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a b s t r a c t

In this White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark
Matter searches at colliders and in direct detection experiments. Based on a specific implementation of
simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the
two search strategies can be compared on an equal footing.

© 2015 CERN for the benefit of the Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Scope of the workshop

Since the start-up of the LHC in 2010, collider searches for Dark
Matter (DM) particle production, and their comparison with direct
detection (DD) scattering experiments such as XENON100 [1] and
LUX [2], have become a focal point for both the experimental and
theoretical particle and astroparticle communities.

✩ White Paper from the BrainstormingWorkshop held at Imperial College London
on May 29th, 2014. A link to the Workshop’s agenda is given in Brainstorming
Workshop (2014). IPPP/14/83, DCPT/14/166, KCL-PH-TH/2014-37, LCTS/2014-36,
CERN-PH-TH/2014-180.
∗ Corresponding author.

E-mail address: oliver.buchmueller@cern.ch (O. Buchmueller).

http://dx.doi.org/10.1016/j.dark.2015.03.003
2212-6864/© 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This i
by/4.0/).
Collider searches are generally characterized by their use of
‘mono-objects’, such asmono-jets ormono-photons, accompanied
bymissing transverse energy [3–10]. Until recently, these searches
weremainly interpreted in the framework of specific models, such
as the ADD [11] or unparticle models [12], or else used an effective
field theory (EFT) to allow for the straightforward comparisonwith
the results of DD experiments.

However, interpretations within specific models are often too
narrow in scope, and several independent groups [7,10,13–18]
have pointed out that the interpretationwithin the EFT framework
can lead to the wrong conclusions when comparing collider
results with the results from DD experiments. As an alternative, a
simplified model description of collider and DD searches has been
advocated in order to avoid these pitfalls [19–25,15,26].

The Brainstorming Workshop contributed to the development
of a consistent simplified framework to interpret these searches,

s an open access article under the CC BY license (http://creativecommons.org/licenses/
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so as to facilitate comparison of the sensitivities of collider and DD
experiments. This is required in order to establish quantitatively
the complementarity of these two search approaches, which is
critical in our continuing quest for DM. A link to the Brainstorming
Workshop’s agenda, which includes links to the individual talks, is
given in [27].

In this White Paper, we propose benchmark scenarios in
a particular simplified model framework for DM models and
provide examples of plots that will allow for a more meaningful
comparison of the results from collider and DD experiments. These
scenarios are summarized in Section 4. This proposal should be
considered as a first practical step in the discussion towards amore
complete analysis strategy to be developed in the future.

While finalising this document,we became aware of [28],which
also addresses aspects of simplified models in order to go beyond
EFT interpretations of DM searches.

2. Comparison of DM searches

Although the Workshop touched on several interesting aspects
related to models of DM and the characterization of DM searches,
its main focus was on defining a concrete proposal for how to go
beyond the problematic comparison of DM searches in the EFT
framework. Therefore in this document, we focus mainly on the
outline of our proposal for comparing collider and DD searches for
DMon an equal footing, so as to better understand and exploit their
complementarity. This is largely based on the results of a recent
paper [29] by several of the Workshop participants, whose work
was in part inspired by the Workshop.

While the EFT framework is a convenient tool for interpreting
DM searches from DD experiments, recent work by several
independent groups [7,10,13–18] has highlighted the problem
that the EFT interpretation of collider searches suffers from
several significant limitations, which prevent a comprehensive
characterization of these searches. A comparison of DM searches
at collider and DD experiments using the EFT approach does not
provide an accurate description of the complementarity of the two
search strategies.

2.1. Simplified DM models

An alternative to the EFT interpretation is the characterization
of DM searches using simplified models [30,31]. Simplified models
arewidely used to interpretmissing-energy searches at colliders in
the context of supersymmetry, and have become a successful way
to benchmark and compare the reaches of these collider searches.
In contrast to the EFT ansatz, simplified models are able to capture
properly the relevant kinematic properties of collider searches
with only a few free parameters.

As pointed out in [19–25,15,26,29], simplified models of
DM also provide an appropriate framework for comparing and
characterizing the results of DM searches at colliders and DD
experiments. This was demonstrated within a framework of
Minimal Simplified Dark Matter (MSDM) models with vector and
axial-vector mediators exchanged in the s-channel [29]. While the
collider phenomenology of the vector and axial-vectormediators is
similar, at DD experiments they are very different. These two cases
therefore demonstrate how to compare DD and collider results on
an equal footing for two distinctive scenarios. Although these two
mediator cases already cover a significant variety of interestingDM
models, as we discuss below in more detail, it will be important to
also consider t-channel exchanges as well as scalar and pseudo-
scalar mediators in the future.

The MSDM models are constructed using four parameters: the
mass of the DM particle, mDM, the mass of the mediator, Mmed, the
coupling of themediator to the DMparticles, gDM, and the coupling
of the mediator to quarks, gq. For the latter, as a simplifying
assumption, themediator is assumed to couple to all quark flavours
with equal strength. In this White Paper we assume that the DM
particle is a Dirac fermion (χ ) and the new Lagrangian terms for
the vector (Z ′) and axial-vector (Z ′′) MSDMmodels are

Lvector ⊃
1
2
M2

medZ
′

µZ
′µ

− gDMZ ′

µχ̄γ µχ −


q

gqZ ′

µq̄γ
µq

Laxial ⊃
1
2
M2

medZ
′′

µZ
′′µ

− gDMZ ′′

µχ̄γ µγ 5χ −


q

gqZ ′′

µq̄γ
µγ 5q

where the sum extends over all quarks.
It is important to emphasize that these four variables represent

the minimum set of parameters necessary for the comparison of
collider and DD experiments. Direct detection experiments are
sensitive only to a specific combination of these parameters that
enter the nucleon-DM scattering cross section, namely

σ 0
DD ∼

g2
DMg2

qµ
2

M4
med

,

where µ is the reduced mass of the nucleon-DM system, which
asymptotically becomes constant for heavy DM particles. In
comparison, all four parameters play different and important roles
in collider searches:

• mDM: collider limits depend onmDM, with the sensitivity limited
by the available energy in the centre-of-mass frame;

• Mmed: the interplay between Mmed and mDM is very important
for sufficiently light mediators, as for mDM < Mmed/2 one
expects a resonant enhancement of the collider sensitivity to
DM;

• gDM, gq: the cross section for DM production in collider
experiments is sensitive to the product of the two couplings
squared, as is the DM-nucleon interaction cross section in DD
experiments. However, in addition, collider experiments are
also sensitive to the sum of these couplings squared, which
determines the width of the mediator (Γmed). If the latter is
too large (Γmed & Mmed), single-mediator exchange does not
provide a realistic description of either DM-nucleon scattering
or collider production of a pair of DM particles—a fact that is
often overlooked in the interpretation and comparison of the
searches.

To produce the collider limits in MSDM models, we generate
events for the DM signal at the LHC using an extension of POWHEG
BOX [32–35]. The program generates the process of a pair of DM
particles produced in association with a parton at next-to-leading
order (NLO). It can be matched consistently to a parton shower,
which as discussed in [32], is of particular importance to simulate
accurately the case where jet vetoes are applied in the analysis.
This is the case in the monojet analysis where the third jet in the
event is vetoed. In our case, wematch to PYTHIA 8.180 [36,37] and
put through DELPHES [38,39] for the detector simulation.

The inclusion of NLO corrections reduces the dependence
on the choice of renormalization and factorization scales and
thereby the theoretical uncertainty, which will become important
if a small excess is observed. The program has three further
advantages. Firstly, it can generate events for both the EFT case
and also simplified models. Secondly, in addition to the vector
and axial-vector mediators considered here, it can also be used
for studies of scalar mediators. Thirdly, it includes K-factors which
are particularly important in models where the scalar couples to
gluons in the s-channel.

As demonstrated in [40], the inclusion of higher order
corrections can also be advantageous in probing the structure
of couplings between DM and SM, which can be determined by
looking at the azimuthal difference between two jets in events
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where the final state contains two jets together with missing
transverse energy. For instance, for loop-mediated interactions
with gluons where a spin-0 particle is exchanged in the s-channel,
the CP nature of the latter can be tested.

2.2. Comparisons of collider and DD limits

A comprehensive comparison of the limits from collider and
DD searches in all of the four 2D projections of the 4-parameter
MSDMmodel is provided in [29]. It shows that, for the exchange of
a vector mediator, only for very light DM masses (.5 GeV) do LHC
mono-jet searches (represented by the CMS mono-jet search [41,
42]) have better sensitivity than DD searches (represented by
the LUX 2013 [43] and SuperCDMS [44] results). For larger DM
masses the DD experiments provide significantly stronger bounds
on the parameter space of vector mediators. For axial-vector
mediators, however, the LHC and DD searches generally probe
complementary regions in the full parameter space, with the LHC
searches having greater sensitivity than the DD experiments for
DMmasses below around 200 GeV.

Traditionally, DD experiments display their results in terms
of the DM-nucleon spin-independent and spin-dependent cross
sections σ 0

SI and σ 0
SD, respectively. It is thus also useful to

provide comparisons of the MSDM limits from the mono-jet
and DD searches in the (σ 0

SI,mDM) and (σ 0
SD,mDM) planes. As

discussed in Section 5 of our main reference [29], for fixed
couplings gq and gDM, collider limits defined in the (Mmed,mDM)
plane of the MSDM model can be directly translated into the
(σ 0,mDM) planes. Vector and axial-vector mediators lead to spin-
independent and spin-dependent interactions in DD experiments,
respectively. For DD searches the cross section scales exactly like
(gqgDM)2/M4

med, while for collider searches it scales approximately
like (gqgDM)2/(M4

medΓmed). For small values of the width, as in
weakly coupled scenarios, there is a resonant enhancement of the
cross section in the collider case.

Fig. 1 shows the MSDM limits from the CMS mono-jet search
for different coupling scenarios in the (σ 0

SD,mDM) and (σ 0
SI,mDM)

planes (left and right, respectively). TheMSDM limits for the axial-
vector mediator are displayed in the spin-dependent plane, and
the results from the vector mediator study are shown in the spin-
independent plane. To assess the dependence of the collider limits
on the choice of couplings, four different coupling scenarios are
shown: gq = gDM = [0.25, 0.5, 1.0, 1.45] (blue lines). The
two extreme scenarios of 0.25 and 1.45 are chosen because they
approximate the range over which the LHC mono-jet search can
placemeaningful limits in theMSDMmodels. For gq = gDM & 1.45
the width of a vector or axial-vector mediator exchanged in the s-
channel becomes larger than its mass, making a particle physics
interpretation of the interaction problematic. For gq = gDM . 0.25
the 8 TeV CMS mono-jet search no longer has sufficient sensitivity
to place a significant limit on the parameter space.

Fig. 1 also shows the limit obtained from an interpretation of
the mono-jet search in the framework of the EFT (green line).
The EFT limits should agree with the MSDM limit in the domain
where the EFT framework is valid. We see that it is only for the
extreme coupling scenario gq = gDM = 1.45 that the EFT limit
approximates the MSDM limit, and only for DM masses below
around 300 GeV. For larger mDM the EFT fails to describe any of
the coupling scenarios. For weaker couplings, the MSDM limits
get stronger for DM masses below around 50–300 GeV, due to
the resonant enhancement of the cross section for a s-channel
mediator that was explained above. This effect is absent within
the EFT framework. The reach in DM mass of the MSDM limits
increaseswith larger couplings. Overall, this comparison of the EFT
and MSDM limits demonstrates again that the EFT framework is
unable to capture all of the relevant kinematic properties of the
collider searches, which is demonstrated by the large disparity
between the EFT and MSDM limits. Comparing EFT collider limits
with those of DD searches gives a misleading representation of
the relative sensitivity of the two search strategies, especially for
weaker coupling scenarios andmDM & 300 GeV.

Finally Fig. 1 also shows the LUX limits for both interactions
(red lines) and the spin-independent SuperCDMS limit (orange
line). Whilst the comparison of the DD search result with the EFT
collider limit is biased, a comparison with the MSDM limits from
the LHCmono-jet analysis, which properly describes the kinematic
properties of the collider search, represents a comparison of
collider and DD experiments on an equal footing, establishing
quantitatively the complementarity of the two search strategies.
With the exception of light DM masses mDM . 5 GeV, DD
experiments provide much stronger limits for vector-mediated
interactions. In the axial-vector case, the collider limits are
generally stronger for mDM . 300 GeV. This is especially true
for small couplings where the collider cross section is further
enhanced by the small mediator width. Owing to the kinematic
constraint Mmed ≥ 2mDM on s-channel mediator production at
the collider, DD searches are today the only searches providing
significant limits for either cross section formDM & 300 GeV.

2.3. Future experiments and upgrades—projected sensitivities

With the DD experiments and the LHC programme gearing up
for major upgrades, we also look at their projected sensitivity to
DM particles in the future. We explore three scenarios for the
LHC: 30 fb−1 at 13 TeV to gauge the reach of LHC Run 2, 300 fb−1

at 13 TeV to provide an estimate of the reach of LHC Run 3,
and 3000 fb−1 at 14 TeV to show the expected reach of the
high-luminosity upgrade of the LHC. For the DD experiments we
show the estimated limit for the lifetime exposure of two liquid
xenon experiments: the LUX-ZEPLIN (LZ) experiment [45], with
an exposure of 10 tonne years,1 and DARWIN [47,48], with an
exposure of 200 tonne years. We also show the discovery reach for
DD experiments when limited by the coherent neutrino scattering
background [49].

Figs. 2 and 3 show for the different coupling scenarios the
current and projected 90% CL limits for the CMS mono-jet
and DD searches in the (Mmed,mDM) plane for the cases of an
axial-vector mediator and a vector mediator, respectively. The
conclusions are the same for the projected limits as for the current
results. We predict similar complementarity between the collider
and DD experiments going forward, with LUX, LZ and DARWIN
retaining better sensitivity than themono-jet LHC search for vector
mediators for all but the very low mDM region, whereas for the
axial-vector mediator the mono-jet search extends the reach of
the DD experiments. As expected, the overall largest reach in the
DM parameter space is obtained for the largest coupling scenario
gq = gDM = 1.45. Whereas for vector interactions, shown in
Fig. 3, none of the projected collider or next generation DD limits
extend beyond the discovery reach, the situation for axial-vector
mediators shown in Fig. 2 is different. For gq = gDM = 1.45,
neither collider nor DD searches approach in any region of the
Mmed–mDM plane the discovery reach. This changes for the weaker
coupling scenarios, where for relatively lowmDM the collider limits
approach the DD discovery reach for gq = gDM = 1, and even go
significantly beyond it for gq = gDM ≤ 0.5.

The quantitative comparison of the project sensitivities of col-
lider and DD experiments can also be displayed in the traditional
(σ 0

SD,mDM) and (σ 0
SI,mDM) planes. Fig. 4 shows projected limits in

1 A similar exposure will also be reached by XENONnT [46].



54 S.A. Malik et al. / Physics of the Dark Universe 9–10 (2015) 51–58
Fig. 1. A comparison of the current 90% CL LUX and SuperCDMS limits (red and orange lines, respectively), the mono-jet limits in the MSDM models (blue lines) and the
limits in the EFT framework (green line) in the cross section vs mDM plane used by the direct detection community. The left and right panels show the limits on the SD and
SI cross sections appropriate for axial-vector and vector mediators respectively. For the MSDM models we show scenarios with couplings gq = gDM = 0.25, 0.5, 1.0, 1.45.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Projected limits for the CMSmono-jet search (blue lines) and DD searches by LUX (red line), LZ (red dashed line) and DARWIN (purple line) in the (Mmed,mDM) plane
for an axial-vector mediator with the coupling scenarios gq = gDM = 0.25, 0.5, 1.0, 1.45. For reference, the discovery reach of DD experiments accounting for the coherent
neutrino scattering background is also displayed (green line). The region to the left of the various curves is excluded at 90% CL. Note the change in scale in each panel. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
these planes for the high-luminosity-LHC (HL-LHC14) scenario of
3000 fb−1 at 14 TeV. Again the four choices of couplings are shown:
gq = gDM = 0.25 and 1.45, which approximate the extremes of
couplings, and the intermediate coupling scenarios of 1.0 and 0.5.

Also shown are the projected limits from LZ and DARWIN
assuming a 10 and 200 tonne year exposure respectively, and the
projected spin-independent limits from SuperCDMS assuming a
run with 108 Ge and 36 Si detectors at SNOLAB [50]. In the case
of the spin-independent interactions, the SuperCDMS projection
extends the sensitivity of DD experiments to lower values of
mDM, so its inclusion provides a more complete comparison with
the collider limits. Similar conclusions regarding the comparison
between the MSDM and DD limits can be derived from projections
in this plane. For spin-independent interactions, the MSDMmodel
with a s-channel vectormediator adds additional sensitivity only in
the very lowmDM region, whereas for spin-dependent interactions
the axial-vector mediator complements the LZ limits very well for
DM masses below a few hundred GeV, and extends sensitivity to
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Fig. 3. Projected limits for the CMS mono-jet search (blue lines) and DD searches by LUX (red line), LZ (red dashed line) and DARWIN (purple line) in the (Mmed,mDM)

plane for a vector mediator with the coupling scenarios gq = gDM = 0.25, 0.5, 1.0, 1.45. For reference, the discovery reach of DD experiments accounting for the coherent
neutrino scattering background is also displayed (green line). The region to the left of the various curves is excluded at 90% CL. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Projected 90% CL limits for the CMSmono-jet search (blue lines), LZ (red lines) and DARWIN (purple lines) in the cross section vsmDM plane for SI and SD interactions
appropriate for the vector and axial-vectormediators respectively. The collider limits are defined for coupling scenarioswith gq = gDM = 0.25, 0.5, 1.0, 1.45. For comparison,
the discovery reach of DD experiments accounting for the neutrino scattering background is also displayed (green lines). For the spin-independent interaction we also show
a projection of the SuperCDMS limit (orange line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the cross section beyond the neutrino limit for DM mass below
10 GeV in all coupling scenarios.

Both the choices of planes that compare the projected
sensitivities of collider and DD experiments provide accurate
comparisons of the two search strategies in the MSDM on an
equal footing. Whereas the (Mmed,mDM) plane might be more
familiar to the collider community, the (σ 0

DD,mDM) plane is a
more traditional way of displaying this comparison among the
DD community. However, when comparing the two planes care
must be taken in the interpretation of the relative sensitivities of
the different scenarios. For example, whereas in the (Mmed,mDM)

plane the mono-jet limits get stronger with increasing coupling,
the same results displayed in the (σ 0

DD,mDM) plane show that for
DM masses below a few hundred GeV more parameter space is
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ruled out for the weaker coupling scenarios. This is explained by
the fact that the planes use different observables to benchmark the
performance of the search. In one case the mediator mass Mmed is
the benchmark, whereas in the other case it is the nucleon-WIMP
scattering cross section σ 0

DD. As explained above, the cross section
scales as (gqgDM)2/M4

med for DD experiments, and approximately
like (gqgDM)2/(M4

medΓmed) for the collider search. It is important
to take these relations into account when translating between the
two planes. For the example mentioned above, this implies that,
whereas the collider limit on Mmed gets stronger with increasing
coupling, when taking into account the factor (gqgDM)2, it rules out
less parameter space in σ 0

DD as the coupling increases. Therefore,
the results displayed in these two planes are fully consistent but
represent different ways to benchmark the search. Depending on
what observable is more relevant for the question at hand, either
the (Mmed,mDM) plane or the (σ 0

DD,mDM) plane might be more
appropriate to answer it.

We emphasize that the results and sensitivity projections
presented here are valid for single vector or axial-vector mediator
exchange, assuming equal coupling to all quarks. Experimentally,
DD experiments probe a combination of the couplings to u and d
quarks for vector exchange and to u, d and s quarks for axial-vector
mediator exchange. This is in contrast to the mono-jet search.
Although the production of the vector or axial-vector mediator is
mainly sensitive to the coupling to u and d quarks, the mono-jet
search is also very dependent on the mediator width Γmed, which
depends on the couplings to all quarks into which the mediator
can decay. This therefore motivates one direction in which the
MSDM framework should be extended: scenarios with different
hypotheses for the couplings to various flavours of quarks should
be considered, since DD and mono-jet searches probe different
weighted combinations of these couplings.

Other avenues should also be explored to cover a more
comprehensive region of DM phenomenology. These include for
instance, scalar and pseudoscalar mediators, t-channel mediators
and Majorana fermion or scalar DM scenarios. In addition, the
collider searches are also sensitive to theproperties of themediator
itself and hence results from several different topologies, such
as di-jet and multi-jet events with missing transverse energy,
can be combined to place limits on the MSDM parameter space.
This is particularly relevant for scenarios where gDM ≠ gq
(discussed further in Ref. [29]) since one interesting feature of
these other channels is that theymay probe different combinations
of DM and quark couplings. For instance, di-jet searches should
be considered as complementary to mono-jet searches since they
provide additional constraints on the coupling gq alone. Other
examples are found in Ref. [20], where it was demonstrated
that orthogonal regions of parameter space can be constrained
when mono-jet, mono-photon and di-jet searches are combined.
Furthermore, multi-jet plus missing transverse energy topologies,
as used to search for supersymmetric particle production at the
LHC, will complement andmay even improve the sensitivity of the
mono-jet search by probing additional final states that are relevant
to simplified models that predict significant jet activity in the final
sate. Examples are scalar and pseudoscalar models, as discussed
in [51–54].

Additional searches may also allow for MSDM models with
more parameters to be constrained. While we have only con-
sidered couplings of the mediator to quarks, di-lepton, mono-Z ,
mono-W or invisible Higgs searches could all be employed to con-
strain the coupling of themediator to leptons or bosons. This opens
the possibility of performing a global fit to aMSDMmodel, incorpo-
rating also the constraints from the indirect detection experiments,
which are likely to provide important constraints on these MSDM
models [55]. This would be akin to the fits that are performed to
specific models of supersymmetry, and would be particularly use-
ful for characterizing any discovery of a DM signal in the direct or
indirect detection experiments and/or the LHC.
3. Near-termproposal to compareDMsearches based onMSDM
models

Based on the discussion presented in Section 2, we propose the
following procedure and benchmark plots for the comparison of
the collider and DD searches in the study of DM parameter space
coverage:

• Wepropose that comparisons bemade based onMSDMmodels
as described in Section 2. We initially restrict the proposal to
MSDM models where the DM is a Dirac fermion that interacts
with a vector or axial-vector mediator, with equal-strength
couplings to all active quark flavours. These models are fully
described by four independent parameters.

• We propose to map the collider data into two-dimensional
planes, and compare with the results of DD searches in both the
‘‘traditional’’ cross section versus mDM plane (see, e.g., Figs. 1
and 4), as well as the (Mmed,mDM) plane (see, e.g., Figs. 2 and 3),
for the four coupling scenarios gq = gDM = 0.25, 0.5, 1.0, 1.45.
For couplings below gq = gDM = 0.25 the present CMS mono-
jet search does not provide a significant limit, while for gq =

gDM = 1.45 the width of the mediator becomes larger than
its mass. Therefore, the proposed range of coupling scenarios
covers the two extreme scenarios (0.25 and 1.45) as well as
intermediate cases (0.5 and 1.0). Depending on the desired
application, one or even both planes can be used to provide a
characterization on equal footing of the absolute and relative
performances of collider and DD experiments.

This concrete proposal could be adopted for the near-future data
comparisons of collider and DD searches for DM. We recommend
at the same time to continue the discussion and to explore
further scenarios and models in order to develop a comprehensive
strategy to characterize and compare these searches in the
future and maximize the combined DM particle study potential.
While the different collider and DD properties of vector or
axial-vector mediators are excellent examples to demonstrate
the complementarity of the two search strategies, an obvious
extension of this proposal would be to also consider coupling
scenarios where gq is not universal for all quarks and where
gDM ≠ gq, scenarios with scalar and pseudo-scalar mediators as
well as t-channel exchanges. For example, a MSDM description
with scalar and pseudo-scalar mediators would provide some of
the simplest realizations of a non-minimal Higgs sector where the
Standard Model Higgs interacts and can mix with the (pseudo)-
scalar mediators. Therefore, suchmodels provide a direct link with
Higgs physics and it might even be possible that there is a common
origin of the electroweak and the DM scales in Nature as it was
recently explored in e.g. [56,57].

4. Summary

We have focused in this White Paper on a concrete proposal
for characterizing and comparing DM searches in collider and DD
experiments, based on the framework of simplified models. The
results presented here are based on recent work described in [29]
and are defined in the context of Minimal Simplified Dark Matter
(MSDM)models, which have four free parameters: the mass of the
DM particle, mDM, the mass of the mediator, Mmed, the coupling
of the mediator to the DM, gDM, and the coupling of quarks to the
mediator, gq. We emphasize that all four parameters are important
for translating the collider limits into equivalent DD experiment
sensitivities. For the example of s-channel vector and axial-vector
mediator interactions, we show how to characterize the results of
searches for DM particles at colliders and direct detection (DD)
experiments in such a way that a comparison between the two
approaches can be made on an equal footing.
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Using sensitivity projections from the CMS mono-jet search,
LZ, DARWIN and SuperCDMS for future running scenarios, we
compare the limits of these searches in two characteristic planes:
those for (Mmed,mDM) and (σ 0

DD,mDM). Both planes provide a
straightforward comparison of the two search approaches and,
depending on the desired application, one or even both planes can
be used to provide a characterization of the absolute and relative
performances of collider and DD experiments. This prompts us
to formulate a proposal for a better-motivated procedure for
comparisons of collider data with results from direct dark matter
search experiments.

This proposal is based on a particular implementation of
simplified models, which is only one from several options for
developing the comparison of DM searches at collider and DD
experiments beyond the over-simplified EFT interpretation. The
extension of the MSDM beyond the assumptions made in this
White Paper will be important to make this approach complete.
For instance, coupling scenarios where gq is not universal for all
quarks or where gDM ≠ gq should be considered, and other
mediators should be investigated, such as scalar and pseudoscalar
interactions as well as t-channel exchanges. The interpretation
framework advocated here represents a potential starting point
for going beyond the EFT framework, but further additions to
the MSDM model, as well as the consideration of alternative
approaches, will be required to develop a general strategy for
comparing collider and DD experiments in the future.
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