK predicted by the Nernst equation (-76.8 

265 mV and -3.3 mV) for the known intra- and extracellular K+ concentrations (fig S3).

266 When cells bathed in standard (5.4 mM K+) saline were exposed to valinomycin we saw a small, 

267 sustained increase in [Ca2+]i, as observed previously (Fraire-Zamora and Gonzalez-Martinez, 2004, 

268 Linares-Hernandez, et al., 1998). Subsequent application of 3 M P4 induced a [Ca2+]i transient 

269 similar to that observed in parallel controls without valinomycin pretreatment (fig 3a,b; p=0.95 n=8; 

270 paired t), indicating that this saturating dose of P4 can effectively gate CatSper in cells clamped to ≈-

271 75 mV. However, following the initial transient, the occurrence of [Ca2+]i oscillations was negligible 

272 until washout of valinomycin, upon which many cells became active, indicating that oscillations, 

273 unlike the initial transient, may be inhibited by hyperpolarisation of Vm (fig 3c). To further assess this 

274 effect we reversed the order of treatment, first stimulating cells with P4 to induce an ‘oscillating’ sub-

275 population (activity with amplitude ≥20% of the preceding P4-induced transient), then exposing the 

276 cells to valinomycin in the continued presence of P4. Superfusion with 1 M valinomycin rapidly 

277 suppressed activity (fig 4a, video 3, fig S2b), oscillations persisting in only 18.3% of the oscillating 

278 sub-population (47/257 cells in 16 experiments) after hyperpolarisation of Vm, compared to 99% 

279 (147/149) in control experiments (fig 5a; p=5*10-55; chi square). In 7 experiments the valinomycin 

280 was washed off after 15 min exposure and recording was continued for a further 15 min. Of 94 cells 

281 where valinomycin caused arrest of oscillations, 62 (66%) restarted, activity appearing within ≈5 min 

282 of valinomycin washout (fig 4a, video 3, fig S2b). In those cells where activity persisted in the 
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283 presence of valinomycin, both the amplitude and frequency of the [Ca2+]i signals were reduced (fig 

284 4a). To quantify this effect we selected 22 cells (from 3 experiments) and analysed the characteristics 

285 of the oscillations that persisted in the presence of valinomycin. Upon application of valinomycin both 

286 amplitude and frequency of the persisting oscillations were reduced to approximately one third of 

287 their values in the preceding control period (P≤0.0001; Mann-Whitney and paired t respectively; fig 

288 5b,c). 

289 Effect of valinomycin treatment is dependent on EK.  To, assess the importance of hyperpolarisation in 

290 the observed inhibition of [Ca2+]i oscillations by valinomycin, we repeated the experiments, applying 

291 valinomycin in the presence of 25 mM K+ (EK = -39.5 mV with [K+]i=120 mM; similar to the 

292 measured resting potential) and 100 mM K+ (conditions which should fully depolarise Vm; EK = -4.6 

293 mV with [K+]i =120 mM). When co-applied with 25 mM K+ the inhibition by valinomycin was still 

294 observed (video 4, fig S2c) but the effect of significantly ameliorated, almost half of oscillating cells 

295 (58/117 in 3 experiments) remaining active (figs 4b, 5a). When valinomycin was co-applied with 100 

296 mM K+ there was a more marked increase in underlying [Ca2+]i (compare figs 4a and 4c) and the 

297 inhibitory effect on [Ca2+]i oscillations was further reduced, activity persisting in over 75% (86/114) 

298 of oscillating cells (figs 4c, 5a, video 5, fig S2d). Comparison across the three conditions confirmed 

299 that the efficacy of valinomycin in suppressing activity was highly dependent on [K+]o (P=10-25; chi-

300 square).

301 Examination of the characteristics of oscillations in those cells where spontaneous activity persisted in 

302 the presence of valinomycin showed that the effects of treatment on amplitude and (more particularly) 

303 frequency were similarly dependent on the extracellular K+ concentration. As in standard sEBSS, 

304 exposure to valinomycin reduced both the amplitude and frequency of oscillations, but these effects 

305 were dependent on [K+]o ,being ameliorated as EK was shifted to more positive values (fig 4; fig 5b,c; 

306 P=0.003 (Kuskal-Wallis) and P=10-6 (ANOVA) for amplitude and frequency  respectively). When 

307 valinomycin was washed out (combined with a return to standard sEBSS) spontaneous activity was 

308 able to recover. In cells exposed to valinomycin in 25 mM and 100 mM K+ saline, oscillations 

309 restarted in 45/59 (76%) and 12/28 (43%) of previously oscillating cells respectively. Following 
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310 valinomycin/100 mM K+ treatment the delay before activity resumed was noticeably longer 

311 (typically≥15 min; fig 4c).

312

313 Blockade of CatSper reversibly inhibits [Ca2+]i oscillations. CatSper, the primary Ca2+ channel of 

314 human sperm, is voltage sensitive and is localised to the sperm flagellum (Lishko, et al., 2011). To 

315 assess the involvement of CatSper in generation of oscillations, we tested the effect of RU1968, a 

316 ‘specific’ blocker which does not affect pHi and has limited effects on sperm K+ conductance 

317 (Rennhack, et al., 2018). Sperm were first exposed to P4 to establish oscillations in a sub-population 

318 of cells, then RU1968 was applied, in the continued presence of P4.  

319 At an estimated concentration of 11 M (see methods), spontaneous activity was rapidly and 

320 completely inhibited in the great majority of oscillating cells, only 6.9% of the oscillating cells 

321 remaining active (4/58 cells in 3 experiments; fig.6a, 7a, video 6, fig S2e), compared to 98.9% (88/89) 

322 in parallel controls exposed to 0.3% DMSO (p=10-29; Chi-square). It was noticeable that, unlike the 

323 effect of valinomycin, background [Ca2+]i noise or ‘ripples’ (amplitude <20%) were also largely 

324 suppressed (compare figs 4a and 6a). Each of the 4 cells in which activity persisted generated a single 

325 transient during the 10 min period of exposure to RU1968. Amplitude of these [Ca2+]i signals varied 

326 from 20-100% of those recorded during the preceding control period. Upon washout of the drug 

327 (exposure time=10 min), spontaneous activity recovered in 80% (43/54) of the cells where treatment 

328 had caused arrest of activity.

329 Exposure to an estimated concentration of 4.8 M RU1968 caused a transient increase in [Ca2+]i in all 

330 cells, which varied greatly in amplitude and decayed within 3-5 min (fig 6b, video , fig S2f; compare 

331 to 11 M [figs 6a, S2e] where immediate suppression of activity occurs). Oscillations persisted in 

332 64.3% of the cells that were previously active (83/129 cells, 3 experiments; fig 6b, 7a; P=8*10-14 

333 compared to 11 uM) whereas in parallel control experiments oscillations persisted in 98.3% of cells 

334 (59/60 cells; p=10-6; Chi-square). In those cells that continued to generate spontaneous activity the 

335 characteristics of the [Ca2+]i signals were clearly modified (fig 6b, video 7, fig S2f). The frequency of 
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336 persisting oscillations was reduced by almost 50% (fig 7b; P=<10-16; Mann-Whitney) and both the 

337 amplitude of oscillations (fig 7c) and their duration (fig 7d) were significantly increased compared to 

338 the preceding control period (P=1.5*10-5, paired t and P<10-16, Mann-Whitney, respectively). When 

339 RU1968 was washed out of the recording chamber spontaneous activity recovered in 72% (33/46) of 

340 the cells where oscillations had been inhibited (P=0.73 compared to 11 M; chi square). In 

341 approximately half (20/38) of those cells where P4 treatment had failed to induce significant 

342 oscillations (defined as ≥20% of the preceding P4-induced transient; see methods), the transient 

343 [Ca2+]i increase that occurred upon application of 4.8 M RU1968 was followed by second large, 

344 slow oscillation (fig S4). Repetitive activity persisted after washout of RU1968 in 8 of these cells. 

345 The KSper blocker quinidine inhibits [Ca2+]i oscillations. Quinidine (300 M) blocked KSper 

346 currents in human sperm by ≈90% (Mansell, et al., 2014) and potently blocks mouse Slo3 (KSper) 

347 channels (Tang et al, 2010). Application of 300 M quinidine to cells in which oscillations had 

348 previously been established by exposure to P4 resulted in complete block of [Ca2+]i activity (36/36 

349 cells; fig 6c; P=1.7*10-30 compared to control, chi-square). Similarly to treatment with RU1968, 

350 [Ca2+]i noise or ‘ripples’ (amplitude <20%) were also suppressed in most cells (fig 6c). Upon washout 

351 (exposure time=10 min) there was an immediate [Ca2+]i spike, even in those cells in which oscillations 

352 were not previously observed, but restart of oscillations occurred in only 6/36 cells (16.7%), 

353 significantly lower than the responses seen under any other of the treatments tested (P<0.05; chi 

354 square).

355

356
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357 Discussion

358 We and others have reported the occurrence of repetitive [Ca2+]i elevations, in human sperm, that 

359 contribute to regulation of key sperm functions (Bedu-Addo et al., 2007, Harper, et al., 2004, 

360 Machado-Oliveira, et al., 2008, Mata-Martinez, et al., 2018, Sanchez-Cardenas, et al., 2014). Here we 

361 have further investigated the mechanisms by which these signals are generated.  

362 Oscillations originate in the flagellum. Consistent with previous reports (Servin-Vences, et al., 2012; 

363 Alasmari, et al., 2013), the initial P4-induced [Ca2+]i transient initiated in the flagellar principal piece. 

364 Oscillations behaved similarly, propagating from the flagellum to the head/neck region with kinetics 

365 similar to those of the initial transient. Oscillation amplitude measured at the sperm head/neck, was 

366 significantly greater than at the flagellum. This observation is consistent with mobilisation of a 

367 secondary Ca2+ source in this region (Bedu-Addo et al., 2007; Olson, et al., 2010, Publicover, 2017). 

368 However, this must be interpreted cautiously. A non-ratiometric dye was used in this study and 

369 apparent regional variation in the normalised responses might be due to other factors, such as 

370 differences in resting [Ca2+]i between flagellum and sperm head.

371 Oscillations are dependent on Vm. Manupulation of Vm with valinomycin, (fig 2), had no effect on 

372 the P4-induced [Ca2+]i transient, possibly because of the saturating concentration of P4 used in this 

373 study. In contrast, oscillations were strongly suppressed by valinomycin-induced hyperpolarisation. 

374 This inhibition was ameliorated when Vm was set to more +ve potentials. If fluctuation of Vm plays a 

375 role in P4-induced [Ca2+]i oscillation (see below), limited cyclic regulation of Vm must persist in 

376 these cells, despite the presence of valinomycin. We conclude that initiation of oscillations in the 

377 flagellar principal piece is regulated by or sensitive to Vm.  

378 Blockade of CatSper and KSper inhibits oscillations. Since [Ca2+]i oscillations require extracellular 

379 Ca2+ (fig. 1e) we investigated the importance of CatSper. The CatSper blocker RU1968 (IC50 ≈5 M) 

380 dose-dependently suppressed [Ca2+]i oscillations. Though the drug also inibits Slo3, this action is 15-

381 fold less potent than CatSper block (Rennhack, et al., 2018). The effects of RU1968 reported here 

382 (particularly the lower dose estimated at 4.8 M) will reflect primarily its action on CatSper and we 

Page 17 of 42

https://academic.oup.com/humrep

Draft Manuscript Submitted to Human Reproduction for Peer Review



17

383 therefore conclude that initiation of oscillations in the flagellum involves CatSper-mediated Ca2+-

384 influx. Intriguingly, where oscillations persisted in the presence of RU1968, their frequency was 

385 reduced but amplitude and duration were significantly increased. This may reflect resetting of the 

386 ‘oscillator’ in the flagellum due to reduced currents through CatSper, or might even be oscillatory 

387 behaviour of Ca2+ stores persisting after inhibition of Ca2+ influx. 

388 Quinidine (300 M), which blocks human KSper (Brenker, et al., 2014; Mansell, et al., 2014), was 

389 strikingly effective in arresting [Ca2+]i oscillations. However, in addition to its action on KSper, 300 

390 M quinidine blocks CatSper currents (Zeng et al., 2011; Mansell, et al., 2014) an effect that might 

391 underlie our observations. However, it is noteworthy that recovery of oscillations following washout 

392 of RU1968 was rapid (80% of silenced cells recovered) whereas no recovery was seen with quinidine 

393 (compare figs 6a and 6c). In whole cell patch clamp recordings the effects of quinidine on CatSper 

394 currents washed out rapidly (30 s) whereas KSper  recovered more slowly (3-4 min; Mansell, et al., 

395 2014), which might underlie this observation.

396 Generation of [Ca2+]i oscillations in human sperm. The data presented here do not allow us to 

397 develop a clear model for the mechanism underlying the generation of repetitive [Ca2+]i activity in the 

398 flagellum of P4-stimulated human sperm. However, since (i) their generation is dependent on Vm and 

399 requires activity of CatSper  and probably KSper, (ii) CatSper opening is increased by depolarisation 

400 of Vm, (iii) KSper, which regulates Vm, is stimulated by elevated [Ca2+]i (Brenker, et al., 2014, 

401 Brown, et al., 2016; Mannowetz, et al., 2013), oscillations could involve a feedback loop in which 

402 [Ca2+]i is elevated during Vm depolarisation, leading to activation of KSper and consequent 

403 repolarisation. Such Vm-regulated, cyclic  Ca2+ influx has been described in a diverse range of cell 

404 types, occurring either as periodic action potential bursts  (Cornelisse, et al., 2001, Gorman and 

405 Thomas, 1978, Schlegel, et al., 1987) or repeated depolarising excursions of Vm (Ferrier, et al., 1987, 

406 Lopez, et al., 2014). However, some aspects of P4-induced oscillations reported here and elsewhere 

407 appear inconsistent with this simple model and require further investigation. Firstly, in the presence of 

408 valinomycin any effects of KSper currents on Vm will be damped, both because of the increased 

409 constitutive K+ ‘leak’ and because valinomycin sets Vm at or close to EK (figure S3). Though most 
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410 oscillations are inhibited, some cells, particularly with [K+]o = 100 mM, continue to generate small 

411 [Ca2+]i oscillations. Secondly, we observed previously that following stimulation with P4, ≈50% of 

412 oscillating cells continue to oscillate (or restart) after P4 washout (Harper et al, 2004), even though 

413 P4-withdrawal will cause a +ve shift in voltage sensitivity of CatSper (Lishko, et al., 2011). 

414 Other potential causes of/contributors to generation of [Ca2+]i oscillations include regulation of 

415 CatSper activity by oscillation of pHi.  Feedback mechanisms involving fluctuations of Vm and pHi 

416 have been proposed to underlie the trains of [Ca2+]i spikes that occur in the flagellum of sea urchin 

417 sperm (Priego-Espinosa, et al., 2020, Wood, et al., 2003). These [Ca2+]i signals, similarly to those 

418 investigated here, initiate in the flagellum and are inhibited by manipulation of Vm, though their 

419 kinetics are strikingly different (Wood, et al., 2003). In human sperm the voltage dependent H+ 

420 channel Hv1 is expressed (Lishko, et al., 2010) and thus depolarisation of Vm might lead indirectly to 

421 CatSper activation via H+ efflux and cytoplasmic alkalinisation (Lishko and Kirichok, 2010). 

422 However, human KSper shows low sensitivity to pHi (Brenker, et al., 2014) and capacitation and 

423 incubation at acid pH (pHo=6.5), conditions which would significantly reduce the value of pHi that 

424 might be achieved upon activation of Hv1, increased both the occurrence (% cells) and size of [Ca2+]i 

425 oscillations in human sperm (Mata-Martinez, et al., 2018).  

426 [Ca2+]i oscillations and fertility. With regard to the potential clinical significance of these 

427 observations, a recent study on cells used for IVF showed that the occurrence of oscillating cells was 

428 low in samples that failed to fertilise. In particular, the proportion of samples where no oscillating 

429 cells were observed was significantly greater in non-fertilising samples than in samples from patients 

430 where fertilisation was successful (Kelly, et al., 2018). This suggests that failure of oscillations 

431 themselves, or of the physiological processes that generate them, may underlie some instances of 

432 idiopathic infertility. Oscillations appear to be involved in regulation of flagellar activity and 

433 acrosome reaction (see introduction) so their failure could well result in a reduced chance of 

434 fertilisation, both in vivo and in IVF. With regard to the underlying physiological mechanisms, 

435 complete loss of CatSper expression or function appears to be rare, even in sperm of subfertile men 

436 (Brown, et al., 2019), but either reduced functional expression of CatSper (Tamburrino, et al., 2015; 
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437 Marchiani, et al., 2017) or impaired regulation of Vm (Brown et al., 2016) might result in failure to 

438 generate [Ca2+]i oscillations. Detection of the occurrence of oscillations as a component of routine 

439 semen assessment clearly is impractical, since they can be observed only by time-lapse fluorescence 

440 imaging, but further studies on their generation, regulation and functional significance may well throw 

441 light on key aspects of the fertilisation process.  
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592 Figure legends

593 Figure 1. Site of initiation and [Ca2+]o-sensitivity of [Ca2+]i oscillations. a) [Ca2+]i oscillation 

594 recorded in the principal piece (black trace) neck (red) and head (grey) of a single sperm. The [Ca2+]i 

595 increase occurs first in the principal piece but signals in the neck and head are larger. Traces show % 

596 increase in fluo4 fluorescence intensity with respect to mean fluorescence before the progesterone 

597 (P4) stimulus ( fluorescence (%)). b) Mean latency of [Ca2+]i responses in the neck (red) and head 

598 (grey) compared to those in the flagellum. Left panel shows mean±SEM (n=17 cells) for [Ca2+]i 

599 oscillations, right panel shows mean±SEM (n=17 cells) for the preceding P4-induced [Ca2+]i 

600 transients. Latencies of both oscillations and transients to the neck and head were similar (P>0.2) but 

601 all significantly exceeded zero (Wilcoxon) ***p<0.001. c) Mean  amplitude ±SEM (n=17 cells) of 

602 [Ca2+]i oscillations recorded in the distal flagellum (black), sperm neck (red) and head (grey) 

603 normalised to amplitude in the proximal flagellum (black). Letters indicate statistically similar 

604 amplitudes. Amplitudes in the head and neck significantly exceeded those in the flagellum P=2.2*10-

605 5; ANOVA with Tukey post hoc comparison. d) Mean  amplitude ±SEM (n=17 cells) of P4-induced 

606 [Ca2+]i transients recorded in the distal flagellum (black), sperm neck (red) and head (grey) 

607 normalised to amplitude in the proximal flagellum (black). Amplitudes did not differ significantly 

608 (P=0.67; ANOVA). e) Responses of 5 individual cells to stimulation with 3 M P4 (arrow), followed 

609 by superfusion with P4-containing ‘Ca2+-free’ saline ([Ca2+]<5 M; blue shading) for 30 min. EGTA-

610 buffered saline (calculated [Ca2+]=2.6*10-10M; grey shading) was then superfused for 10 min before 

611 returning to ‘Ca2+-free’ saline and then to standard sEBSS . Note that oscillations arrest in ‘Ca2+-free’ 

612 saline, before application of EGTA buffer.

613 Figure 2. Valinomycin shifts membrane potential (Vm) to EK. a) Current clamp recording of Vm 

614 in a single sperm. Grey shading shows periods of superfusion with 1 M valinomcyin in standard (5.4 

615 mM K+) saline. Red shading shows period of superfusion with 1 M valinomcyin in depolarising (100 

616 mM K+) saline. b) Recorded membrane potential (mean±SEM) for cells under control conditions 
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617 (black; n=6 cells), exposed to 1 M valinomcyin in standard (5.4 mM K+) saline (grey; n=5 cells) and 

618 exposed to 1 M valinomcyin in depolarising (100 mM K+) saline (red; n=5 cells).

619 Figure 3. Valinomycin does not inhibit the P4-induced [Ca2+]i transient. a) Mean response to 

620 application of 3 M P4 (arrow) in the presence of valinomycin (red trace) and in parallel control 

621 experiments (black trace), n=7 experiments for each condition. Baseline of the valinomycin trace has 

622 been adjusted to facilitate comparison with the control trace. b) Mean amplitude (±SEM) of the 

623 [Ca2+]i transient recorded in the presence of valinomycin (red) and in its absence (black; n=8 

624 experiments for each condition’ P=0.95, paired t). c) Application 1 M valinomycin (grey shading) 

625 causes a small, sustained increase in [Ca2+]i. Subsequent application of 3 M P4 (arrow) induced a 

626 [Ca2+]i transient but oscillations occurred only after washout of valinomycin. Oscillations arrested or 

627 paused upon washout of P4 (upward arrow). Responses of 4 separate cells shown. [K+]o = 5.4 mM 

628 throughout.

629 Figure 4. Effect of valinomycin on [Ca2+]i oscillations. Cells were stimulated with 3 M P4 (arrow) 

630 to induce oscillations then exposed to 1 M valinomycin (shown by grey shading). a) [K+]o = 5.4 

631 mM, (estimated EK=-78.1 mV) . b) during valinomycin exposure [K+]o was increased to 25 mM 

632 (estimated EK=-39.5 mV). c) during valinomycin exposure [K+]o was increased to 100 mM (estimated 

633 EK=-4.6 mV). Each panel shows responses of 5 individual cells.  

634 Figure 5. Effect of valinomycin on [Ca2+]i oscillations depends on [K+]o. a) Proportion of 

635 oscillating cells in which activity was suppressed (shown by black shading) in the presence of 1 M 

636 valinomycin varied with [K+]o (5.4 mM, n=257 cells;  25 mM, n=117 cells and 100 mM, n=114 cells; 

637 P=10-25; chi-square). b) Amplitude of oscillations that persisted in the presence of valinomycin varied 

638 with [K+]o  Bars show mean (±SEM) oscillation amplitude normalised to that during the control 

639 period  (prior to valinomycin treatment, grey). 5.4 mM, n=9 cells; 25 mM, n=22 cells and 100 mM, 

640 n=22 cells. Asterisks indicate significant difference from control period, *** p<0.001, **** p<0.0001 

641 (Paired t or Mann-Whitney). c) Frequency of oscillations that persisted in the presence of valinomycin 

642 varied with [K+]o.  Bars show mean (±SEM) oscillation frequency normalised to that during the 
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643 control period (prior to valinomycin treatment; grey). 5.4 mM, n=9 cells; 25 mM, n=22 cells and 100 

644 mM, n=22 cells. Asterisks indicate significant difference from control period, **** p<0.0001, 

645 (Paired-t or Mann-Whitney).

646 Figure 6. RU1968 and quinidine inhibit [Ca2+]i oscillations. Cells were stimulated with 3 M 

647 progesterone (P4; arrow) to induce oscillations then exposed to RU1968 or quinidine (shown by grey 

648 shading). a) Effect of 11 M RU1968. b) Effect of 4.8 M RU1968. c) Effect of 300 M quinidine. 

649 Each panel shows responses of 5 individual cells.   

650 Figure 7. Effect of RU1968 on incidence and characteristics of [Ca2+]i oscillations. a) Proportion 

651 of cells in which oscillations were inhibited (shown by black shading) in the presence of 4.8 M 

652 (n=129 cells) and 11 M RU1968 (n=58 cells). b) Frequency of oscillations in cells in which activity 

653 persisted in the presence of 4.8 M RU1968 (red) was significantly decreased compared to preceding 

654 (control) period (grey; n=67 cells). c) Amplitude of oscillations in cells in which activity persisted in 

655 the presence of 4.8 M RU1968 (red) was significantly increased compared to preceding (control) 

656 period (grey n=67 cells). d) Duration of oscillations in cells in which activity persisted in the presence 

657 of 4.8 M RU1968 (red) was significantly increased compared to preceding (control) period (grey; 

658 n=73 cells). Asterisks indicate significant difference from control period, ****P<0.0001 (Paired-t or 

659 Mann-Whitney).

660

661 Supplementary figure legends

662 Figure S1. Effective dose of RU1968 is reduced in superfusion experiments. Dose-dependency of 

663 inhibition by RU1968 of the [Ca2+]i transient induced by 3 M progesterone in static chamber 

664 experiments (red, IC50=6.9 M) and imaging experiments in the superfusion chamber (black, 

665 IC50=18.4 ). Points show mean ±SEM of 3 or 4 experiments. Curve fitting and calculation of IC50 

666 were done using https://mycurvefit.com/. Arrows show estimation of effective concentrations applied 

667 in superfusion experiments.
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668

669 Figure S2. Time-fluorescence plots for cells shown in videos 1-7. Arrows indicate time of application 

670 of 3 M progesterone (P4). Panel a shows rising phase of P4-induced [Ca2+]i transient (left ; video 1) 

671 and a subsequent [Ca2+]i oscillation (right ; video 2) in the same cell. Black traces show responses in 

672 proximal flagellum, red traces show responses in head. Amplitudes are scaled (minimum to 

673 maximum) to facilitate comparison of time-course. Panels b, c and d show % increase in fluo4 

674 fluorescence intensity with respect to mean fluorescence before the P4 stimulus ( fluorescence (%)) 

675 for the cells in videos 3, 4 and 5 respectively. Grey shading shows period of exposure to 1 M 

676 valinomycin (panel b), 1 M valinomycin with 25 mM K+ (panel c) and 1 M valinomycin with 100 

677 mM K+ (panel d). Panels e and f show % increase in fluo4 fluorescence intensity with respect to 

678 mean fluorescence before the P4 stimulus ( fluorescence (%)) for the cells in videos 6 and 7 

679 respectively. Grey shading shows period of exposure to 11 M RU1968 (panel e) and 4.8 M RU1968 

680 (panel f).

681

682 Figure S3. Valinomycin sets Vm at EK. Calculated EK and the directly measured Vm (zero current 

683 clamp) are plotted against log [K+]o. Black line shows relationship of calculated EK to [K+]o, red dotted 

684 line shows mean Vm (±SEM) in the presence of 5.4 mM and 100 mM [K+]o.

685

686 Figure S4. RU1968 induces large, slow oscillation in some cells. Application of 3 M P4 (arrow) 

687 induced a [Ca2+]i transient but no oscillations were seen in these cells. However, upon application of 

688 4.8 M RU1968 a large, slow [Ca2+]i oscillation was induced.  Responses of 4 separate cells shown. 

689 [K+]o = 5.4 mM throughout.

690

691 Video file legends
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692 Video 1. [Ca2+]i oscillation. 151 frames recorded at 2.5 Hz. 10 Hz playback. [Ca2+]i elevation in the 

693 flagellum precedes that in the head.  Original image size (height*width) = 37.6*10.45 um

694 Video 2. 3 M progesterone (P4)-induced [Ca2+]i transient, same cell as video 1. 151 frames recorded 

695 at 2.5 Hz. 10 Hz playback. P4 was applied at ≈2 s. [Ca2+]i elevation in the flagellum precedes that in 

696 the head.  Original image size = 37.6*10.45 um

697 Video 3. Cell stimulated with P4 (5 min) then co-exposed to 1 M valinomycin (25-45 min). 840 

698 frames recorded at 0.2 Hz. 20 Hz playback. Original image size = 13.2*22.4 uM

699 Video 4. Cell stimulated with P4 (5 min) then co-exposed to 1 M valinomycin and 25 mM K+ (25-45 

700 min). 840 frames recorded at 0.2 Hz. 20 Hz playback. Original image size = 24.4*16.8 uM

701 Video 5. Cell stimulated with P4 (5 min) then co-exposed to 1 M valinomycin and 100 mM K+ (25-

702 45 min). 840 frames recorded at 0.2 Hz. 20 Hz playback. Original image size = 15.2*23.6 uM

703 Video 6. Cell stimulated with P4 (5 min) then co-exposed to 11 M RU1968 (16-26 min). 481 frames 

704 recorded at 0.2 Hz. 20 Hz playback. Original image size = 12.8*24 uM

705 Video 7. Cell stimulated with P4 (3.3 min) then co-exposed to 4.8 M RU1968 (14-24 min). 433 

706 frames recorded at 0.2 Hz. 20 Hz playback. Original image size = 16.8*16.8 uM

707
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Table S1. Characteristics of semen samples and swim-up prepared samples

 semen swim up

 
volume 

(ml)
concentration 

(106/ml)
total cells 

(x106)
total cells 

(x10-6)
 total 

motile (%)
progressive 
motile (%)

median 3.00 94.30 255.20 45.00 90 68
5th centile 2.20 30.75 92.75 8.40 66 20
n 120 120 120 120 120 120
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