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a b s t r a c t

How large can a family A ⊂ P [n] be if it does not contain A, B with |A \ B| = 1? Our aim
in this paper is to show that any such family has size at most 2+o(1)

n


n

⌊n/2⌋


. This is tight up

to a multiplicative constant of 2. We also obtain similar results for families A ⊂ P [n] with
|A \ B| ≠ k, showing that they satisfy |A| ≤

Ck
nk


n

⌊n/2⌋


, where Ck is a constant depending

only on k.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A family A ⊂ P [n] = P ({1, . . . , n}) is said to be a Sperner family or antichain if A ⊄ B for all distinct A, B ∈ A. Sperner’s
theorem [9], one of the earliest results in extremal combinatorics, states that every Sperner family A ⊂ P [n] satisfies

|A| ≤


n

⌊n/2⌋


. (1)

(We remark that this paper is self-contained; for background on Sperner’s theorem and related results see [2].)
Kalai [5] noted that the Sperner condition can be rephrased as follows: A does not contain two sets A and B such that, in

the unique subcube of P [n] spanned by A and B, A is the bottom point and B is the top point. He asked: what happens if we
forbid A and B to be at a different position in this subcube? In particular, he asked how large A ⊂ P [n] can be if we forbid
A and B to be at a ‘fixed ratio’ p : q in this subcube. That is, we forbid A to be p/(p + q) of the way up this subcube and B to
be q/(p + q) of the way up this subcube. Equivalently, q|A \ B| ≠ p|B \ A| for all distinct A, B ∈ A. Note that the Sperner
condition corresponds to taking p = 0 and q = 1. In [8], we gave an asymptotically tight answer for all ratios p : q, showing
that one cannot improve on the ‘obvious’ example, namely the q − p middle layers of P [n].

Theorem 1.1 ([8]). Let p, q be coprime natural numbers with q ≥ p. Suppose A ⊂ P [n] does not contain distinct A, B with
q|A \ B| = p|B \ A|. Then

|A| ≤ (q − p + o(1))


n
⌊n/2⌋


. (2)

Up to the o(1) term, this is best possible. Indeed, the proof of Theorem 1.1 in [8] also gives the exact maximum size of
such A for infinitely many values of n.
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Another natural question considered in [8] asks how large a familyA ⊂ P [n] can be if, instead of forbidding a fixed ratio,
we forbid a ‘fixed distance’ in these subcubes. For example, how large can A ⊂ P [n] be if A is not at distance 1 from the
bottom of the subcube spanned with B for all A, B ∈ A? Equivalently, |A \ B| ≠ 1 for all A, B ∈ A. Here the following family
A∗ provides a lower bound: let A∗ consist of all sets A of size ⌊n/2⌋ such that


i∈A i ≡ r (mod n) where r ∈ {0, . . . , n− 1}

is chosen to maximise |A∗
|. Such a choice of r gives |A∗

| ≥
1
n


n

⌊n/2⌋


. Note that if we had |A \ B| = 1 for some A, B ∈ A∗,

since |A| = |B|, we would also have |B \ A| = 1 – letting A \ B = {i} and B \ A = {j} we then have i − j ≡ 0 (mod n) giving
i = j, a contradiction.

In [8], we showed that any such family A ⊂ P [n] satisfies |A| ≤
C
n 2

n
= O( 1

n1/2


n

⌊n/2⌋


) for some absolute constant

C > 0. We conjectured that the family A∗ constructed in the previous paragraph is asymptotically maximal (Conjecture 5
of [8]). In Section 2, we prove that this is true up to a factor of 2.

Theorem 1.2. Suppose that A ⊂ P [n] is a family of sets with |A \ B| ≠ 1 for all A, B ∈ A. Then |A| ≤
2+o(1)

n


n

⌊n/2⌋


.

One could also ask what happens if we forbid a fixed set difference of size k, instead of 1 (where we think of k as fixed
and n as varying). This turns out to be harder. In [8] we noted that the following family A∗

k ⊂ P [n] gives a lower bound of
1
nk


n

⌊n/2⌋


: supposing n is prime, letA∗

k consist of all sets A of size ⌊n/2⌋which satisfy


i∈A i
d

≡ 0 (mod n) for all 1 ≤ d ≤ k.
In Section 3 we prove that this is also best possible up to a multiplicative constant.

Theorem 1.3. Let k ∈ N. Suppose that A ⊂ P [n] with |A \ B| ≠ k for all A, B ∈ P [n]. Then |A| ≤
Ck
nk


n

⌊n/2⌋


, where Ck is a

constant depending only on k.

Our notation is standard. We write [n] for {1, . . . , n}, and [a, b] for the interval {a, . . . , b}. For a set X , we write P (X) for
the power set of X and X (k) for the collection of all k-sets in X . We often suppress integer-part signs.

2. Proof of Theorem 1.2

Our proof of Theorem 1.2 uses Katona’s averaging method (see [6]), but modified in a key way. Ideally here, as in the
proof of Sperner’s theorem or Theorem 1.1, we would find configurations of sets covering P [n] so that each configuration
has at most C/n3/2 proportion of its elements in A, for any family A satisfying |A \ B| ≠ 1 for A, B ∈ A. Then, provided that
these configurations cover P [n] uniformly, we could count incidences between elements of A and these configurations to
get an upper bound on |A|.

However, we do not see how to find such configurations. So instead our approach is as follows. Rather than insisting that
each of the sets in our configuration iswell-behaved (in the sense above), wewill only require thatmost of themhave atmost
C/n3/2 proportion of their elements in A. It turns out that this can be achieved, and that it is good enough for our purposes.

Proof. Wewill prove the proposition under the assumption thatn is even—this can easily be removed. To beginwith, remove
all elements inA of size smaller than n/2−n2/3 or larger than n/2+n2/3. By Chernoff’s inequality (see Appendix A of [1]), we
have removed at most o


1
n


n

n/2


sets. Let B denote the remaining sets in A. It suffices to show that |B| ≤

2+o(1)
n


n

n/2


.

Wewrite I = [1, n/2+n2/3
] and J = [n/2+n2/3

+1, n] so that [n] = I∪ J . Let us choose a permutation σ ∈ Sn uniformly
at random. Given this choice of σ , for all i ∈ I , j ∈ J let Ci,j = {σ(1), . . . σ (i)} ∪ {σ(j)}. Let Cj = {Ci,j : i ∈ I}, and call these
sets ‘partial chains’. Also let C =


j∈J Cj.

Now, for any choice of σ ∈ Sn, at most one of the partial chains of C can contain an element of B. Indeed, suppose both
Ci1,j1 = Ci1 ∪{σ(j1)} and Ci2,j2 = Ci2 ∪{σ(j2)} lie in A for distinct j1, j2 ∈ J . Since Ci1 and Ci2 are elements of a chain, without
loss of generality wemay assume Ci1 ⊂ Ci2 . But then (Ci1 ∪{σ(j1)})\(Ci2 ∪{σ(j2)}) = {σ(j1)z}, which contradicts |A\B| ≠ 1
for all A, B ∈ B.

Note that the above bound alone does not guarantee the upper bound on |A| stated in the theorem, since a fixed partial
chain Ci may contain many elements of A. We now show that this cannot happen too often.

For i ∈ I and j ∈ J , let Xi,j denote the random variable given by

Xi,j =


1 if Ci,j ∈ B and Ck,j ∉ B for k < i;
0 otherwise.

From the previous paragraph, we have
i,j

Xi,j ≤ 1 (3)

where both here and below the sum is taken over all i ∈ I and j ∈ J . Taking expectations on both sides of (3) this gives
i,j

E(Xi,j) ≤ 1. (4)
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Rearranging we have
i,j

E(Xi,j) =


i,j


B∈B

P(Ci,j = B and Ck,j ∉ B for k < i). (5)

We now bound P(Ci,j = B and Ck,j ∉ B for k < i) for sets B ∈ B. Note that we can only have Ci,j = B if |B| = i + 1.
Furthermore, for such B, since Ci,j is equally likely to be any subset of [n] of size i + 1, we have P(Ci,j = B) = 1/

 n
i+1


. We

will show that for all such B

P(Ci,j = B and Ck,j ∉ B for k < i) = (1 − o(1))P(Ci,j = B). (6)

To see this, note that given any set D ⊂ [n], there is at most one element d ∈ D such that D − d ∈ B. Indeed, |(D − d′) \

(D − d)| = 1 for any distinct choices of d, d′
∈ D. Recalling that Ck,j = Ci,j − {σ(k + 1), . . . , σ (i)} for all k < i and that

σ(k+1) is chosen uniformly at random from the k+1 elements of Ck+1,j−{σ(j)}, we see that for k+1 ≥ n/2−n2/3 we have

P(Ck,j ∉ B|Ck+1,j, . . . , Ci,j) ≥


1 −

1
k + 1


≥


1 −

1
n/2 − n2/3


. (7)

Also, since B contains no sets of size less than n/2 − n2/3, for k + 1 < n/2 − n2/3 we have

P(Ck,j ∉ B|Ck+1,j, . . . , Ci,j) = 1. (8)

But now by repeatedly applying (7) and (8) we get that for any B of size i + 1 ∈ [n/2 − n2/3, n/2 + n2/3
] we have

P(Ci,j = B and Ck,j ∉ B for k < i) ≥


1 −

1
n/2 − n2/3

(i−n/2−n2/3)

P(Ci,j = B)

≥


1 −

1
n/2 − n2/3

2n2/3

P(Ci,j = B)

= (1 − o(1))P(Ci,j = B).

Now combining (6) with (4) and (5) we obtain

1 ≥


i,j

E(Xi,j)

=


i,j


B∈B

P(Ci,j = B and Ck,j ∉ B for k < i)

=


i,j


B∈B(i+1)

(1 − o(1))P(Ci,j = B)

= (1 − o(1))

i,j

|B(i+1)
| n

i+1


= (1 − o(1))|J|


i

|B(i+1)
| n

i+1

 .

Since |J| = n/2 − n2/3, this shows that

2 + o(1)
n

≥


i

|B(i+1)
| n

i+1


giving |B| ≤

2+o(1)
n


n

n/2


, as required. �

3. Proof of Theorem 1.3

The proof of Theorem 1.3 will use the following result of Frankl and Füredi [4].

Theorem 3.1 (Frankl–Füredi). Let r, k ∈ N with 0 ≤ k < r. Suppose that A ⊂ [n](r) with |A ∩ B| ≠ k for all A, B ∈ A. Then
|A| ≤ drnmax(k,r−k−1) where dr is a constant depending only on r.

We will also make use of the Erdős–Ko–Rado theorem [3].

Theorem 3.2 (Erdős–Ko–Rado). Suppose that k ∈ N and that 2k ≤ n. Then any family A ⊂ [n](k) with A ∩ B ≠ ∅ for all
A, B ∈ A satisfies |A| ≤


n−1
k−1


.
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We are now ready for the proof of the main result. Given a set U ⊂ [n] and a permutation σ ∈ Sn, below we write
σ(U) = {σ(u) : u ∈ U}.

Proof of Theorem 1.3. We will assume for convenience that n is a multiple of 3k—this assumption can easily be removed.
To begin, remove all elements inA of size smaller than n/2−n2/3 or larger than n/2+n2/3. By Chernoff’s inequality (see Ap-
pendix A of [1]), we have removed atmost o


1
nk


n

n/2


sets. LetB denote the remaining sets inA. For each l ∈ [0, k−1], let

Bl = {B ∈ B : |B| ≡ l (mod k)}.

To prove the theorem it suffices to prove that for all l ∈ [0, k − 1] we have |Bl| ≤
c′

nk


n

n/2


, where c ′

= c ′(k) > 0. We will
show this when l = 0 as the other cases are similar.

Let I = [1, n/3] and J = [n/3+ 1, n] so that [n] = I ∪ J . Let us choose a permutation σ ∈ Sn uniformly at random. Given
this choice of σ , for all i ∈ [n/3k] and S ∈ J (n/3) let

Ci,S = σ({1, . . . , ik}) ∪ σ(S).

Let CS = {Ci,S : i ∈ [n/3k]} and call these sets ‘partial chains’. We write

D =


S ∈


J

n/3


: CS ∩ B0 ≠ ∅


⊂


J

n/3


.

We claim that for any choice of σ ∈ Sn, we have

|D| ≤
d2k(12k2)k

nk


|J|
n/3


, (9)

where d2k is as in Theorem 3.1. Indeed otherwise, by averaging, there exists T ∈ J (n/3−2k) for which the family

DT =


U ∈ (J \ T )(2k) : U ∪ T ∈ D


⊂ (J \ T )(2k)

satisfies |DT | >
d2k(12k2)k

nk


|J\T |

2k


. This gives that

|DT | >
d2k(12k2)k

nk


|J \ T |

2k


≥

d2k(12k2)k

nk

|J \ T |
2k

(2k)2k
=

d2k|J \ T |
2k

(n/3)k
≥ d2k|J \ T |

k,

since |J\T | = n/3+2k ≥ n/3. However, applying Theorem3.1 toDT with r = 2kwe findU,U ′
∈ DT with |U∩U ′

| = k. This
then gives Ci,U∪T , Ci′,U ′∪T ∈ B0 for some i, i′ ∈ [n]. Without loss of generality, we have i ≤ i′. But then, as σ({1, . . . , ik}) ⊂

σ({1, . . . , i′k}), we have

|Ci,U∪T \ Ci′,U ′∪T | = |σ(U) \ σ(U ′)| = |U \ U ′
| = |U| − |U ∩ U ′

| = 2k − k = k.

However |A \ B| ≠ k for all A, B ∈ B0. This contradiction shows that (9) must hold.
Now the bound (9) shows that for any choice of σ ∈ Sn, at most ck/nk proportion of the sets CS can contain elements of

B0. Note however that any of these partial chains may still contain many elements from B0. As in the proof of Theorem 1.2,
we now show that this cannot happen too often.

For i ∈ [n/3k] and S ∈ J (n/3), let Xi,S denote the random variable given by

Xi,S =


1 if Ci,S ∈ B0 and Ci′,S ∉ B0 for all i′ < i;
0 otherwise.

From the previous paragraph, we have
i,S

Xi,S ≤
d2k(12k2)k

nk


|J|
n/3


(10)

where both here and below the sum is taken over all i ∈ [n/3k] and S ∈ J (n/3). Taking expectations on both sides of (3) this
gives 

i,S

E(Xi,S) ≤
d2k(12k2)k

nk


|J|
n/3


. (11)

Rearranging we have
i,S

E(Xi,S) =


i,S


B∈B0

P(Ci,S = B and Ci′,S ∉ B0 for i′ < i). (12)
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We now bound P(Ci,S = B and Ci′,S ∉ B0 for i′ < i) for sets B ∈ B0. Note that we can only have Ci,S = B if |B| = ik+ n/3.

Furthermore, for such B, since Ci,S is equally likely to be any subset of [n] of size ik+n/3, we have P(Ci,S = B) = 1/


n
ik+n/3


.

We will prove that for all such B

P(Ci,S = B and Ci′,S ∉ B0 for i′ < i) = (1 − o(1))P(Ci,S = B). (13)

To see this, note that given any setD ⊂ [n] and two sets E1, E2 ∈ D(k) forwhichD\E1,D\E2 ∈ B0, wemust have E1∩E2 ≠ 0—
otherwise |(D\E1)\(D\E2)| = k. Therefore, for |D| ≥ 2k, by Theorem3.2, there are atmost


|D|−1
k−1


=

k
|D|


|D|

k


choices of E ∈

D(k) withD\E ∈ B0. Recalling that Ci′,S = Ci,S −{σ(i′k+1), . . . , σ (ik)} for all i′ < i and that {σ(i′k+1), . . . , σ ((i′ +1)k)} is
chosenuniformly at randomamong all k-sets in {σ(1), . . . , σ ((i′+1)k)}, we see that for (i′+1)k+n/3 ≥ (n/2−n2/3)wehave

P(Ci′,S ∉ B0|Ci′+1,S, . . . , Ci,S) ≥


1 −

k
(i′ + 1)k


≥


1 −

k
n/6 − n2/3


. (14)

Also, since B0 contains no sets of size less than n/2 − n2/3, for (i′ + 1)k + n/3 < (n/2 − n2/3) we have

P(Ci′,S ∉ B0|Ci′+1,S, . . . , Ci,S) = 1. (15)

But now by repeatedly applying (14) and (15), we get that for any B of size ik + n/3 ∈ [n/2 − n2/3, n/2 + n2/3
] we have

P(Ci,S = B and Ci′,S ∉ B0 for i′ < i) ≥


1 −

k
n/6 − n2/3

2n2/3/k

P(Ci,S = B)

≥


1 −

k
n/6 − n2/3

2n2/3/k

P(Ci,S = B)

= (1 − o(1))P(Ci,S = B).

Now combining (13) with (11) and (12) we obtain

d2k(12k2)k

nk


|J|
n/3


≥


i,S

E(Xi,S)

=


i,S


B∈B0

P(Ci,S = B and Ci′,S ∉ B0 for i′ < i)

=


i,S


B∈B

(ik+n/3)
0

(1 − o(1))P(Ci,S = B)

= (1 − o(1))

i,S

|B
(ik+n/3)
0 |

n
ik+n/3


= (1 − o(1))


|J|
n/3

 
j∈[n]

|B
(j)
0 |
n
j

 .

But this shows that

d2k(12k2)k

nk
≥


j∈[n]

|B
(j)
0 |
n
j


giving |B0| ≤

d2k(12k2)k

nk


n

n/2


, as required. �

4. Concluding remarks

It would be very interesting to determine the true answer in Theorem 1.2, i.e., to remove the factor of 2. This is related to
the well-known problem of finding the maximum size of a set system in which no two members are at Hamming distance
2, where there is also a ‘gap’ of a multiplicative constant 2. Indeed, our proof of Theorem 1.2 can be modified to show that
the answers to these two questions are asymptotically equal. See Katona [7] for background on this problem.
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