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Behavioral/Cognitive

When Implicit Prosociality Trumps Selfishness: The Neural
Valuation System Underpins More Optimal Choices When
Learning to Avoid Harm to Others Than to Oneself

Lukas L. Lengersdorff,1 Isabella C. Wagner,1 Patricia L. Lockwood,2,3 and Claus Lamm1

1Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology,
University of Vienna, Vienna, 1010, Austria, 2Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, United Kingdom,
and 3Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom

Humans learn quickly which actions cause them harm. As social beings, we also need to learn to avoid actions that hurt
others. It is currently unknown whether humans are as good at learning to avoid others’ harm (prosocial learning) as they
are at learning to avoid self-harm (self-relevant learning). Moreover, it remains unclear how the neural mechanisms of proso-
cial learning differ from those of self-relevant learning. In this fMRI study, 96 male human participants learned to avoid
painful stimuli either for themselves or for another individual. We found that participants performed more optimally when
learning for the other than for themselves. Computational modeling revealed that this could be explained by an increased
sensitivity to subjective values of choice alternatives during prosocial learning. Increased value sensitivity was further associ-
ated with empathic traits. On the neural level, higher value sensitivity during prosocial learning was associated with stronger
engagement of the ventromedial PFC during valuation. Moreover, the ventromedial PFC exhibited higher connectivity with
the right temporoparietal junction during prosocial, compared with self-relevant, choices. Our results suggest that humans
are particularly adept at learning to protect others from harm. This ability appears implemented by neural mechanisms over-
lapping with those supporting self-relevant learning, but with the additional recruitment of structures associated to the social
brain. Our findings contrast with recent proposals that humans are egocentrically biased when learning to obtain monetary
rewards for self or others. Prosocial tendencies may thus trump egocentric biases in learning when another person’s physical
integrity is at stake.

Key words: computational modeling; empathy; fMRI; learning; prosocial behavior; valuation

Significance Statement

We quickly learn to avoid actions that cause us harm. As “social animals,” we also need to learn and consider the harmful con-
sequences our actions might have for others. Here, we investigated how learning to protect others from pain (prosocial learn-
ing) differs from learning to protect oneself (self-relevant learning). We found that human participants performed better
during prosocial learning than during self-relevant learning, as they were more sensitive toward the information they col-
lected when making choices for the other. Prosocial learning recruited similar brain areas as self-relevant learning, but addi-
tionally involved parts of the “social brain” that underpin perspective-taking and self-other distinction. Our findings suggest
that people show an inherent tendency toward “intuitive” prosociality.

Introduction
To ensure survival, it is essential that we learn to refrain from
actions that cause ourselves harm. Physical pain acts as a power-
ful learning signal, indicating the immediate need to adjust our
behavior to avoid injury (Wiech and Tracey, 2013; Vlaeyen,
2015; Tabor and Burr, 2019). As social beings, we also have to
learn and adapt our behavior to avoid harm to others, and “inter-
personal harm aversion” has been proposed as the basis of proso-
cial behavior and morality (Gray et al., 2012; Crockett, 2013;
Chen et al., 2018; Decety and Cowell, 2018). However, it remains
unknown whether humans are as good at learning to avoid harm
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to others (prosocial learning) as they are at learning to avoid
harm to themselves (self-relevant learning). Moreover, while the
neural underpinnings of self-relevant learning are well estab-
lished, the mechanisms behind prosocial learning remain
unclear.

Recent evidence suggests that other people’s physical in-
tegrity is a highly relevant factor for human behavior.
Crockett et al. (2014, 2015) found that individuals are willing
to spend more money to protect others from pain than to
protect themselves. This suggests that individuals are “hyper-
altruistic” in situations where they can deliberately weigh
self- and other-relevant outcomes. It remains unclear,
though, whether hyperaltruism extends to situations where
prosociality depends on more implicit processes, such as
operant learning (Zaki and Mitchell, 2013). Other studies
have proposed an egocentric bias in learning: Participants
learned more slowly to gain financial rewards, and to avoid fi-
nancial losses, for others than for themselves (Kwak et al.,
2014; Lockwood et al., 2016), and to associate objects with
others compared with oneself (Lockwood et al., 2018).
Crucially, it is thus possible that humans show superior self-
relevant learning in the context of financial outcomes and ba-
sic associative learning, but similar, or superior, prosocial
learning when another person’s health is at stake. Moreover,
prosocial learning performance might vary greatly between
individuals because of differences in socio-cognitive traits,
such as empathy (Lockwood et al., 2016; Olsson et al., 2016;
Lamm et al., 2019). Here, we therefore investigated people’s
performance in prosocial learning in the context of harm
avoidance, and how it is associated with empathic traits.

Advances in the neuroscience of reinforcement learning (RL)
(Lee et al., 2012) suggest that self-relevant learning is imple-
mented by neural systems for two processes: valuation (i.e.,
choosing between alternatives based on their subjective values)
and outcome evaluation (i.e., updating values in response to
choice outcomes). Converging evidence suggests that both self-
and other-relevant valuation engages the ventromedial prefrontal
cortex (VMPFC) (Kable and Glimcher, 2009; Ruff and Fehr,
2014). Activation of the VMPFC related to valuation affecting
others appears further modulated by brain areas connected to
social cognition, such as the temporoparietal junction (TPJ), a
region linked to self-other distinction and perspective-taking
(Hare et al., 2010; Janowski et al., 2013). With respect to outcome
evaluation, it has been found that learning based on pain as a
feedback signal engages the anterior cingulate cortex (ACC) and
the anterior insula (AI), both when pain is directed to oneself
and when witnessing pain in conspecifics (Olsson et al., 2007;
Lindström et al., 2018; Keum and Shin, 2019). It is thus likely
that these brain areas also underpin prosocial learning, but the
extent of their involvement is unknown.

Here, we conducted a high-powered study with male human
participants (N= 96) who learned to avoid painful stimuli either
for themselves or another individual. Combining computa-
tional modeling with fMRI, we tested whether participants
were better, or worse, at learning to avoid others’ harm com-
pared with self-harm. We expected that differences in learn-
ing behavior should be reflected by different recruitment and
connectivity of the VMPFC during valuation, as well as the
ACC and AI during outcome evaluation. Our major aim was
to clarify whether humans are actually “selfish” learners, as
suggested by previous evidence using monetary outcomes as
learning signals, or if prosocial tendencies can trump egocen-
tricity in the face of harm.

Materials and Methods
Data reported here were acquired as part of a longitudinal project inves-
tigating the effects of violent video games on social behavior (outside the
scope of the present report). In brief, participants completed two fMRI
sessions ;2 weeks apart. After the first session, participants came into
the behavioral laboratory for 7 times over the course of 2 weeks to com-
plete a violent (or nonviolent) video game training (discussed else-
where). Here, our focus is exclusively on the data from the first session,
before video game training. At this point of the experiment, participants
had not yet been exposed to any experimental manipulation, instruc-
tions, or other types of information associated with violent video games.
This ensures that the present results are not influenced by the design of
the overarching study, and that we could exploit the high sample size of
that study to pursue the present scientific aims related to prosocial
learning.

Participants
Ninety-six male volunteers (age range: 18-35 years) participated in the
study. The novelty of the present design precluded formal power analy-
sis. As a benchmark, though, we considered the effect size reported by
Lockwood et al. (2016), who used a similar task, but with financial
rewards as positive reinforcers, rather than pain as negative reinforcers.
They found an effect size of d= 0.87 when comparing the learning rates
for self-relevant learning with the learning rates for prosocial learning.
With a sample size of 96, we had a power. 99.9% to find an effect of
this size in our study. Sensitivity analysis further indicated that we had a
power of 80% to detect an effect of d=0.29, suggesting that our study
was adequately powered to detect medium to small effects (Cohen,
2013). Power analyses were performed with the software Gpower 3 (Faul
et al., 2007). All participants were healthy, right-handed, had normal or
corrected-to-normal vision, reported no history of neurologic or psychi-
atric disorders or drug abuse, and fulfilled standard inclusion criteria for
MRI measurements. Only male participants of the age range 18-35 years
were tested based on constraints related to the overarching project on
violent video games. Hence, the findings presented here only apply to
this population. All participants gave written consent before participa-
tion and received financial reimbursement, and the study had been
approved by the Ethics Committee of the Medical University of Vienna.

Study timeline and procedures
Participant arrival and interaction with the confederate. Each partic-

ipant was paired with another male participant who in reality was a
member of the experimental team (i.e., a confederate). This way, we
ensured that the participant was under the impression of completing the
prosocial learning task together with another person (see below for
details of the task). As a cover story, the participant was told that he had
been randomly assigned to the role of the “MRI participant,” and would
complete the experimental tasks inside the MR scanner, while the con-
federate had been assigned to the role of “pulse measures participant”
from whom we would take pulse measurements only. After arrival at the
MR facility, it was explained that the participant would first receive task
explanations in another room while the confederate would complete the
pain calibration, and that they would switch places afterward (only the
participant actually underwent the experimental procedures). After
the pain calibration (see below), the participant was positioned in the
MR scanner and the confederate was seated next to the scanner at a table
with an MR compatible monitor and keyboard. To uphold the impres-
sion of the confederate actually participating in the task, the confederate
remained seated next to the scanner for the entire duration of the experi-
ment, and also responded audibly to the experimenter’s mock questions
about his physical comfort via the intercom.

Participants were formally interviewed if they doubted the deception
(e.g., if they believed that the confederate was a real participant) at the
end of the second session of the overarching project (2 weeks later). At
this point, 6 participants reported doubts that the confederate was a real
participant. No participant expressed doubts about the confederate after
the first session, but they were not explicitly interviewed regarding
doubts at that point in time, to not raise suspicions about the cover
story.
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Electrical stimulation and pain calibration. Electrical stimulation
was delivered with a Digitimer DS5 Isolated Bipolar Constant Current
Stimulator (Clinical & Biomedical Research Instruments) using concen-
tric surface electrodes with 7 mm diameter and a platinum pin (WASP
electrode, Specialty Developments) attached to the dorsum of the left
hand. With this setup, electrical stimulation was constrained to the skin
under and directly adjacent to the electrodes. To determine each partici-
pant’s subjective pain threshold, we used an adaptive staircase procedure
(as previously used in Rütgen et al., 2015a,b). In brief, the participant
received short stimuli (500ms) of increasing intensity and was asked to
rate pain intensity on a 10 point numeric scale from 0 to 9. The numbers
corresponded to the following subjective perceptions: 0 = not percepti-
ble; 1 = perceptible, but not painful; 3 = a little painful; 5 = moderately
painful; 7 = very painful; 9 = extremely painful, highest tolerable pain.
To account for habituation and familiarization effects, this procedure
was repeated once, after which the participant received 30 random elec-
trical stimuli. The average intensities of electrical stimuli that were rated
as 1, and 7 were then chosen as the intensities of nonpainful and painful
stimulation during the pain avoidance task.

Prosocial learning task. The participant was instructed to learn the
association between abstract symbols and painful electrical stimuli.
During each trial (Fig. 1A), the participant had to choose one of two
symbols, with one of the symbols resulting in nonpainful electrical stim-
ulation in 70% of trials, and the other in painful electrical stimulation in
30% of the trials (participants were not informed about these contingen-
cies). Importantly, electrical stimulation as a consequence of the choice
made was either delivered to the participant (Self condition) or to the
other person, that is, the confederate (Other condition). For both condi-
tions, the participant completed three blocks of 16 trials (resulting in 48
trials per condition, and 96 trials in total). The two experimental condi-
tions alternated per block (so the participants never completed the same
condition twice in a row), and the starting condition was counterbal-
anced across participants. Each block contained a different pair of
symbols, and the participant was instructed to learn this new set of sym-
bol-stimulus contingencies once more.

At the start of a new block, the participant was instructed that he
would now have to perform the task for himself (“Play for yourself”) or
for the confederate (e.g., “Play for Michael”). During each trial, the two
symbols were presented for 3000ms, and the participant was asked to
choose one symbol (choice phase). Choices were made with the right
hand via a button box. If the participant made a choice within this time
limit, a red or blue arrow (presented for 1000ms) indicated whether the
current recipient would receive painful or nonpainful stimulation,

respectively (outcome phase). The arrow pointed downwards if the par-
ticipant received electrical stimulation himself (self-directed electrical
stimulation) or to the right toward the confederate (other-directed elec-
trical stimulation). If no button press occurred within the time limit, the
message “too slow!” was displayed and was followed by painful electrical
stimulation to either the participant or the confederate, depending on
the current condition. After an interval of 2500-4500ms (uniformly jit-
tered, in steps of 250ms), the electrical stimulation was delivered (stimu-
lation phase). During self-directed electrical stimulation (500ms), the
participant saw a pixelated photograph of the confederate (1000ms,
same onset as electrical stimulus). Pain intensity was indicated by a red
or blue lightning icon in the bottom right of the photograph. During
other-directed electrical stimulation, the participant saw a photograph of
the confederate with a neutral or painful facial expression, during non-
painful or painful electrical stimulation, respectively. The next trial
started after an intertrial interval between 2500 and 4500ms (uniformly
jittered, in steps of 250ms). The task was presented using COGENT
(http://www.vislab.ucl.ac.uk/cogent.php), implemented in MATLAB
2017b (TheMathWorks). The total task duration was;23min.

As part of the cover story, the participant was instructed that the
other participant (i.e., the confederate) would never make choices that
could result in stimulation for himself or the participant. Instead, he
would be presented with the choices of the participant, and would have
to indicate per button press if he would have made the same decision.
We chose this approach (instead of saying that the confederate would
only passively receive stimulation without any further instructions) to
increase the believability of the deception.

MRI data acquisition
MRI data were acquired with a 3 Tesla Siemens Skyra MRI system
(Siemens Medical) and a 32-channel head coil. BOLD functional imag-
ing was performed using a multiband accelerated EPI sequence with the
following parameters: TE: 34ms; TR: 1200ms; flip angle: 66°; interleaved
ascending acquisition; 52 axial slices coplanar to the connecting line
between anterior and posterior commissure; multiband acceleration fac-
tor 4, resulting in 13 excitations per TR; FOV: 192� 192� 124.8 mm,
matrix size: 96� 96, voxel size: 2� 2 � 2 mm, interslice gap 0.4 mm.
Structural images were acquired using a MPRAGE sequence with the
following parameters: TE= 2.43ms; TR=2300ms; 208 sagittal slices;
FOV: 256� 256� 166 mm; voxel size: 0.8� 0.8� 0.8 mm. To correct
functional images for inhomogeneities of the magnetic field, field map
images were acquired using a double echo gradient echo sequence with
the following parameters: TE1/TE2: 4.92/7.38ms; TR=400ms; flip

Figure 1. Schematic depiction of the trial structure of the prosocial learning task. The task was to identify, in the Choice window, one of two abstract symbols that would prevent painful
stimulation from being delivered to either Self (self-relevant learning) or Other (prosocial learning). One symbol had a 30% chance of delivering pain, the other a 70% chance. Feedback on the
outcome of the choice was delivered in the Outcome window, by means of color-coded arrows (red represents pain; blue represents no pain). Overall, 16 such trials were performed in each
block, with three blocks per condition (Self/Other; presented in alternating order) being run over the course of the experiment. Top row, Trial of the Self condition (self-relevant learning) in
which a nonpainful electrical stimulus is delivered to the participant as a consequence of his choice. Bottom row, Trial of the Other condition (prosocial learning) in which a painful electrical
stimulus is delivered to the confederate as a consequence of the participant’s choice. Numbers below descriptions indicate event length in seconds, with intervals indicating ranges of intersti-
mulus jitter.
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angle: 60°; 36 axial slices with the same orientation as the functional
images; FOV: 220� 220� 138 mm; matrix size: 128� 128� 36; voxel
size: 1.72� 1.72� 3.85 mm.

Trait measures
As a measure of trait empathy, participants completed the Questionnaire
of Cognitive and Affective Empathy (QCAE) (Reniers et al., 2011),
which assesses empathic traits along the two dimensions cognitive empa-
thy (with the subdimensions perspective-taking and online simulation)
and affective empathy (with the subdimensions emotion contagion, prox-
imal responsivity, and peripheral responsivity). The questionnaire was
completed after the MR session. Because of an error in data collection,
questionnaire data from 9 participants were not available for analysis. We
therefore restricted analyses related to trait measures of empathy to the
remaining 87 participants.

Data analysis
Our analysis plan was as follows: first, we tested whether participants
showed better learning behavior during prosocial or self-relevant learn-
ing, as measured by an objective index of optimal behavior (described in
detail below). Then, we used computational modeling to investigate
whether behavioral differences could be explained by differences in the
mechanisms underlying these two types of learning. Finally, we used
fMRI analyses to relate differences on the behavioral level to differences
in the neural mechanisms.

Analysis of optimal behavior. We first investigated whether partici-
pants showed more optimal behavior during prosocial or self-relevant
learning. In decision theory, optimal choices are defined as those choices
that maximize the expected rewards (or minimize the expected loss), given
all available information (Kulkarni and Gilbert, 2011). Mathematically,
our learning task is equivalent to a two-armed bandit problem with
unknown reward probabilities of the two choice alternatives, pA and pB.
For this kind of problem, the optimal choice in each trial can be derived
algorithmically, as described by Steyvers et al. (2009; see also Kaelbling et
al., 1996). For mathematical details, we refer the reader to these references
and to our commented scripts (see Code and data availability). In short, a
choice is optimal if an “ideal participant” with perfect memory and the
ability to calculate all possible outcome sequences would make the same
choice, given the information at hand. Importantly, an optimal choice
maximizes not only the expected outcome of the current trial, but also the
possible outcomes of subsequent trials, balancing exploration and exploi-
tation. Optimal choices also depend on the prior information the decider
has about the choice alternatives. This can be modeled by defining a prior
distribution for the reward probabilities pA and pB. Following Steyvers et
al. (2009), we modeled prior information about the learning task with a
beta distribution, with parameters a and b set to 1.5. This gives a symmet-
ric distribution with considerable probability mass for all but the most
extreme values of pA and pB. Thus, the distribution reflects that partici-
pants were informed that both symbols will lead to painful stimulation in
some cases, but did not get any further information about the probabil-
ities. To investigate how sensitive our results were to these exact values of
a and b, we also calculated optimal choices under beta distributions with
both values set to 1 (reflecting a uniform distribution) or 2 (putting more
probability mass on average probabilities).

Preprocessing, analysis, and visualization of behavioral data were
performed using R 3.4.4 (R Core Team, 2020). To test for differences in
the number of optimal choices between prosocial and self-relevant learn-
ing, we computed a generalized linear mixed model (GLMM), with opti-
mal choice as binary response variable (binomial family, logit link
function), using the R packages lme4 (Bates et al., 2015) and afex
(Singmann et al., 2020). Trial (1-16; numeric, mean centered), condition
(Self vs Other; categorical dichotomous; coded as Self = �1, Other = 1),
and their interaction (trial � condition) were specified as predictors. To
account for dependencies between observations within the same partici-
pants, we treated participants as levels of a random factor. Following the
recommendation of Matuschek et al. (2017), we selected the random
effects structure that led to the most parsimonious fit of the GLMM, as
indicated by the Akaike Information Criterion (Akaike, 1998). We then
tested the significance of the fixed effects of the final model, using Type

III drop-one-term likelihood ratio tests, as implemented by the “mixed”
function of the package afex.

Computational modeling
We used computational modeling to investigate differences in the proc-
esses underlying prosocial and self-relevant learning. In computational
modeling, one first defines a model as a set of mathematical equations
that relate observable behavior to theoretical quantities. If the model is
true (or, at least, useful) (Box, 1976), it should help explain the observed
behavior of a participant. Importantly, the exact relationship between a
model’s theoretical quantities and actual behavior is governed by a num-
ber of free parameters, which have to be estimated from the data. Using
techniques of model comparison, one can then select the most useful
model from a set of plausible candidates. Here, we used RL models,
which already have a long history of use in neuroscientific research
(Hackel and Amodio, 2018). Following this modeling framework, we
assumed that participants chose between symbols A and B based on the
symbols’ subjective values (valuation). Then, they updated these subjec-
tive values based on the outcome of their choice (outcome evaluation).

Models for valuation. We used the softmax function to model how
subjective values are mapped onto choice probabilities. This function
takes as input the subjective values of symbols A and B (here denoted as
VA and VB, and bound in the interval [0, 1]), and gives as output the
probability of choosing one symbol over the other. In the case of only
two alternatives/symbols, the softmax simplifies to the logistic function,
and is as follows:

P choicet ¼ AjVA;t;VB;t

� � ¼ 1
11e�b VA;t�VB;tð Þ ;

where P choicet ¼ AjVA;t;VB;t
� �

is the probability of choosing symbol
A in trial t, given specific values of VA;t and VB;t , e is the basis of the
exponential function, and b is the free inverse temperature parame-
ter, defined on the positive real numbers (0, 1). In the simple case of
two symbols, the probability of choosing symbol B is given by
1� P choicet ¼ AjVA;t;VB;t

� �
. The probability of choosing symbol A

increases nonlinearly (in a sigmoid shape) with the difference
VA;t � VB;t ; for large positive values of the difference, the probability
approaches 1; whereas for strongly negative values of the difference,
the probability approaches 0. If the difference is close to 0, the proba-
bility is close to 0.5; that is, the choices of the participant are nearly
random. Importantly, the free parameter b defines how sensitive the
softmax function, and thus the participants’ choices, are to the differ-
ence in subjective values. For very high b , even small differences in
subjective values lead to a high probability of choosing the symbol
with the higher value. For b close to 0, choices are very random,
even if the difference in subjective values is high. In this paper, we
will refer to b as a measure of value sensitivity, consistent with the
parameter’s mathematical definition in the RL model (see also
Katahira, 2015; Chung et al., 2017). Importantly, this interpretation
is also consistent with the interpretation of b as an indicator of the
exploration/exploitation trade-off (e.g., Humphries et al., 2012;
Cinotti et al., 2019). In other words, a high b may indicate exploita-
tive choices, as choice behavior is very sensitive to differences in
value, and the option with the higher value is frequently chosen. In
contrast, a low b leads to choices that are less dependent on the value
difference, which may reflect the exploration of the alternative with
the lower values.

Importantly, to test for differences between self-relevant and proso-
cial learning, we also considered models with condition-specific parame-
ters (for a similar approach, see Lockwood et al., 2016). Thus, we also
estimated models in which different inverse temperature parameters
b Self and bOther governed participants’ choice behavior during self-rele-
vant and prosocial learning, respectively. Differences here would indicate
that a participant showed differences in value sensitivity between the two
conditions (i.e., for self-relevant and prosocial learning).

Models for outcome evaluation. Following the RL modeling frame-
work, we assumed that participants updated the subjective value of the
chosen symbol based on the received outcome. Here, we will refer to
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outcomes that indicate the delivery of nonpainful stimulation as positive
outcomes, and to outcomes that indicate painful stimulation as nega-
tive outcomes. According to the simplest RL model (Sutton and Barto,
1998; Hackel and Amodio, 2018), subjective values are updated accord-
ing to the following formula:

VA;t11 ¼ VA;t 1a Rt � VA;tð Þ;

where VA;t is the value of the chosen symbol A in trial t, VA;t1 1 is the
updated value, and a is the free learning rate parameter, which is bound
in the interval [0, 1]. Rt is the number encoding the outcome of trial t,
here defined as 1 for positive outcomes/“no pain,” and 0 for negative
outcomes/“pain.” We chose this coding scheme to make our algorithm
more comparable with those used in other studies using the RL model
(e.g., Lockwood et al., 2016). But this coding scheme is mathematically
equivalent to that used in other aversive learning paradigms where pain
outcomes are instead coded as �1 and avoidance of pain as 0 (e.g.,
Seymour et al., 2004; Roy et al., 2014) (for a mathematical proof of this
statement, see https://osf.io/h9txe/). The term Rt � VA;tð Þ is usually
referred to as the prediction error PEt of trial t. The free parameter a
controls the degree to which the value of the chosen symbol is updated
by the prediction error. For a close to 0, there is nearly no updating. For
a close to 1, the subjective value is strongly updated by the last outcome.
Yet the learning rate a cannot directly be interpreted as a measure of
how fast participants understand which of the two symbols is better (see
also Zhang et al., 2020). Rather, it describes how strongly subjective val-
ues are influenced by the last outcome, regardless of the outcomes that
came before. VA;0 and VB;0 were both initialized to 0.5, reflecting the
assumption that participants were equally likely to prefer either symbol
on the first trial, and that they had no prior information about symbol-
outcome contingencies.

Participants might have responded differently to positive outcomes
(i.e., nonpainful stimulation) than to negative outcomes (i.e., painful
stimulation). We therefore also considered an extension of the simple
RL model which allowed for outcome-specific learning rate parameters
(Den Ouden et al., 2013). In this model, participants weighted positive
prediction errors with the learning rate a1, and negative prediction
errors with the learning rate a�. Crucially to our research question, we
also estimated models in which condition-specific learning rate parame-
ters aSelf and aOther controlled the rate with which participants updated
the subjective values during self-relevant and prosocial learning, respec-
tively. If we found beforehand that outcome-specific learning rate pa-
rameters are of importance, we also tested models with two separate
learning rates for positive outcomes (a1

Self and a1
Other), two separate

learning rates for negative outcomes (a�
Self and a�

Other), or both.
Hierarchical modeling. The computational models described so far

explain a single participant’s behavior. To combine the data from all par-
ticipants in our sample, and draw inferences about the underlying popu-
lation, we used hierarchical Bayesian modeling. We thus modeled how
the parameters that characterized participants’ behavior were distributed
in the population. Modeling the commonalities between participants in
such a way has been shown to enable more stable individual parameter
estimates and allows direct inference about population parameters (Ahn
et al., 2017).

Individual learning rate parameters were modeled to follow logit-
normal distributions with unknown population mean ma and SD sa.
This defines a normal distribution on the unbounded scale of the logits
of the learning parameters, which are then mapped into the interval [0,
1] by means of the logistic function. Inverse temperature parameters
were modeled to follow log-normal distributions with unknown popula-
tion mean mb and SD sb . This defines a normal distribution on the
unbounded scale of the natural logarithms of the parameters, which are
then sent to the positive real numbers with the exponential function.

Model estimation. Bayesian model estimation was performed using
the software STAN version 2.18.1 (Carpenter et al., 2017) implemented
in R. Custom code, as well as a detailed description of the used prior dis-
tributions, can be found online (see Code and data accessibility). STAN
utilizes Markov Chain Monte Carlo (MCMC) sampling to approximate

posterior distributions of parameters in light of observed data. MCMC
convergence diagnostics were performed by visual inspection of the trace
plots and standard diagnostics output of the software (Gelman and
Rubin, 1992). We performed model comparison and selection by treat-
ing the models to be compared as components of an overarching mix-
ture model (Kamary et al., 2014; Ly et al., 2016; Robert, 2016; Keller and
Kamary, 2017). This approach allows to assess which of the compared
models is most supported by the observed data, through the calculation
of Bayes factors (BFs) (Kass and Raftery, 1995). We used the following
rationale to find the best-fitting model: We first assessed whether the
data were better explained by a model containing outcome-specific
learning rate parameters (a1, a�). We then assessed in a stepwise man-
ner whether the model fit increased by adding separate parameters for
self-relevant and prosocial learning. Here, we considered both fixed
effects (systematic differences in parameters that characterize the whole
population) as well as random effects (random subject-wise differences
between parameters). To test whether the addition of a condition-wise
parameter difference increased the model fit, we calculated a mixture
model containing the current model without the additional parameter, a
model including the respective random effect, and a model including the
random effect as well as the fixed effect. The mixture model was esti-
mated with 8 MCMC chains of 1000 warmup samples, and 4000 actual
samples. We only added a parameter difference to the model if the
model including the parameter difference had a substantially better
model fit compared with the model without the parameter difference, as
indicated by a BF. 3 (Kass and Raftery, 1995).

After model selection, we reestimated the winning model with four
chains of 2000 warmup samples and 5000 actual samples. Single-value
individual parameter estimates were calculated as the posterior means of
the parameters. To assess absolute, rather than relative, model validity,
we performed posterior predictive checks (Gelman et al., 2013; Zhang et
al., 2020). For each draw of the posterior distribution of parameters, we
simulated the behavior of new participants with the same set of parame-
ters. For visual posterior predictive checks, we plotted the 95% highest-
density intervals (HDIs) of participants’ predicted choices against their
actual choices. Furthermore, we calculated the correlation coefficients
between participants’ actual percentage of optimal choices and the mean
of the predicted percentage of optimal choices.

Associations between model parameters and optimal choices. To for-
mally test whether differences in optimal choice behavior could be
explained by differences in learning mechanisms, we conducted multile-
vel mediation analysis (Kenny et al., 2003; Bauer et al., 2006). We defined
condition (Self vs Other) as independent variable, relevant model pa-
rameters as mediator, and optimal choice as dependent variable. We
estimated the effect of condition on the mediator (path a) with linear
mixed regression, using the function “lmer” of the package lme4 (Bates
et al., 2015). We estimated the effect of the mediator on optimal choices
(path b) by adding the mediator to the GLMM described above (see
Analysis of optimal behavior). To make inference about the indirect
effect of condition via the mediator, we calculated bias-corrected and
accelerated CIs (BCa-Cis) (Efron, 1987) for the product a � b, using
1000 bootstrapping samples with the R package boot (Davison and
Hinkley, 1997), and tested whether this interval contained 0. BCa-CIs
correct for bias and skewness of the bootstrap sample distribution.

Associations between prosocial behavior and trait empathy. Using
regression analysis, we investigated whether differences in prosocial ver-
sus self-relevant learning behavior were associated with empathic traits.
We regressed the difference in parameters for prosocial versus self-rele-
vant learning on the subscales of the QCAE. To test whether the analysis
suffered from multicollinearity because of potentially high correlations
between the subscales, we also calculated the variance inflation factors
per predictor.

fMRI data preprocessing
Preprocessing and analysis of fMRI data were performed using SPM12
(Wellcome Trust Center for Neuroimaging; www.fil.ion.ucl.ac.uk/spm)
implemented in MATLAB 2017b. Functional images were slice-timed
and referenced to the middle slice, realigned to the mean image, and
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unwarped to correct for motion � distortion interaction artifacts using
the acquired field map. The structural image was then coregistered to
the mean image of the realigned functional images using mutual infor-
mation maximization, and structural and functional images were nor-
malized to the stereotactic MNI space (template: MNI ICBM152). The
normalized functional images were smoothed with a Gaussian kernel (4
mm, FWHM). To remove motion-related artifacts, the functional images
were then subjected to an independent component analysis-based algo-
rithm for automatic removal of motion artifacts (Pruim et al., 2015a,b),
implemented using the FMRIB software library (version 5.0; http://
www.fmrib.ox.ac.uk/fsl). For each experimental run, the time course was
decomposed into 100 independent components, which were classified as
motion- or signal-related independent components. Following this,
motion-related independent components were regressed from the time
course using ordinary least-squares regression. To further identify partici-
pants who exhibited extreme head movement during experimental runs,
we calculated the framewise displacement (Power et al., 2012) as a measure
of relative image-to-image motion. Since we a priori had decided to
exclude runs of participants who exhibited framewise displacement . 0.2
(indicating voxel displacement of ;2 mm between volumes) in .1% of
volumes from all further analyses, data of 5 participants were excluded
from the analyses. Moreover, data were high-pass filtered with the SPM12
standard cutoff of 128 s.

fMRI data analysis
For the prosocial learning task, first-level design matrices of the
GLM included regressors for the choice phase (presentation of the sym-
bols, 3000ms), the outcome phase (presentation of the arrow cues indi-
cating the outcome, 1000ms), and the stimulation phase (electrical
stimulation and presentation of the photographs, 1000ms; see also Fig.
1). Regressors were built by creating onset-locked boxcar functions with
the respective event durations, convolved with the canonical HRF. For
the choice phase, regressors were defined separately for the Self and the
Other condition. For the outcome phase, regressors were defined sepa-
rately for the Self and the Other condition, as well as for positive out-
comes (indicating the delivery of nonpainful stimulation) and negative
outcomes (indicating the delivery of painful stimulation). For the stimu-
lation phase, regressors were created separately for every combination of
the factors Self versus Other and nonpainful stimulation (after positive
outcomes) versus painful stimulation (after negative outcomes). Missed
responses were collapsed within three additional nuisance regressors
during choice, outcome, and stimulation in the condition in which
responses were missing. Thus, if a participant had missing responses in
both conditions (Self and Other), six nuisance regressors were added
(three per condition, defined as above).

To detect brain areas in which activation was correlated with model-
derived quantities, we extracted the values from the winning computa-
tional model (see above) and entered them as trial-by-trial parametric
modulators. For events of the choice phase, we added the value differ-
ence (i.e., value of chosen symbol minus value of unchosen symbol) as a
parametric modulator, separately for the Self and Other conditions. For
events of the outcome phase, we added the absolute trialwise prediction
error as a parametric modulator, separately for positive and negative
outcomes, and separately for the Self and Other conditions.

We chose a GLM with separate regressors for positive and negative
outcomes, and prediction errors for these outcomes, for two reasons.
First, as outcomes and prediction errors are by definition very highly
correlated (Behrens et al., 2008; Zhang et al., 2020), this model allowed
us to investigate brain activity that is specifically related to deviations
from the observed outcome to the expected outcome (the parametric
modulators for prediction error are orthogonalized to the regressors for
outcome, and can therefore only explain that part of signal variance that
is not already explained by mere outcomes). Second, we defined different
parametric modulators for prediction errors from positive and negative
outcomes to be able to investigate where in the brain positive deviations
from the expected outcome are processed differently than negative devi-
ations. We used the absolute prediction error to facilitate interpretation
of the resulting estimates: prediction errors for positive outcomes were

positive, with higher numbers indicating greater deviation from the ex-
pectation. Prediction errors for negative outcomes were negative, with
lower (more negative) numbers indicating greater deviation from the ex-
pectation. Therefore, higher values of the absolute prediction error indi-
cated stronger deviations from the expectation, regardless of the valence
of the outcome.

To summarize, the first-level model included 10 task-based regres-
sors, 6 parametric modulators, and 0, 3, or 6 nuisance regressors,
depending on the number of missed responses per participant. Second-
level statistical inference was performed using flexible factorial
ANOVAs, one-sample t tests, and paired-sample t tests. The statistical
threshold for all whole-brain analyses was defined as p, 0.05 familywise
error (FWE) corrected for multiple comparisons at the cluster level,
using a cluster-defining threshold of p, 0.001. The corrected cluster size
threshold (i.e., the spatial extent of a cluster that is required to be labeled
significant) was calculated using the SPM extension “CorrClusTh.m”
(script provided by Thomas Nichols, University of Warwick, United
Kingdom, andMarkoWilke, University of Tübingen, Tübingen, Germany;
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/
nichols/scripts/spm/). Anatomical labeling of activation peaks was based
on the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al.,
2002) and performed using the toolbox xjView (http://www.alivelearn.net/
xjview).

Functional connectivity analysis.We investigated differences in func-
tional connectivity of the VMPFC during the choice phase, by calculat-
ing generalized psychophysiological interaction analyses (McLaren et al.,
2012). We created an anatomic mask of the VMPFC (taken from the
Automatic Anatomical Labeling atlas; Tzourio-Mazoyer et al., 2002)
with significant clusters that emerged from the activation analysis (corre-
lation of brain activity with the difference in value of chosen symbol
minus unchosen symbol). From this intersected mask, the first eigen-
variate of the participant-specific functional time course was extracted,
adjusted for average activation using an F contrast, and deconvolved to
estimate the neural activity in the seed region (i.e., the physiological fac-
tor). The estimated neural activity was then multiplied with the boxcar
function defining the event of interest (i.e., the psychological factor), and
the product was convolved with the HRF. This resulted in one psycho-
physiological interaction regressor per event of interest. The interaction
regressors were added to the first-level design matrix, and the GLMs
were estimated. Group-level connectivity differences between Other and
Self were tested using a paired-sample t test.

Code and data accessibility
Custom scripts for the calculation of optimal choices and estimation of
Bayesian models in STAN, as well as a documentation of the used priors,
are freely accessible on OSF (https://osf.io/53qvd/). Second-level fMRI
contrast maps are accessible at the same location.

Results
Analysis of optimal choice behavior
We first investigated whether participants showed more optimal
behavior during self-relevant or prosocial learning, using
GLMM. The best fitting GLMM was obtained with a random
effects structure containing by-subject random intercepts and
random slopes for condition (Self vs Other), trial (1-16), and
their interaction (see Table 1). This implies that there was

Table 1. Results of the GLMM analysisa

Fixed effects Parameter (SE) Random effect x 2
df¼ 1 p

Intercept 1.351 (0.109) 1.017 93.409 ,0.001
Condition 0.099 (0.041) 0.222 5.781 0.016
Trial 0.108 (0.013) 0.105 55.919 ,0.001
Condition � Trial 0.011 (0.008) 0.031 1.623 0.202
aDependent variable: optimal choice (0 = no optimal choice; 1 = optimal choice). Factor coding for condition:
Self = �1; Other = 1. Trial was mean-centered. Random effect, SDs of the random effect associated with
the respective model term. p values were derived from Type III likelihood ratio tests.
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substantial variation between participants
with respect to the average probability of
an optimal choice, how much this proba-
bility increased per trial, and how much it
differed between conditions. We found
that participants made optimal choices
significantly above chance level (inter-
cept = 1.351, x 2

df¼1= 93.41, p, 0.001): on
average, participants chose optimally in
79.4% of trials (see Fig. 2A). A significant
main effect of condition (b = 0.099,
x 2
df¼1= 5.78, p= 0.016) indicated that

participants made more optimal choices
when choosing for the other person com-
pared with when choosing for themselves.
Furthermore, there was a significant
effect of trial (b = 0.108, x 2

df¼1= 55.92,
p, 0.001), indicating that the probability
of making an optimal choice increased
over time. The absence of a significant
interaction between condition and trial
(b = 0.011, x 2

df¼1= 1.62, p=0.203) indi-
cated that the increase of optimal choices
over time was similar for self-relevant
and prosocial learning.

As described in Materials and
Methods, we identified optimal decisions
under the assumption that the partici-
pants’ prior knowledge about outcome
probabilities could be modeled as beta
(a=1.5, b=1.5). To test whether our
results were sensitive to this assumption,
we repeated the analysis for different
prior distributions, beta(a=1, b=1) and
beta(a=2, b= 2). These analyses led to
the same results, indicating that our find-
ings are robust to changes in prior
assumptions (effect of condition for beta
(1,1): p= 0.048; for beta(2,2): p=0.024).

All participants were able to make a
choice within the time limit in the major-
ity of trials. There was no participant who
missed .10 trials (of 48) in either condi-
tion (number of trials missed in Self con-
dition: 0, 63.54%; 1, 21.87%; 2, 6.25%; 3–10, 8.33%; number of
trials missed in Other condition: 0, 57.29%; 1, 25.00%; 2, 6.25%;
3-10, 11.46%). An exploratory GLMM on the number of missed
trials revealed no significant difference in probability of missing
a trial between the two conditions.

In summary, we found that participants were able to choose opti-
mally between symbols that differed in the probability of delivering
painful electrical stimulation. Intriguingly, participants made more
optimal choices when choosing for the other person than when
choosing for themselves.

Computational modeling of self-relevant and prosocial
learning
Having found that participants made more optimal choices dur-
ing prosocial than self-relevant learning, we next used computa-
tional modeling to investigate whether this result could be
explained by differences in learning mechanisms. As the first
step in model selection, we assessed whether the data were better

explained by a model with only one learning rate for both posi-
tive and negative outcomes (M0), or a model with outcome-spe-
cific learning rates (M1). We found that model M1 explained the
data substantially better (BF M1 vs M0. 1000). We next com-
pared model M1 against several models with condition-wise dif-
ferences in a single parameter: a model with different learning
rates for positive outcomes a1 per condition (random effect:
M2.1; random effect and fixed effect: M2.2); a model with differ-
ent learning rates for negative outcomes a– per condition (ran-
dom effect: M3.1; random effect and fixed effect: M3.2); and a
model with different inverse temperature parameters b per con-
dition (random effect: M4.1; random effect and fixed effect:
M4.2). Including different inverse temperature parameters for
self-relevant and prosocial learning led to the greatest increase in
model fit (BF M4.1 vs M1=37.67; M4.2 vs M1= 294.67), com-
pared with adding differences in the other parameters (learning
rate for positive outcomes: BF M2.1 vs M1=8.88; BF M2.2 vs
M1=9.35; learning rate for negative outcomes: BF M3.1 vs
M1=0.32; BF M3.2 vs M1= 0.25). We next compared model

Figure 2. Prosocial learning task: behavioral results and model parameters. A, Percentage of optimal choices per trial.
Solid lines indicate the percentage of times participants chose the symbol that minimized the expected number of painful
stimuli. Overall, participants made significantly more optimal choices during prosocial learning (Other, red) than during self-
relevant learning (Self, blue). Shaded areas represent 95% HDIs from the posterior predictive distribution of optimal choices
derived from the computational model. The posterior predictive distribution matches the actual responses well, indicating
that the model was able to capture participants’ learning curves. B, Posterior predictive check for percentage of optimal
choices. The real percentage of optimal choices of each participant is plotted against the average percentage of optimal
choices predicted by the winning model. The high congruence between actual and predicted responses suggests that good
absolute model fit was achieved, but the model appears to overestimate the percentage of optimal choices for those partici-
pants who performed below the chance level of 50%. C, Posterior distributions of group-level means of the learning rates for
positive (ma1) and negative (ma–) outcomes. Curves represent the probability density describing the posterior distribution
of the mean parameters. Blue-shaded area represents the 95% HDI (the interval containing the 95% of the values with the
highest posterior probability). The mean parameters are represented on the logit scale. D, Joint posterior distribution of the
group-level means of the inverse temperature parameters, mb ,Self and mb ,Other. Points represent MCMC samples. Contours
represent the estimated joint density. Inset, The posterior distribution of the difference mb ,Other – mb ,Self. Blue-shaded area
represents the 95% HDI. Dashed vertical line indicates zero.
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M4.2 with a model that additionally included different learning
rates for positive outcomes (additionally to the differences in
inverse temperature; random effect: M5.1; random effect and
fixed effect: M5.2). This revealed that model fit was only margin-
ally improved by including the random effect, but not the fixed
effect (BF M5.1 vs M4.2= 1.34; M5.2 vs M4.2 = 0.92). Finally, we
compared model M4.2 with a model that additionally included
different learning rates for negative outcomes (M6.1; random
effect and fixed effect: M6.2). This revealed that the data were
better explained by a model without these additional differences
in parameters (BF M6.1 vs M4.2= 0.28; M6.2 vs M4.2 = 0.23).

Based on this model selection procedure, we selected model
M4.2 as the winning model. This model included different
learning rates for positive and negative outcomes, and a popu-
lation-level difference between inverse temperature parameters
for self-relevant and prosocial learning. Next, we validated this
model using posterior predictive check analyses. Figure 2A
represents the 95% HDI of the predicted percentage of partici-
pants’ optimal choices. Participants’ behavior appears to be
well explained by the model, as actually observed percentages
lie well within the HDI. However, for Trial 3, the percentage
of optimal choices was slightly overestimated by the model.
Figure 2B plots the real percentages of optimal choices against
the mean predicted percentages. This plot also indicates suita-
ble model fit, although the model appears to slightly overesti-
mate the number of optimal choices for those participants
who made optimal choices below the chance level of 50%. The
correlations between the percentage between actually observed
choices and the percentage predicted by the model were as fol-
lows: optimal decisions for self: mean r=0.757, 95% HDI =
[0.678, 0.831]; optimal decisions for other: mean r=0.796, 95%
HDI = [0.721, 0.867].

The group-level parameter estimates of the winning model are
summarized in Table 2 and shown in Figure 2C, D. To test the dif-
ference in the group-level distribution of the inverse temperature
parameter, we calculated the 95% HDI of the difference in mean
parameters mb ,Other – mb ,Self (Fig. 2D). The resulting HDI was
entirely contained within the positive numbers, indicating generally
higher inverse temperature parameters during prosocial learning.

In summary, we found that participants’ choices were charac-
terized by higher inverse temperature parameters during proso-
cial compared with self-relevant learning. However, we found no
differences in learning rates between the two conditions. This
suggests that participants were more sensitive to differences in
subjective values when making a choice for the other person
than when making a choice for themselves. At the same time, the

degree to which participants updated their subjective values in
response to outcomes did not differ between self-relevant and
prosocial learning contexts.

Associations between value sensitivity and optimal choices
As computational modeling had revealed that participants were
more sensitive to value differences during prosocial choices than
self-relevant choices, we next tested whether this finding could
explain the higher number of optimal choices for the other than
for oneself. As a simple index of this association, we correlated
the difference in number of optimal choices (Other � Self) with
the difference in value sensitivity (bOther � b Self). This revealed
a significant correlation (r=0.476, p, 0.001). To investigate the
role of value sensitivity in more detail, we conducted multilevel
mediation analysis. This revealed that the effect of condition
(Other vs Self) on the number of optimal choices was signifi-
cantly mediated by value sensitivity (indirect effect = 0.059, 95%
BCa-CI = [0.044, 0.077]). Since the direct effect of condition
ceased to be significant (direct effect = 0.014, p= 0.666), this indi-
cated full mediation. In summary, the better performance during
prosocial learning (compared with self-relevant learning) could
be explained by participants being more sensitive to the subjec-
tive values of the symbols during prosocial decisions.

Association between prosocial choice behavior and trait
empathy
Since we found higher value sensitivity during prosocial com-
pared with self-relevant learning, we next investigated whether
this prosocial preference was associated with empathic traits. We
regressed the difference in individual inverse temperature pa-
rameter estimates (b Other � b Self) on the five subscales of the
QCAE. All variance-inflation factors were,2, indicating negligi-
ble multicollinearity between predictors. We found that the sub-
scales explained a significant amount of variance of this
difference score (R2 = 0.183, F(5,81) = 3.62, p= 0.005). On the level
of single predictors, emotional contagion had a significant posi-
tive association with the difference score (standardized regres-
sion coefficient = 0.43, SE= 0.12, t(81) = 3.614, p, 0.001). This
subscale measures how strongly individuals automatically share
the emotions of others. Moreover, proximal responsivity had a
significant negative association with the difference score (stand-
ardized regression coefficient = �0.36, SE= 0.13, t(81) = �2.735,
p= 0.008). This subscale consists of items that measure the tend-
ency to become upset in response to other individuals’ problems.
No other subscale was a significant predictor (all p. 0.05; see
Table 3). Thus, participants scoring higher in emotional conta-
gion showed higher value sensitivity during prosocial compared
with self-relevant learning, and participants who reported a
higher tendency toward proximal responsivity displayed a
smaller difference in value sensitivity during prosocial versus
self-relevant learning.

Table 2. Parameter estimates of the computational modela

Parameter
Posterior
mean 95% HDI

Posterior mean
(transformed)

95% HDI
(transformed)

ma1 –0.53 [–1.04, –0.01] 0.37 [0.26, 0.49]
sa1 0.92 [0.12, 1.64]
ma– –1.83 [–2.19, –1.46] 0.14 [0.10, 0.18]
sa– 0.92 [0.62, 1.25]
mb ,Self 1.54 [1.20, 1.86] 4.73 [3.27, 6.33]
sb ,Self 1.12 [0.45, 1.76]
mb ,Other 1.70 [1.36, 2.02] 5.53 [3.82, 7.39]
sb ,Other 1.12 [0.45, 1.76]
mb ,Other – mb ,Self 0.16 [0.03, 0.29] 0.80 [0.11, 1.54]
aThe best-fitting computational model (M4.2) allowed for different learning rates for positive outcomes
(a1) and negative outcomes (a–), and for different inverse temperature parameters for self-oriented learn-
ing (b Other) and prosocial learning (b Other). Posterior mean, mean of the posterior distribution of the re-
spective parameter; Posterior mean (transformed), mean of the posterior distribution after transformation
(logistic function for learning rates; exponential function for inverse temperature).

Table 3. Regression of difference in value sensitivity (prosocial learning vs
self-oriented learning) on empathic traitsa

Predictor Standardized regression weight (SE) VIF tdf = 81 p

Intercept �0.066 (0.099) — �0.666 0.507
Perspective-taking 0.133 (0.110) 1.16 1.210 0.230
Online simulation �0.090 (0.114) 1.30 �0.784 0.436
Emotional contagion 0.433 (0.120) 1.40 3.614 ,0.001
Proximal responsivity �0.360 (0.132) 1.65 �2.735 0.008
Peripheral responsivity �0.097 (0.114) 1.25 �0.850 0.398
aDependent variable: Difference between inverse temperature parameters (b Other – b Self). VIF, Variance
inflation factor.
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Brain activation related to valuation
As we found that participants were more
sensitive to differences in subjective val-
ues during prosocial learning compared
with self-relevant learning, we next inves-
tigated whether differences in neural valu-
ation processes might underpin this
finding. As a manipulation check, we
tested whether the brain regions typically
associated with valuation processes were
also activated during our task, regardless
of condition (Self vs Other). For this, we
assessed which areas exhibited activation
patterns that were correlated with the
trialwise value difference between the
chosen symbol and the unchosen sym-
bol (DValue), as derived from the com-
putational model. This revealed a
significant positive association between
value difference and brain activity in ante-
rior and posterior midline structures,
including the VMPFC, subgenual ACC,
and precuneus, as well as the right hippo-
campus and the bilateral middle temporal
gyrus (contrast DValue . 0; Fig. 3A; Table
4). Next, we tested whether valuation-
related brain activity was increased during
prosocial compared with self-relevant
choices, or vice versa. However, we found
no differences in average activation between
prosocial and self-relevant valuation proc-
esses (contrast DValue, Other . DValue, Self;

contrast DValue, Self. DValue, Other).
We next tested whether the individual

differences in value sensitivity (identified
by the modeling of the behavioral data)
could be explained by differences in brain
activity underpinning valuation. For this,
we correlated the individual estimates of
the contrast (DValue, Other . DValue, Self)
with the difference in inverse temperature
parameters (bOther � b Self). This revealed
clusters of positive correlations within the
VMPFC, the precuneus, and the left
angular gyrus (Fig. 3B,C; Table 4).

In summary, we found that the difference in the subjective
values of possible actions was positively associated with activity
within the VMPFC and subgenual ACC, the precuneus, and the
middle temporal gyrus. Moreover, participants who made more
value-sensitive choices for the other compared with for them-
selves also exhibited increased valuation-related activity within
these brain areas during prosocial choices.

Functional connectivity during choices
Since the VMPFC is an area that has consistently been linked to
valuation processes in previous research, we focused on connec-
tivity of this area for answering the question whether valuation-
related modulation also mediated the communication between
brain regions. We found significantly increased functional con-
nectivity of the VMPFC with the posterior right middle tem-
poral gyrus/angular gyrus when choosing for the other than

when choosing for oneself (contrast Other . Self; Fig. 3D;
Table 4). The cluster corresponded to an area that has been
referred to as right TPJ (rTPJ) (Silani et al., 2013; Schurz et al.,
2017; Quesque and Brass, 2019). The reverse contrast (Self .
Other) revealed no significant connectivity differences.

Brain activation related to outcomes and prediction errors
So far, we found that differences between prosocial and self-relevant
learning were visible in the domain of valuation (more optimal
choice behavior and higher value sensitivity during prosocial com-
pared with self-relevant learning), but not in the domain of out-
come evaluation (same learning rates for prosocial and self-relevant
learning). We therefore did not predict fMRI analyses of outcome
events to be informative for our research question. Here, we briefly
report the basic results of these analyses, and refer the reader to
Extended Data Fig. 4-1 and 4-2 for detailed results.

Analyzing brain activity associated with the presentation of
outcomes, we found that positive outcomes engaged areas

Figure 3. Results of fMRI analyses of brain activity and connectivity during choices in the prosocial learning task. A, Brain
activity associated with valuation processes during choices. Depicted are brain areas where activity was significantly and posi-
tively correlated with the difference in subjective values of the symbols (DValue, value of chosen symbol minus value of
unchosen symbol). In these areas, activity was high when the difference between subjective values was high; and low when
the value difference was small. B, Brain activity correlated with interindividual differences in prosocial value sensitivity.
Depicted are brain areas where the contrast (DValue,Other – DValue,Self) was significantly correlated with the difference in value
sensitivity for other versus self (b Other – b Self). Participants with higher valuation-related activity in these areas during pro-
social learning (compared with self-oriented learning) were also more sensitive to values relevant for the other compared
with values relevant for self (as indicated by computational modeling of the behavioral data). C, Scatter plots represent the
correlation between (b Other – b Self) and (DValue,Other – DValue,Self) at the clusters represented in B. Values were extracted
from peak voxels. D, Results of the generalized psychophysiological interaction analysis. A cluster in the right temporoparietal
junction shows increased connectivity with the VMPFC (displayed in pink) during choices for the other, compared with
choices for self. All results: p, 0.05, FWE-corrected on the cluster-level, cluster-defining threshold p, 0.001 (see also
Table 4). L, Left; R, right.
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typically associated with reward processing, such as the ventral
striatum and VMPFC, to a stronger degree than negative out-
comes (contrast Positive. Negative; Fig. 4A; Extended Data Fig.
4-1). These effects were similar for self-relevant and prosocial
learning. Negative outcomes, in contrast, led to increased activity
in bilateral AI, anterior midcingulate cortex (AMCC), and supra-
marginal gyrus (contrast Negative . Positive; Fig. 4A; Extended
Data Fig. 4-1), and did so to a greater extent during self-relevant
than during prosocial learning (contrast (Negative – Positive)Self
. (Negative – Positive)Other; Fig. 4B; Extended Data Fig. 4-1).
We further analyzed correlations between brain activity and
absolute prediction errors derived from the computational
model, indicating processes that were specific to unexpected out-
comes. Brain areas that were specifically activated by positive
and negative prediction errors are listed in Extended Data Figure
4-2. Notably, we found that prediction errors engaged areas
within the bilateral dorsomedial PFC and the right orbitofrontal
cortex to a greater degree during prosocial learning than during
self-relevant learning. We found no brain areas where activity
associated with prediction errors was greater during self-relevant
than prosocial learning.

Discussion
Are humans as good at learning to avoid harm to others as
they are at learning to avoid self-harm? And if so, which neu-
ral processes underpin these two types of learning? Here, we
find that participants were, indeed, better at protecting another
person from pain than themselves. The higher number of opti-
mal choices for the other was explained by participants being
more sensitive to the values of choice options during prosocial,
compared with self-relevant learning, and this prosocial
preference was significantly associated with empathic traits.
On the neural level, higher sensitivity for other-related val-
ues was reflected by a stronger engagement of the VMPFC
during valuation. Moreover, the VMPFC exhibited a higher
connectivity to the rTPJ during choices affecting the other.
Together, these findings suggest that humans are particu-
larly adept at learning to protect others. This ability
appears implemented by neural mechanisms that overlap

with those supporting self-relevant learning, but with the
additional recruitment of structures relevant in social
cognition.

Previous evidence suggested that humans are inherently ego-
centric learners, adapting their behavior faster for their own ben-
efit than for others’ (Kwak et al., 2014; Lockwood et al., 2016).
Importantly, these studies investigated prosocial learning in ex-
perimental settings which used monetary outcomes. Our data
indicate that the situation might be reversed in the context of
harm avoidance. A similar “hyperaltruistic” tendency was
reported by Crockett et al. (2014, 2015), who found that individ-
uals chose to spend more money to protect another person from
pain than themselves. Our study provides a crucial extension to
these findings, demonstrating that individuals act “hyperaltruisti-
cally” not only in situations where they can explicitly weigh self-
and other-relevant outcomes, but also when the consequences of
their behavior have to be learned implicitly. This lends essential
support to the notion that prosociality may be an intuitive act
(Zaki and Mitchell, 2013).

The higher number of optimal choices for the other was well
explained by a greater sensitivity to subjective values during pro-
social compared with self-relevant learning. The rate with which
participants updated subjective values was not different between
the two conditions, though. This implies that prosocial learning
differs from self-relevant learning not in the way that informa-
tion is collected, but in how strongly this information is weighed
when choosing between actions. Moreover, we found that this
prosocial “bonus” in value sensitivity was related to empathic
traits. Participants who reported to strongly share the emotions
of others (subscale Emotional Contagion of the QCAE) (Reniers
et al., 2011) were also more sensitive to other-related values,
implying that individuals who more readily feel what others feel
are also more sensitive to the possible consequences of their
actions for others. However, the tendency to get distressed by
other people’s problems (Proximal Responsitivity) appeared det-
rimental to sensitive valuation, perhaps because of the negative
effect of stress on executive functions (Shields et al., 2016). This
aligns with the notion that empathic sharing of emotions, but
not personal distress, is a key driver of prosocial behavior (Hein
et al., 2010; Decety et al., 2016).

Table 4. Brain activity and functional connectivity during valuationa

MNI coordinates

Contrast and brain region x y z z Cluster size

Parametric modulation by Dvalue
b

L/R precuneus 4 �52 18 6.57 1869
L/R superior frontal gyrus, medial orbital 0 58 �6 5.85 991
L middle temporal gyrus �62 �32 2 5.65 1635
R superior temporal gyrus 60 �26 2 5.42 1363
R fusiform gyrus 36 �52 �4 5.22 115
L hippocampus �20 �16 �20 5.06 61
L angular gyrus �46 �70 24 4.97 505
L/R olfactory cortex 0 8 �14 4.48 78
L superior temporal gyrus �34 �22 2 4.33 60
R postcentral gyrus 48 �24 62 4.30 72

Correlation [DValue, Other – DValue, Self] � [b Other – b Self ]
L/R precuneus 6 �54 24 4.82 655
L/R superior frontal gyrus, medial orbital 2 52 �10 4.60 341
L angular gyrus �40 �64 24 4.49 206

gPPI: functional connectivity with VMPFC (Other . Self)
R middle temporal gyrus 46 �64 20 4.47 93

aWe report the first local maximum within each cluster. Effects were tested for significance using cluster inference with a cluster defining threshold of p, 0.001 and a cluster probability of p, 0.05 (FWE-corrected). gPPI,
Generalized psychophysiological interaction analysis.bFor this effect, we list the 10 clusters with the highest peak z values.
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In line with previous research (Kable and Glimcher, 2009;
Ruff and Fehr, 2014), we found that the VMPFC was engaged
during both prosocial and self-relevant valuation. Interestingly,
we observed that differences in value sensitivity on the behavioral
level were correlated with differences in valuation-related brain
activity: Participants who were more sensitive to values during
prosocial learning (compared with self-relevant learning) also
displayed increased valuation-related VMPFC activity during
prosocial choices. Differences in prosocial learning performance
may thus be partially explained by differences in VMPFC involve-
ment during valuation, possibly because strongly activated value
representations facilitate the readout of values (Grueschow et al.,
2015). Another important finding was that the VMPFC exhibited
a stronger coupling with the rTPJ during prosocial choices. The
rTPJ has been extensively linked to self-other distinction and
related social functions (Silani et al., 2013; Schurz et al., 2017;
Quesque and Brass, 2019). One function of this area is perspec-
tive-taking (Silani et al., 2013; Lamm et al., 2016; Schurz et al.,
2017), which also has direct effects on prosocial decision-making
(Morishima et al., 2012). Thus, prosocial valuation in our task
may be informed by processes that enable participants to take the
confederate’s perspective, for example, by a mapping of the choice
options to their consequences for the other (Hare et al., 2010;
Janowski et al., 2013). A complementary interpretation is that the
rTPJ engagement reflects the higher demand for self-other distinc-
tion during prosocial learning (Lamm et al., 2016; Quesque and

Brass, 2019). For instance, the valuation processes in the VMPFC
may call for a stronger signaling that the current decision will
affect another person, and not oneself (Carter and Huettel, 2013;
Tomova et al., 2020).

While these findings suggest a central role of the VMPFC in
successfully learning to avoid others’ harm, they cannot fully
explain the generally higher number of optimal choices during
prosocial learning. We did not find higher average activity dur-
ing prosocial valuation, precluding claims that our sample’s bet-
ter performance for the other could be simply explained by
generally stronger VMPFC engagement. It has been shown,
though, that the VMPFC can switch dynamically between differ-
ent frames of reference, such as values relevant for self versus
other (Nicolle et al., 2012). This mechanism may mask differen-
ces in average activity, making them too subtle to be identified
with GLM-based analyses. Further studies tailored for more
complex analysis approaches, such as multivariate pattern analy-
sis (Norman et al., 2006) or joint brain-behavior modeling
(Palestro et al., 2018), might further elucidate these issues.

Based on the mathematical role of the inverse temperature
parameter (see Materials and Methods), we have interpreted b
as an indicator of value sensitivity. Importantly, our findings are
also consistent with the notion that participants showed less ex-
ploratory tendencies during prosocial choices (Humphries et al.,
2012; Cinotti et al., 2019), perhaps because of a higher risk aver-
sion when choices might harm the other (Batteux et al., 2019).

Figure 4. Results of fMRI analyses of brain activity during the presentation of outcomes in the prosocial learning task. A, Effects of outcome valence. Blue-to-white clusters represent areas
with increased activity after a positive outcome (i.e., trials in which the choice made would not be followed by painful stimulation). Red-to-yellow clusters represent areas with increased activ-
ity after a negative outcome (i.e., trials in which the choice made would be followed by painful stimulation). B, Interaction between outcome valence (positive vs negative) and condition (Self
vs Other). Blue-to-white clusters represent areas where the effect of positive outcomes was stronger during self-relevant compared with prosocial learning. Red-to-yellow clusters represent
areas where the effect of negative outcomes was stronger during self-relevant compared with prosocial learning. All results: p, 0.05, FWE-corrected based on a cluster-defining threshold of
p, 0.001. Results are listed in Extended Data Figure 4-1. Additional results regarding the parametric modulation of outcome-related brain activity by prediction errors are listed in Extended
Data Figure 4-2. L, Left; R, right.
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Future studies could thus optimize their design to differentiate
between the roles of valuation and exploration/exploitation dur-
ing prosocial decisions.

With regards to outcome evaluation, participants weighted
positive prediction errors more strongly than negative prediction
errors, implying that they tended to learn through successful pain
avoidance, rather than through pain itself (Eldar et al., 2016). This
result is consistent with recent findings suggesting that higher
learning rates for positive outcomes reflect a confirmation bias in
learning (Lefebvre et al., 2017; Palminteri et al., 2017; but for con-
trasting results, see Gershman, 2015). Surprisingly, we found no
behavioral evidence that prosocial and self-relevant learning dif-
fered in terms of outcome evaluation, which contrasts previous
studies of reward or associative learning that find lower learning
rates for others (Lockwood et al., 2016, 2018). We did, however,
observe significant differences in brain activity evoked by out-
comes: while negative outcomes engaged bilateral AI and ACC
reliably during prosocial and self-relevant learning, responses
were stronger for self-relevant outcomes. This might indicate
stronger anticipation of pain (Ploghaus et al., 1999), as self-related
negative outcomes also signaled the imminent delivery of painful
stimulation. As we found no corresponding difference in behav-
ior, it is possible that the stronger aversive responses did not
reflect processes involved in the updating of values.

Several limitations of our study need to be addressed. We only
tested men, which possibly limits our conclusions to males. Six of
96 participants reported doubts about the confederate after the sec-
ond session of the overarching project (i.e., 2 weeks after the session
analyzed here). We have no information on whether these doubts
were already present during the first session, which precludes to
assess whether the observed effects were different in participants
who doubted the cover story. It seems unlikely, though, that such a
small part of the sample fundamentally affects the results.

Furthermore, participants were instructed that the confeder-
ate would know about the outcomes of their choices during both
conditions of the task. Thus, it is possible that egocentric motiva-
tions, such as care for reputation, contributed to the difference
between prosocial and self-relevant learning, as harming others
might be seen as more detrimental to social status than harming
oneself. We believe that the substantial correlations between pro-
social learning performance and empathic traits point toward an
important role of prosociality in learning to avoid other’s harm.
To clearly disentangle the (potentially complementary) roles of
“selfish” and prosocial motives, further studies in which social ob-
servation is experimentally manipulated are needed. Furthermore,
our findings cannot fully answer the question whether the proso-
cial tendencies we observed are specific to situations in which the
other’s physical integrity is at risk, or whether similar levels of pro-
sociality would be displayed in situations where the other’s “harm”
is defined through financial loss. Indeed, previous studies directly
comparing selfish tendencies in the domains of monetary rewards
compared with protecting others from losses have found that peo-
ple have a similar selfish bias in both contexts (Lockwood et al.,
2017). To examine this further, future studies should vary the mo-
dality of harm (e.g., pain, financial loss) within the same design.
Finally, our task reflected a situation in which optimal behavior
for the other did not preclude optimal behavior for oneself. In
many real-life situations, minimizing others’ harm and minimiz-
ing self-harm are conflicting objectives, with examples ranging
from in vivo organ donation (Marsh et al., 2014) to war. Further
investigating how such conflicts influence prosocial learning
would be of major importance for future research.

In conclusion, our findings support the notion that humans
are not always “selfish” learners. Rather, they appear to be particu-
larly good at learning for the benefit of other people when their
physical integrity, rather than their financial success, is at risk. Our
findings have important implications for future research on proso-
cial behavior: On the one hand, they highlight the importance of
considering different outcomes when investigating learning for
others; on the other, they demonstrate that we may show “intuitive
prosociality” (Zaki andMitchell, 2013) not only during explicit de-
cision-making (Crockett et al., 2014, 2015), but also when proso-
cial actions about harm avoidance depend on implicit learning.
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