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Abstract: Time-integrated CP asymmetries in D0 decays to the final states K−K+ and

π−π+ are measured using proton-proton collisions corresponding to 3 fb−1 of integrated

luminosity collected at centre-of-mass energies of 7 TeV and 8 TeV. The D0 mesons are

produced in semileptonic b-hadron decays, where the charge of the accompanying muon is

used to determine the initial flavour of the charm meson. The difference in CP asymmetries

between the two final states is measured to be

∆ACP = ACP (K−K+)−ACP (π−π+) = (+0.14± 0.16 (stat)± 0.08 (syst))% .

A measurement of ACP (K−K+) is obtained assuming negligible CP violation in charm

mixing and in Cabibbo-favoured D decays. It is found to be

ACP (K−K+) = (−0.06± 0.15 (stat)± 0.10 (syst))% ,

where the correlation coefficient between ∆ACP and ACP (K−K+) is ρ = 0.28. By com-

bining these results, the CP asymmetry in the D0 → π−π+ channel is ACP (π−π+) =

(−0.20± 0.19 (stat)± 0.10 (syst))%.
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1 Introduction

Decays of charm mesons mediated by the weak interaction provide an attractive testing

ground for physics beyond the Standard Model (SM). Violations of charge-parity (CP )

symmetry are predicted to be small in charm decays, but could be enhanced in the presence

of non-SM physics. Direct CP violation arises when two or more amplitudes with different

weak and strong phases contribute to the same final state. This is possible in singly

Cabibbo-suppressed D0 → K−K+ and D0 → π−π+ decays,1 where significant penguin

contributions can be expected [1]. Under SU(3) flavour symmetry, which is approximately

valid in heavy quark transitions, the direct CP asymmetries in these decays are expected

to have equal magnitudes and opposite sign. For a long time, direct CP violation in these

decays was expected to be below the 10−3 level [2]; however, this prediction has been

revisited recently and asymmetries at a few times 10−3 cannot be excluded within the

1The inclusion of charge-conjugate processes is implied throughout this paper, unless explicitly stated

otherwise.
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SM [3–6]. Indirect CP violation, occurring through D0 mixing, is expected to be negligible

at the current experimental precision [2, 7] and measured to be consistent with zero [8].

To date, CP violation in charm decays has not been established experimentally.

In this paper the CP asymmetries in D0→ K−K+ and D0→ π−π+ decays are mea-

sured in semileptonic b-hadron decays using the muon charge to identify (tag) the flavour

of the D0 meson at production. This time-integrated CP asymmetry receives contributions

from both direct and indirect CP violation. The difference of these asymmetries (∆ACP )

was measured at LHCb [9–11]. Assuming indirect CP violation to be independent of the

decay mode [2, 7], only the effect of direct CP violation remains in ∆ACP . This paper su-

persedes the previous ∆ACP result from ref. [11] that was based on one third of the data.

In this paper the individual CP asymmetries in D0 → π−π+ and D0 → K−K+ decays

are also measured, using samples of Cabibbo-favoured D0 and D+ decays to correct for

spurious asymmetries due to detection and production effects. Individual CP asymmetries

and their difference have been measured by several other experiments [12–16], all using D0

mesons tagged by the charge of the pion from D∗+ → D0π+ decays. The world average

values [8] are ACP (K−K+) = (−0.15 ± 0.14)% and ACP (π−π+) = (0.18 ± 0.15)% for the

individual asymmetries and ∆ACP = (−0.33± 0.12)% for the difference.

2 Method and formalism

Our procedure to measure the difference in CP asymmetries, ∆ACP , follows ref. [11]. The

observed (raw) asymmetry for a D meson decay rate to a final state f is defined as

Araw ≡
N(D → f)−N(D → f)

N(D → f) +N(D → f)
, (2.1)

where N is the number of observed decays, D is either a D+ or D0 meson, and D is either a

D− or D0 meson. For decays to a CP eigenstate, where f = f , the initial flavour of the D0

meson is tagged by the charge of the accompanying muon in the semileptonic decay B →
D0µ−νµX, where X denotes possible other particles produced in the decay. Neglecting

third-order terms in the asymmetries, the raw asymmetry in the decays D0→ K−K+ and

D0→ π−π+ is

Araw = ACP +AD(µ−) +AP (B) , (2.2)

where AD(µ−) is any charge-dependent asymmetry in muon reconstruction efficiency and

AP (B) is the asymmetry between the numbers of b and b hadrons (denoted as B and B,

respectively) produced in the LHCb acceptance, which includes possible CP violation in B0

mixing. The production and detection asymmetries are common to the D0→ K−K+ and

D0→ π−π+ decay modes, so they cancel in the difference of the raw asymmetries, giving

∆ACP = Araw(K−K+)−Araw(π−π+) = ACP (K−K+)−ACP (π−π+) . (2.3)

The production and muon detection asymmetry in eq. (2.2) can also be removed using

the Cabibbo-favoured D0→ K−π+ decay mode in B → D0µ−νµX decays. In this decay,

CP violation can be neglected as it is expected to be significantly suppressed compared to

– 2 –



J
H
E
P
0
7
(
2
0
1
4
)
0
4
1

our sensitivity for measuring CP violation in D0→ K−K+ and D0→ π−π+ decays. In the

reconstruction of the K−π+ final state there is an instrumental asymmetry, AD(K−π+),

due to the different interaction cross section of positively and negatively charged kaons in

the detector material. Also, other detector-related effects, for example due to the accep-

tance, selection and detection inefficiencies, can contribute to this detection asymmetry.

The raw asymmetry in this decay mode is then

Araw(K−π+) = AD(µ−) +AP (B) +AD(K−π+) . (2.4)

The detection asymmetry AD(K−π+) of the final state K−π+ is obtained from D+ decays

produced directly in pp collisions (so-called prompt D+ decays). Two decay modes are

used, D+ → K−π+π+ and D+ → K0π+ with K0 → π+π−. The raw asymmetry of

D+→ K−π+π+ decays is

Araw(K−π+π+) = AP (D+) +AD(K−π+) +AD(π+) , (2.5)

where AP (D+) is the production asymmetry of prompt D+ mesons and AD(π+) is the

detection asymmetry of the other charged pion. The raw asymmetry of D+ → K0π+

decays is

Araw(K0π+) = AP (D+) +AD(π+)−AD(K0) , (2.6)

where AD(K0) is the detection asymmetry of the decay K0→ π+π−, which is discussed

later. Taking the difference between eqs. (2.5) and (2.6), AD(K−π+) is obtained as

AD(K−π+) = Araw(K−π+π+)−Araw(K0π+)−AD(K0) . (2.7)

This method assumes negligible CP violation in these Cabibbo-favoured D+ decay modes.

By combining eqs. (2.2) and (2.4), the CP asymmetry in the D0→ K−K+ decay becomes

ACP (K−K+) = Araw(K−K+)−Araw(K−π+) +AD(K−π+) , (2.8)

where AD(K−π+) is taken from eq. (2.7). The CP asymmetry in the D0→ π−π+ decay is

determined from the difference between the measurements of ACP (K−K+) and ∆ACP .

3 Detector

The LHCb detector [17] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector

includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-

rounding the pp interaction region, a large-area silicon-strip detector located upstream of

a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip

detectors and straw drift tubes placed downstream of the magnet. The polarity of the

magnetic field is regularly reversed during data taking. The combined tracking system

provides a momentum measurement with relative uncertainty that varies from 0.4% at

low momentum, p, to 0.6% at 100 GeV/c, and impact parameter resolution of 20µm for

charged particles with large transverse momentum, pT. Different types of charged hadrons

– 3 –
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are distinguished by information from two ring-imaging Cherenkov detectors [18]. Pho-

ton, electron and hadron candidates are identified by a calorimeter system consisting of

scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic

calorimeter. Muons are identified by a system composed of alternating layers of iron and

multiwire proportional chambers. The trigger [19] consists of a hardware stage, based

on information from the calorimeter and muon systems, followed by a two-stage software

stage, that applies a full event reconstruction.

4 Data set and selection

This analysis uses the data set collected by LHCb corresponding to an integrated luminosity

of 3 fb−1. The data in 2011 (1 fb−1) were taken at a centre-of-mass energy of 7TeV and

the data in 2012 (2 fb−1) were taken at a centre-of-mass energy of 8TeV. The fraction of

data collected with up (down) polarity of the magnetic field is 40% (60%) in 2011 and 52%

(48%) in 2012. Charge-dependent detection asymmetries originating from any left-right

asymmetry in the detector change sign when the field polarity is reversed. By design, the

analysis method does not rely on any cancellation due to the regular field reversals, since all

detection asymmetries are already removed in the determination of the CP asymmetries.

This assumption is tested by performing the analysis separately for the two polarities. To

ensure that any residual detection asymmetries cancel, the raw asymmetries are determined

from the arithmetic mean of the results obtained for the two magnet polarities. Similarly,

the analysis is performed separately for the 2011 and 2012 data as detection asymmetries

and production asymmetries change due to different operational conditions.

At the hardware trigger stage, the events in the semileptonic B decay modes are

required to be triggered by the muon system. The muon transverse momentum must be

larger than 1.64 GeV/c for the 2011 data and larger than 1.76 GeV/c for the 2012 data. In

the software trigger, the muon candidate is first required to have pT > 1.0 GeV/c and a

large impact parameter. Then, the muon and one or two of the D0 decay products are

required to be consistent with the topological signature of b-hadron decays [19]. Since the

∆ACP measurement has no detection asymmetry coming from the D0 decay products, B

candidates triggered on the presence of a final-state particle with high pT and large impact

parameter are also accepted in the corresponding selection.

The remaining selection of semileptonic B decays reduces the background from prompt

D0 decays to the per-cent level. The residual background consists mainly of combinations

from inclusive b-hadron decays with other particles in the event. The selection is similar to

that in the previous publication [11], except for the looser particle identification require-

ments of the kaon candidates. To reduce the large D0→ K−π+ sample size only half of

the candidates (randomly selected) is kept.

In order to reduce possible biases induced by trigger criteria, the events in the prompt

charm decay modes are selected by the hardware trigger, independently of the presence of

the D+ candidate. In the software trigger, one of the final-state pions is first required to

have pT > 1.6 GeV/c and a large impact parameter to any primary vertex. This ensures that

the distributions of the kaon and the other pion in the D+→ K−π+π+ decay and of the

– 4 –
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K0 meson in the D+→ K0π+ decay are not biased by these trigger requirements. Finally,

an exclusive selection is applied for each D+ decay mode in the last stage of the software

trigger. This is similar to the offline selection, where a secondary vertex is reconstructed

and required to be significantly displaced from any primary vertex.

All particles are required to have p > 2 GeV/c and pT > 250 MeV/c. Additionally, all

tracks in the D+→ K−π+π+ and D+→ K0π+ decays are required to have a large impact

parameter with respect to any primary vertex. The particle identification requirements are

the same as those in the D0→ K−π+ decay mode from semileptonic B decays. The neutral

kaon in the D+→ K0π+ decay is detected in the π+π− final state, which is dominated

by the decay of the K0
S state. When K0

S mesons decay early such that both pions leave

sufficiently many hits in the vertex detector and in the three downstream tracking stations,

the pions can be reconstructed as so-called long tracks. When K0
S mesons decay later such

that both pions do not leave enough hits in the vertex detector, but enough hits in the

rest of the tracking system, the pions can be reconstructed as so-called downstream tracks.

Downstream K0
S candidates are available only in 2012 data, since no dedicated trigger was

available to select these decays in 2011. For this reason, only D+→ K0π+ decays formed

with long K0
S candidates are used for the asymmetry measurement. The downstream

K0
S candidates are used to check the effect of the K0 detection asymmetry. There is no

pT requirement for the pions from downstream K0
S candidates. All K0

S candidates are

required to have a large impact parameter. Both D+ and K0
S candidates are required to

have pT > 1 GeV/c and an accurately reconstructed decay vertex. For the D+→ K−π+π+

decay the scalar pT sum of the D+ daughters is required to be larger than 2.8 GeV/c. The

D+ candidates should have a large impact parameter and significant flight distance from

the primary vertex. Given the large branching fraction of the D+→ K−π+π+ decay, only

one fifth of the available data set (randomly selected) is considered in the following.

To improve the mass resolution, a vertex fit [20] of the D+ decay products is made,

where the D+ candidate is constrained to originate from the corresponding primary vertex.

Additionally, in the decay D+→ K0π+ the mass of the K0 meson is constrained to the

nominal value [21]. The momentum of all particles is corrected [22] to improve the stability

of the mass scale versus data taking period and to reduce the width of the mass distribution.

5 Determination of the asymmetries

In this section the raw asymmetries are obtained from fits to the invariant mass distribu-

tions. These numbers are corrected for effects coming from the K0 detection asymmetry

and wrong flavour tags. The contributions from direct and indirect CP violation are de-

termined and finally the CP asymmetries are calculated.

5.1 Invariant mass distributions

Invariant mass distributions for the D0 and D+ candidates are shown in figure 1 with the

fit results overlaid. For all decay modes the signal is modelled by the sum of two Gaussian

functions with common mean and a power-law tail. For decays to non-CP eigenstates

(i.e., D0→ K−π+, D+→ K−π+π+, D+→ K0π+) different means and average widths are

– 5 –
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Decay sample Signal decays

D0→ π−π+ from B 773 541

D0→ K−K+ from B, ∆ACP selection 2 166 045

D0→ K−K+ from B, ACP (K−K+) selection 1 821 462

D0→ K−π+ from B 9 088 675

Prompt D+→ K−π+π+ 40 782 645

Prompt D+→ K0π+, long K0
S 3 765 530

Prompt D+→ K0π+, downstream K0
S 2 512 615

Table 1. Number of signal decays determined from fits to the invariant mass distributions.

allowed between D and D states, due to a known charge-dependent bias in the measurement

of the momentum. The background is described by an exponential function, with different

slopes for D and D states. An overall asymmetry in the number of background events is

also included in the model. The background from misidentified D0 → K−π+ decays in

the D0→ π−π+ invariant mass distribution is modelled with a single Gaussian function

with the same shape for both muon tags and an additional asymmetry parameter. The

numbers of signal decays determined from fits to the invariant mass distributions are given

in table 1.

5.2 Differences in kinematic distributions

Production and detection asymmetries depend on the kinematic distributions of the par-

ticles involved. Since the momentum distributions of the particles in the signal and cal-

ibration decay modes are different, small residual production and detection asymmetries

can remain in the calculation of ∆ACP and ACP (K−K+). This effect is mitigated by as-

signing weights to each candidate such that the kinematic distributions are equalised. For

the measurement of ∆ACP , the D0→ K−K+ candidates are weighted according to the

pT and η values of the D0, which are the kinematic variables showing the most significant

differences. The weights are chosen such that the weighted and background-subtracted

distributions of the D0 and muon candidates agree with the corresponding (unweighted)

distributions in the D0→ π−π+ sample. After weighting, the effective sample size is given

by Neff = (
∑N

i=1wi)
2/(
∑N

i=1w
2
i ), where wi is the weight of candidate i and N the total

number of candidates. Due to the good agreement in the kinematic distributions between

the two decays, this procedure reduces the statistical power of the weighted D0→ K−K+

event sample by only 8%.

For the measurement of ACP (K−K+), additional weighting steps for the D+ calibra-

tion decay modes are needed. In the first step, the D0→ K−π+ candidates are weighted

based on the pT and η values of the D0 meson, such that they agree with the corre-

sponding (unweighted) distributions of the D0 → K−K+ candidates. This step, which

reduces the statistical power of the D0→ K−π+ sample by 3%, ensures the cancellation

of the B production asymmetry and muon detection asymmetry. In the second step, the

– 6 –
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Figure 1. Invariant mass distributions for muon-tagged (a) D0→ K−K+, (b) D0→ π−π+ and

(c) D0→ K−π+ candidates and for prompt (d) D+→ K−π+π+ and (e) D+→ K0π+ candidates.

The results of the fits are overlaid.

D+→ K−π+π+ candidates are weighted according to the pT and η values of both the kaon

and the pion that was not selected by the software trigger. This step equalises the kine-

matic distributions of the K− and π+ to those of the (now weighted) D0→ K−π+ decay

to ensure cancellation of the K−π+ detection asymmetry. The resulting 50% reduction

in statistical power does not contribute to the final uncertainty given the large number of

D+→ K−π+π+ candidates available. In the last step, the D+→ K0π+ candidates are

weighted according to the pT and η values of both the pion and the D+ candidate, such that

– 7 –
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they agree with the corresponding (weighted) distributions of the D+→ K−π+π+ candi-

dates. The last step ensures cancellation of the D+ production asymmetry and detection

asymmetry from the pion that is used in the software trigger and reduces the statistical

power of the D+→ K0π+ sample by 77%.

5.3 K0 asymmetry

An asymmetry in the detection of a K0 to the π+π− final state arises from the combined

effect of CP violation and mixing in the neutral kaon system and the different interaction

rates of K0 and K0 in the detector material. Due to material interactions, a pure K0
L state

can change back into a superposition of K0
L and K0

S states [23]. These regeneration and

CP -violating effects are of the same order and same sign in LHCb. To estimate the total

K0 detection asymmetry, the mixing, CP violation and absorption in material need to be

described coherently. The amplitudes in the K0
L and K0

S basis of an arbitrary neutral kaon

state in matter evolve as [24]

αL(t) = e−i tΣ

[
αL(0) cos (Ωt)− iαL(0)∆λ+ αS(0)∆χ

2Ω
sin (Ωt)

]
, (5.1)

αS(t) = e−i tΣ

[
αS(0) cos (Ωt) + i

αS(0)∆λ− αL(0)∆χ

2Ω
sin (Ωt)

]
, (5.2)

where the constants Ω ≡ 1
2

√
∆λ2 + ∆χ2 and Σ ≡ 1

2(λL + λS + χ + χ̄) are given by the

masses mL,S and decay widths ΓL,S of the K0
L and K0

S states and by the absorption χ (χ̄)

of K0 (K0) states through

∆λ = λL − λS = ∆m− i

2
∆Γ = (mL −mS)− i

2
(ΓL − ΓS) ,

∆χ = χ− χ̄ = −2πN
m

(f − f̄) = −2πN
m

∆f , (5.3)

where N is the scattering density, m the kaon mass, and f and f̄ the forward scattering

amplitudes. The imaginary part of f is related to the total cross section through the optical

theorem σT = (4π/p)Imf . The difference in the interaction cross sections of K0 and K0

depends on the momentum of the kaon and on the number of nucleons, A, in the target

and is obtained from ref. [25],

∆σ = σT (K0)− σT (K0) = 23.2A0.758[p(GeV/c)]−0.614 mb . (5.4)

The phase of ∆f is determined using the phase-power relation [25, 26] to be arg(∆f) =

(−124.7 ± 0.8)◦. The regeneration incorporates two effects [23, 27]. The term Im(∆f)

describes the incoherent regeneration due to absorption and elastic scattering, which is

equivalent to the case of charged kaons. The term Re(∆f) describes the coherent regener-

ation due to dispersion (phase shift) of the K0 and K0 states.

As the neutral kaons are produced in a flavour eigenstate, the initial amplitudes at

t = 0, αL,S(0), need to be written in the K0
L and K0

S basis,

|K0〉, |K0〉 =

√
1 + |ε|2

2

1

1± ε
[
|K0

L〉 ± |K0
S 〉
]
, (5.5)
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Parameter Value

∆m (0.5293± 0.0009)× 1010~ s−1

τS ≡ 1/ΓS (0.8954± 0.0004)× 10−10 s

τL ≡ 1/ΓL (5.116± 0.021)× 10−8 s

m (497.614± 0.024) MeV/c2

arg(∆f) (−124.7± 0.8)◦

|ε| (2.228± 0.011)× 10−3

φ+− ≡ arg ε (43.51± 0.05)◦

Table 2. Values of the parameters used to calculate the K0 asymmetry [21, 25].

where ε describes CP violation in kaon mixing. At a given time, the decay rate into the final

state π+π− is given by |αS(t) + ε αL(t)|2. The values of the parameters used to calculate

the K0 asymmetry are given in table 2.

Using the K0
S and D0 decay positions, the path of the K0

S meson through the detector

is known and the expected K0 asymmetry can be calculated using the formulae above. For

every D+→ K0π+ candidate, the path of the neutral kaon is divided into small steps using

the material model of the LHCb detector. At each step, the amplitudes are updated using

eq. (5.2) starting with either a K0 or K0 as initial state. The expected K0 asymmetry

for a given event is then the asymmetry in the decay rates between the K0 and K0 initial

states. The overall asymmetry is calculated from the expected asymmetry averaged over

all reconstructed D+→ K0π+ candidates.

The measured raw asymmetry in the D+ → K0π+ decay and the effect from the

predicted K0 asymmetry are shown as functions of the K0
S decay time in figure 2. The

measured raw asymmetry receives contributions not only from theK0 detection asymmetry,

but also from the pion tracking asymmetry and D+ production asymmetry. These contribu-

tions are almost independent of the K0
S decay time. Therefore, an overall shift is applied to

the predicted asymmetry to match the data. Assuming a negligible pion detection asymme-

try, this shift agrees well with the D+ production asymmetry of (−0.96±0.26)% measured

on 2011 data [28]. The downward trend coming from the K0 asymmetry is clearly visible,

in particular for downstream K0
S decays. The predicted asymmetry dependence agrees well

with the data, with p-values of 0.81 and 0.31, respectively.

Only K0
S candidates reconstructed with long tracks are used in the ACP (K−K+) mea-

surement. These candidates probe lower K0
S decay times, compared to those reconstructed

with downstream tracks, resulting in a much smaller K0 asymmetry correction. Never-

theless, the effect observed in downstream K0
S decays is used to test the accuracy of the

K0 detection asymmetry model. The measured difference in raw asymmetry between the

samples is (0.49 ± 0.12)%, which is obtained after weighting the long K0
S sample to cor-

rect for differences in the D+ production and pion detection asymmetries. This value

agrees with the expected difference of (0.546 ± 0.027)%, where the uncertainty is domi-

nated by the uncertainty on the amount of detector material. The relative uncertainty of
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(b) Downstream K0
S .

Figure 2. Raw asymmetry in the D+ → K0π+ decay shown for (a) long and (b) downstream

K0
S candidates versus the K0

S decay time in units of its lifetime. The long K0
S candidates are

reconstructed in the full data set, while the downstream K0
S candidates are reconstructed in the

2012 data only. The predicted effect from the K0 asymmetry, −AD(K0), is also shown. An overall

shift is applied to this prediction to account for D+ production and pion detection asymmetries

(note that the unshifted AD(K0) at t = 0 is zero).

the measured difference (25%) is assigned as a systematic uncertainty on the K0 asym-

metry model. The expected K0 asymmetry in the D+ → K0π+ sample with long K0
S

candidates weighted according to the procedure described in section 5.2 is found to be

AD(K0) = (0.054± 0.014 (syst))%.

5.4 Wrong flavour tags

If a D0 meson is combined with a muon that does not originate from the corresponding

semileptonic B decay, the D0 flavour may not be correctly assigned. The probability to

wrongly tag a D0 meson is denoted by ω. This mistag probability dilutes the observed

asymmetry by a factor 1− 2ω. For small ω, the expression of ∆ACP can be written as

∆ACP = (1 + 2ω)[Araw(K−K+)−Araw(π−π+)] . (5.6)

The mistag probability only affects the semileptonic decay modes as the flavour of the

D+ reconstruction is unambiguous. In the reconstruction of the D0 → K−π+ decay,

wrong-sign decays coming from doubly Cabibbo-suppressed D0 → K+π− decays and mixed

D0 → D0→ K+π− decays are included. Hence, the calculation of the CP asymmetry of

the D0→ K−K+ decay is

ACP (K−K+) = (1 + 2ω)[Araw(K−K+)−Araw(K−π+)] + (1− 2R)AD(K−π+) , (5.7)

where R is the ratio of branching fractions of wrong-sign D0 → K+π− decays over right-

sign D0→ K−π+ decays.

TheD0→ K−π+ sample from semileptonic B decays is also used to estimate the mistag

probability. The final state, either K+π− or K−π+, almost unambiguously determines the

flavour of the D0 meson, since the contamination from wrong-sign decays is only R =
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(0.389± 0.003)% [29]. After correcting for this wrong-sign fraction, the mistag probability

is found to be ω = (0.988±0.006)% for the ∆ACP measurement and ω = (0.791±0.006)%

for the ACP (K−K+) measurement. The small difference between these numbers is due to

more stringent trigger criteria in the latter, resulting in different kinematic distributions

for the two selections. As a consistency check, the mistag probability is obtained in all

three semileptonic samples by searching for an additional pion from a D∗+ → D0π+ decay

and comparing the charge of this pion with that of the muon. The mistag probabilities

are found to be in good agreement with an average value of ω = (0.985 ± 0.017)% for

the ∆ACP measurement and of ω = (0.803± 0.019)% for the ACP (K−K+) measurement.

Since the dilution effect from such a small ω value results in tiny corrections to ∆ACP
and ACP (K−K+), the uncertainty in this number is neglected. A small difference of

∆ω = (0.028 ± 0.011)% is observed between the probabilities to wrongly tag D0 and D0

mesons. Although any non-zero value is expected to cancel in the calculation of ∆ACP
and ACP (K−K+), the full difference is conservatively taken as a systematic uncertainty.

5.5 Average decay times

The time-integrated CP asymmetry has contributions from direct and indirect CP violation,

depending on the average decay time, 〈t〉, of the D0 mesons in the sample as [2]

ACP ≈ adir
CP −AΓ

〈t〉
τ
, (5.8)

where adir
CP is the direct CP violation term, τ the D0 lifetime, and AΓ a measure of indirect

CP violation. The world-average value of AΓ in singly Cabibbo-suppressed D0 decays is

(−0.014 ± 0.052)% [8]. Assuming that this quantity is the same for D0 → K−K+ and

D0→ π−π+ decays, the sensitivity of ∆ACP to indirect CP violation is introduced by the

difference in the average D0 decay times between the two decay modes. A complete discus-

sion is given in the previous publication [11] and the same procedure is adopted here. In this

procedure, the average decay time of the signal in each sample is determined by subtract-

ing the decay time distributions of background events using the sPlot technique [30], and

by correcting for decay time resolution effects. For the ∆ACP measurement, the average

decay times are found to be

〈t〉 /τ(K−K+) = 1.082± 0.001 (stat)± 0.004 (syst) ,

〈t〉 /τ(π−π+) = 1.068± 0.001 (stat)± 0.004 (syst) .

The small difference between these numbers (0.014± 0.004) implies that ∆ACP = ∆adir
CP is

an excellent approximation. For the ACP (K−K+) measurement, the average decay time

is found to be

〈t〉 /τ(K−K+) = 1.051± 0.001 (stat)± 0.004 (syst) .

5.6 CP asymmetry measurements

The raw asymmetries are determined with likelihood fits to the binned D0 and D+ mass

distributions using the mass models and event weights as described in sections 5.1 and 5.2.
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Magnet up Magnet down Mean

Araw(K−π+π+) −1.969± 0.033 −1.672± 0.032 −1.827± 0.023

Araw(K0π+) −0.94± 0.17 −0.51± 0.16 −0.71± 0.12

AD(K−π+) −1.08± 0.17 −1.22± 0.16 −1.17± 0.12

Table 3. Asymmetries (in %) entering the calculation of the K−π+ detection asymmetry for the

two magnet polarities, and for the mean value. The correction for the K0 asymmetry is applied in

the bottom row. The mean values in the last column are obtained first by taking the arithmetic

average over the magnet polarities and then by taking the weighted averages of the 2011 and 2012

data sets. The uncertainties are statistical only.
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Figure 3. Measured K−π+ detection asymmetry as a function of the kaon momentum. The shaded

band indicates the average asymmetry integrated over the bins. There is a correlation between the

data points due to the overlap between the D+→ K0π+ samples used for each bin.

The fits are done separately for the 2011 and 2012 data sets and for the two magnet

polarities. For each data set the mean value of the raw asymmetry is the arithmetic

average of the fit results for the two magnet polarities. The final raw asymmetry is then

the statistically weighted average over the full data set. The derivation of the K−π+

detection asymmetry using prompt D+ → K−π+π+ and D+ → K0π+ decays is shown

in table 3. The measured asymmetry, AD(K−π+) = (−1.17 ± 0.12)%, is dominated by

the different interaction cross sections of K− and K+ mesons in matter. Figure 3 shows

the detection asymmetry as a function of the kaon momentum. As expected, the kaon

interaction asymmetry decreases with kaon momentum.

For illustration, figure 4 shows the raw asymmetries for D0→ K−K+ and D0→ π−π+

candidates as functions of the invariant mass. The raw asymmetry in both decay modes

is slightly negative. The derivation of ∆ACP and ACP (K−K+) from the raw asymmetries

are shown in tables 4 and 5. There is a statistical correlation ρ = 0.23 between the values

of ∆ACP and ACP (K−K+) as they both use candidates in the D0→ K−K+ sample.
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Figure 4. Raw asymmetry, without background subtraction, as a function of the invariant mass

for (a) the D0→ K−K+ candidates and (b) the D0→ π−π+ candidates for the ∆ACP selection.

The result from the fit is overlaid.

Magnet up Magnet down Mean

Araw(K−K+) −0.46± 0.11 −0.43± 0.11 −0.44± 0.08

Araw(π−π+) −0.45± 0.20 −0.66± 0.19 −0.58± 0.14

∆ACP −0.01± 0.23 +0.24± 0.22 +0.14± 0.16

Table 4. Asymmetries (in %) used in the calculation of ∆ACP for the two magnet polarities. The

values for ∆ACP are corrected for the mistag probability. The mean values in the last column are

obtained first by taking the arithmetic average over the magnet polarities and then by taking the

weighted averages of the 2011 and 2012 data sets. The uncertainties are statistical only.

Magnet up Magnet down Mean

Araw(K−K+) −0.45± 0.12 −0.41± 0.12 −0.43± 0.08

Araw(K−π+) −1.41± 0.05 −1.59± 0.05 −1.51± 0.04

AD(K−π+) −1.08± 0.17 −1.22± 0.16 −1.17± 0.12

ACP (K−K+) −0.09± 0.21 −0.01± 0.21 −0.06± 0.15

Table 5. Asymmetries (in %) used in the calculation of ACP (K−K+) for the two magnet polarities.

The values for ACP (K−K+) are corrected for the mistag probability. The mean values in the last

column are obtained first by taking the arithmetic average over the magnet polarities and then by

taking the weighted averages of the 2011 and 2012 data sets. The uncertainties are statistical only.

6 Systematic uncertainties

Systematic shifts in the observed CP asymmetries can arise from non-cancellation of pro-

duction and detection asymmetries, misreconstruction of the final state, and imperfect

modelling of the background. The contributions to the systematic uncertainties in ∆ACP
and ACP (K−K+) are described below.
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The fractions of B0 and B+ decays in the three semileptonic B samples can be slightly

different. Assuming that there is a difference in the B0 and B+ production asymmetries,

a residual production asymmetry can remain in ∆ACP and ACP (K−K+). As in the

previous publication [11], a systematic uncertainty of 0.02% is assigned to both ∆ACP
and ACP (K−K+). Due to B0 oscillations, the observed B production asymmetry depends

on the decay-time acceptance of the reconstructed B meson, which is slightly different for

the three decay modes. This produces a systematic uncertainty of 0.02% for both ∆ACP
and ACP (K−K+), similar to the one found previously [11].

The weighting procedure almost equalises the pT and η distributions of the particles,

but small differences remain. When also weighting for different azimuthal angle distribu-

tions of the final state particles, the change in both ∆ACP and ACP (K−K+) is negligible.

Slightly larger shifts are seen when increasing (decreasing) the number of bins used in each

kinematic variable from 20 to 25 (15) or when changing the D0 mass range. The maximum

shift, 0.02% for ∆ACP and 0.05% for ACP (K−K+), is taken as a systematic uncertainty.

Finally, the cancellation of the production and detection asymmetries is tested by randomly

assigning the charge of the muon or charged D meson in real data, depending on the pT of

the particles. The B and D+ production asymmetries and the µ±, K± and π± detection

asymmetries that are simulated in this way are motivated by the small pT-dependences

observed in data. No shift is seen in the value of ∆ACP , while a small shift of 0.03% is

observed in the value of ACP (K−K+). This shift is propagated as part of the uncertainty

due the weighting procedure.

The sensitivity of the results to the signal and background models is determined by

varying the signal and background functions. The alternative signal functions are a Johnson

SU distribution [31], a single Gaussian, and a double Gaussian function. The alternative

background function is a second-order polynomial. Furthermore, the effect of using different

mass binning and fit range, and the effect of constraining the asymmetry of the D0→ K−π+

background in the D0 → π−π+ decay to the observed asymmetry, are considered. The

maximum variations from the default fit for each decay mode are added in quadrature to

determine the systematic uncertainty for ∆ACP (0.06%) and for ACP (K−K+) (0.06%).

In the default fit, the background can vary freely with an overall asymmetry and differ-

ent slope parameters for each tag. Nevertheless, background contributions from different

origins can have different shapes and asymmetries. Such an effect is expected to be largest

in the D0→ K−K+ decay, due to possible contributions from other charm decays, and is

studied by generating pseudoexperiments with different background compositions in the

two Cabibbo-suppressed decays. Three types of background shapes are simulated: an expo-

nential function to describe the combinatorial background observed in data, another expo-

nential function with a different slope inspired by partially-reconstructed background from

simulated D+→ K−π+π+ decays, and a linear shape inspired by partially-reconstructed

background from simulated Λ+
c → pK−π+ decays. The asymmetries in the background

are varied by up to ±3%. Such large asymmetries are incompatible with the asymmetries

observed in the background and therefore constitute an upper bound on the magnitude

of any possible effect. The largest bias in the raw asymmetry (0.03%) is propagated as a

systematic uncertainty for ∆ACP and ACP (K−K+).
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Source of uncertainty ∆ACP ACP (K−K+)

Production asymmetry:

Difference in b-hadron mixture 0.02% 0.02%

Difference in B decay time acceptance 0.02% 0.02%

Production and detection asymmetry:

Different weighting 0.02% 0.05%

Non-cancellation — 0.03%

Neutral kaon asymmetry — 0.01%

Background from real D0 mesons:

Mistag asymmetry 0.03% 0.03%

Background from fake D0 mesons:

D0 mass fit model 0.06% 0.06%

Wrong background modelling 0.03% 0.03%

Quadratic sum 0.08% 0.10%

Table 6. Contributions to the systematic uncertainty of ∆ACP and ACP (K−K+).

The systematic shift in the raw asymmetries when removing multiple candidates is

below 0.005% and therefore neglected. Higher-order corrections to eq. (2.2) are at the

10−6 level and are neglected as well. The systematic uncertainty from the neutral kaon

asymmetry (0.01%) is taken from section 5.3 and the systematic uncertainty from wrong

combinations of muons and D0 mesons is taken from section 5.4. All systematic uncertain-

ties are summarised in table 6 for ∆ACP and ACP (K−K+). The correlation coefficient

between the total systematic uncertainties is ρ = 0.40.

7 Consistency checks

As a consistency check, the raw asymmetries in the D0→ K−K+ and D0→ π−π+ samples

and ∆ACP are determined as functions of the impact parameter of the D0 trajectory with

respect to the primary vertex, the flight distance of the B candidate, the angle between the

directions of the muon and the D0 decay products, the muon and D0 kinematic variables,

the reconstructed D0µ invariant mass, the multiplicity of tracks and primary vertices in

the event, the particle identification requirement on the kaons, and the selected trigger

lines. No significant dependence is observed on any of these variables. Another test is

made by including D0 candidates with negative decay times. In particular in the D0→
π−π+ decay, there is more background at low D0 decay times. Enhancing this type of

background by including negative decay time candidates does not change the values for

∆ACP or ACP (K−K+).

During periods without data taking, interventions on the detector and on the trigger

change the alignment and data acquisition conditions. This could induce time-varying
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Figure 5. (a) ∆ACP and (b) ACP (K−K+) as a function of the data taking period. The 2011

data are divided into four periods and the 2012 data into six periods. The error bars indicate the

statistical uncertainty, the shaded bands show the averages for 2011 and 2012, and the (red) line

shows the overall CP asymmetry.

detection asymmetries. The final results should not be sensitive to such variations as data

are calibrated with control samples collected in the same data-taking period. Nevertheless,

any residual detector asymmetry would manifest itself as variations in time of the measured

CP asymmetries. Figure 5 shows ∆ACP and ACP (K−K+) versus data taking period.

These periods are separated by interruptions in data taking, and within each period the

magnetic field is reversed at least once. No dependence of the obtained CP asymmetries on

the data taking period is observed. The average values of ∆ACP are (+0.33±0.30 (stat))%

for the 2011 data and (+0.06 ± 0.19 (stat))% for the 2012 data. The value for the 2011

data is slightly lower compared to the previous analysis, which is attributed to the non-

overlapping data samples, due to differences in the selection and in the calibration of the

detector. The main shift is due to the looser particle identification requirements on the

kaons in this analysis. Such a shift is not seen in the 2012 data. The average values of

ACP (K−K+) are (+0.04± 0.28 (stat))% for the 2011 data and (−0.10± 0.18 (stat))% for

the 2012 data.

8 Conclusion

The difference in CP asymmetries between the D0 → K−K+ and D0 → π−π+ decay

channels and the CP asymmetry in the D0→ K−K+ channel are measured using muon-

tagged D0 decays in the 3 fb−1 data set to be

∆ACP = (+0.14± 0.16 (stat)± 0.08 (syst))% ,

ACP (K−K+) = (−0.06± 0.15 (stat)± 0.10 (syst))% ,

where the total correlation coefficient, including statistical and systematic components, is

ρ = 0.28. By combining the above results, the CP asymmetry in the D0→ π−π+ decay is

found to be

ACP (π−π+) = (−0.20± 0.19 (stat)± 0.10 (syst))% .
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These results are obtained assuming that there is no CP violation in D0 mixing and no di-

rect CP violation in the Cabibbo-favoured D0→ K−π+, D+→ K−π+π+ and D+→ K0π+

decay modes. The measurement of ∆ACP supersedes the previously reported result [11].

Our results show that there is no significant CP violation in the singly Cabibbo-suppressed

D0 → K−K+, π−π+ decays at the level of 10−3. These results constitute the most precise

measurements of time-integrated CP asymmetries ACP (K−K+) and ACP (π−π+) from a

single experiment to date.
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A.-B. Morris50, R. Mountain59, F. Muheim50, K. Müller40, R. Muresan29, M. Mussini14,

B. Muster39, P. Naik46, T. Nakada39, R. Nandakumar49, I. Nasteva2, M. Needham50, N. Neri21,

S. Neubert38, N. Neufeld38, M. Neuner11, A.D. Nguyen39, T.D. Nguyen39, C. Nguyen-Mau39,p,

M. Nicol7, V. Niess5, R. Niet9, N. Nikitin32, T. Nikodem11, A. Novoselov35,

A. Oblakowska-Mucha27, V. Obraztsov35, S. Oggero41, S. Ogilvy51, O. Okhrimenko44,

R. Oldeman15,e, G. Onderwater65, M. Orlandea29, J.M. Otalora Goicochea2, P. Owen53,

A. Oyanguren64, B.K. Pal59, A. Palano13,c, F. Palombo21,t, M. Palutan18, J. Panman38,

A. Papanestis49,38, M. Pappagallo51, C. Parkes54, C.J. Parkinson9, G. Passaleva17, G.D. Patel52,

M. Patel53, C. Patrignani19,j , A. Pazos Alvarez37, A. Pearce54, A. Pellegrino41,

M. Pepe Altarelli38, S. Perazzini14,d, E. Perez Trigo37, P. Perret5, M. Perrin-Terrin6,

L. Pescatore45, E. Pesen66, K. Petridis53, A. Petrolini19,j , E. Picatoste Olloqui36, B. Pietrzyk4,
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