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Abstract 25 

Background: Chlamydia is the most commonly-diagnosed sexually-transmitted infection 26 

worldwide. Mathematical models used to plan and assess control measures rely on accurate 27 

estimates of chlamydia’s natural history, including the probability of transmission within a 28 

partnership. Several methods for estimating transmission probability have been proposed, 29 

but all have limitations. 30 

Methods: We have developed a new model for estimating per-partnership chlamydia 31 

transmission probabilities from infected to uninfected individuals, using data from 32 

population-based surveys. We used data on sexual behavior and prevalent chlamydia 33 

infection from the second UK National Study of Sexual Attitudes and Lifestyles (Natsal-2) and 34 

the US National Health and Nutrition Examination Surveys 2009-2014 (NHANES) for Bayesian 35 

inference of average transmission probabilities, across all new heterosexual partnerships 36 

reported. Posterior distributions were estimated by Markov chain Monte Carlo sampling 37 

using the Stan software. 38 

Results: Posterior median male-to-female transmission probabilities per partnership were 39 

32.1% (95% credible interval [CrI] 18.4-55.9%) (Natsal-2) and 34.9% (95%CrI 22.6-54.9%) 40 

(NHANES). Female-to-male transmission probabilities were 21.4% (95%CrI 5.1-67.0%) 41 

(Natsal-2) and 4.6% (95%CrI 1.0-13.1%) (NHANES). Posterior predictive checks indicated a 42 

well-specified model, although there was some discrepancy between reported and predicted 43 

numbers of partners, especially in women. 44 

Conclusions: The model provides statistically rigorous estimates of per-partnership 45 

transmission probability, with associated uncertainty, which is crucial for modelling and 46 

understanding chlamydia epidemiology and control. Our estimates incorporate data from 47 

several sources including population-based surveys and use information contained in the 48 
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correlation between number of partners and the probability of chlamydia infection. The 49 

evidence synthesis approach means that it is easy to include further data as it becomes 50 

available. 51 

 52 

Key words: chlamydia, transmission, mathematical model, Bayesian statistics, evidence 53 

synthesis, population-based survey 54 

 55 

Key messages: 56 

• Estimates for parameters like transmission probability are important for building 57 

models of sexually-transmitted diseases that can be used to understand their 58 

epidemiology and plan and assess control interventions. 59 

• Average per-partnership (rather than per-sex-act) transmission probability is a 60 

particularly useful parameter because there is more and better data on numbers of 61 

partnerships than numbers of sex acts. 62 

• We have developed a new method for estimating per-partnership chlamydia 63 

transmission probability, using data from population-level studies. We used a 64 

Bayesian approach to provide a probability distribution representing the estimate 65 

and associated uncertainty. 66 

• We applied our method to the Second National Study of Sexual Attitudes and 67 

Lifestyles (Natsal-2) from the UK and National Health and Nutrition Examination 68 

Surveys (NHANES) from the US. 69 
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Introduction 70 

Chlamydia is the most commonly-diagnosed sexually transmitted infection worldwide. In 71 

2018 there were 1,382 and 3,694 chlamydia diagnoses per 100,000 15-24-year-old US men 72 

and women, respectively,(1) and 1,342 and 2,637 in England.(2) There is marked geographic 73 

variation in chlamydia burden,(3) and the effectiveness of widespread testing and/or 74 

screening in chlamydia control remains uncertain,(4,5) but the need for cost-effective 75 

control measures becomes ever-clearer as evidence for the link to pelvic inflammatory 76 

disease (PID) is strengthened(6) yet resources for sexual health services are reduced. 77 

 78 

Mathematical models are important tools for assessing and predicting the effectiveness and 79 

cost-effectiveness of chlamydia control policies. Numerous models have been developed for 80 

these purposes(7) but a comparison of three individual-based models found they produced 81 

very different results.(8) A key parameter in any transmission-dynamic model is the 82 

transmission probability per infectious contact, where a “contact” may be defined either as 83 

a partnership or as a sex act. Transmission probability has to be estimated indirectly, as it 84 

would be unethical to conduct a study measuring it directly, and is subject to significant 85 

uncertainty. Modeling studies have used values ranging from 0.0375 to 0.154 per sex act; 86 

sometimes assuming equal male-to-female and female-to-male transmission rates, and 87 

sometimes allowing for a higher risk in the male-to-female direction.(7) 88 

 89 

Transmission probability estimates can be based on cross-sectional concordance studies of 90 

sexual partnerships. For example, Katz used data from a US clinic to estimate the proportion 91 

of heterosexual couples forming in which the man only, the woman only, neither partner, or 92 

both are infected.(9) Using the observed proportion of couples in each state, he estimated 93 
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the male-to-female and female-to-male transmission probabilities over the time between 94 

partnership formation and observation.(9) However, concordance was observed before the 95 

partnership ended, and so the estimated transmission probabilities represented only 96 

transmission before observation – not the full per-partnership probability. Furthermore, 97 

these estimates do not allow for recovery and/or re-infection within a partnership. Althaus 98 

and colleagues proposed an alternative model based on differential equations which 99 

explicitly incorporated partnership formation and breakage, occurring with constant 100 

hazards.(10) The analysis is informative but the estimates it provides depend on values 101 

assumed for other parameters in the model, some of which are not well-defined; in 102 

particular, the duration of infection and the number of partnerships in the last six months. 103 

Finally, transmission probabilities can be estimated by calibrating a transmission model to 104 

population prevalence data.(11) With this approach, the values estimated depend on the 105 

data to which the model is calibrated, the values of other parameters, and the structural 106 

assumptions in the model. 107 

 108 

In this paper we develop a different approach. We calculate average per-partnership 109 

chlamydia transmission probabilities from an infected man to an uninfected woman and 110 

from an infected woman to an uninfected man, using data from two population-based 111 

surveys: the 1999-2001 UK National Survey of Sexual Attitudes and Lifestyles (Natsal-2)(12) 112 

and the 2009-2014 US National Health and Nutrition Examination Surveys (NHANES)(13), 113 

synthesized with information on the clearance rate of untreated chlamydia infections. The 114 

method avoids many of the assumptions that are required for estimation within a dynamic 115 

model, and its reliance on other unknown quantities is minimal and well-described. 116 

Furthermore, because estimates are based on data from population-based surveys, the 117 
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results are directly applicable to the general population. The methods could also be applied 118 

to other sexually transmitted infections with a susceptible-infected-susceptible (SIS) model 119 

of natural history. 120 

 121 

Methods 122 

The aim of the study was to provide a mathematical and statistical model that can be used 123 

to infer per-partnership transmission probability from survey data. We present an overview 124 

of our methods; further details are in the Supplementary Information. 125 

 126 

Mathematical model 127 

We used an SIS model of infection and recovery (Figure 1). Our model considers 128 

asymptomatic infections; symptomatic infections prompt treatment seeking and are 129 

therefore short-lived and unlikely to cause onward infection or to be detected in 130 

population-based surveys.  131 

 132 

Let each individual j, of sex x, experience a force of infection Fj. This force of infection 133 

(accounting for heterosexual transmission only) is the rate at which an individual makes 134 

contacts with infected members of the opposite sex, 𝜒𝑥𝑗, multiplied by the per-contact 135 

transmission probability, 𝜌𝑥′→𝑥: 136 

 137 

𝐹𝑗 = 𝜒𝑥𝑗𝜌𝑥′→𝑥. 138 

 139 

(x’ denotes the opposite sex to x.)  140 

 141 



7 
 

Individuals’ recovery rate is 𝜆𝑥. The probability that individual j is infected at a given 142 

moment is 𝜋𝑗. At steady state, the number of new infections per unit time (𝐹𝑗(1 − 𝜋𝑗)) 143 

equals the number of recoveries (𝜆𝑥𝜋𝑗,): 144 

 145 

𝐹𝑗(1 − 𝜋𝑗) = 𝜒𝑥𝑗𝜌𝑥′→𝑥(1 − 𝜋𝑗) = 𝜆𝑥𝜋𝑗 146 

 147 

Hence, 148 

𝜌𝑥′→𝑥 =
𝜋𝑗

1 − 𝜋𝑗
×

𝜆𝑥

𝜒𝑥𝑗
 149 

 150 

Data 151 

We inferred parameter values in the model by synthesizing data from several sources. 152 

 153 

Clearance of untreated chlamydia infection 154 

Data informing the clearance rate of untreated infections came from studies in the 155 

literature synthesized in previous analyses.(14,15) Further details are provided in the 156 

original papers.(14,15) 157 

 158 

Numbers of partners 159 

We used data on sexual behaviour and chlamydia infection from two population-based 160 

studies: Natsal-2,(16) and the three NHANES conducted biennially between 2009 and 161 

2014(17). We combined data from three NHANES to achieve a larger sample size than would 162 

be possible using only one.(17)* 163 

 164 
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In Natsal-2, participants reported on their number of new opposite-sex partners in the last 165 

year, and this information was used to inform a probability distribution for the number of 166 

new partners in the last year. 167 

 168 

In NHANES, participants were asked their number of partners, and whether they had had 169 

any new partners, in the last 12 months. We used these two questions to provide a proxy 170 

for the number of new partners in the last year. Where respondents reported no new 171 

partners in the last year, we took the number of new partners to be zero; where they 172 

reported one partner and a new partner, we took the number of new partners to be one; 173 

otherwise, we assumed that all but one of their total reported partners was new. This 174 

approach is similar to the use elsewhere of “shifted negative binomial” distributions for 175 

modelling partner numbers.(18) 176 

 177 

Infection status 178 

The publicly-available data from both Natsal-2 and NHANES also includes chlamydia 179 

infection status, diagnosed using nucleic acid amplification tests (NAATs) on urine samples. 180 

Natsal-2 participants were eligible for a urine sample if they were aged 18-44 years and had 181 

ever had sex, and a randomly-selected half of those eligible were invited to provide samples. 182 

All NHANES participants aged 14-39 years were invited to provide a sample for testing, but 183 

the publicly-available data excludes 14-17-year-olds. 184 

 185 

Numbers of partnerships reported by susceptible and infected men and women in Natsal-2 186 

and NHANES are provided in Supplementary Tables S1 and S2. 187 

 188 
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Statistical model 189 

We conducted a Bayesian evidence synthesis, using data from the sources described to 190 

construct a likelihood. Survey weights were incorporated by multiplying the relevant 191 

component of the log-likelihood by the weight. The likelihood was combined with 192 

appropriate priors to provide a joint posterior for the model parameters. 193 

 194 

Clearance of untreated infections 195 

The statistical model used for the clearance rates of untreated chlamydia infection is 196 

described elsewhere.(14) The model involves two courses for infection: fast- or slow-197 

clearing. A proportion p of incident infections clear fast, and the remainder, 1 – p, clear 198 

slowly. Some of the data on chlamydia clearance came from studies using culture diagnosis 199 

methods, and the model accounts for this using a sensitivity parameter for culture diagnosis 200 

in people with a previous positive culture for that infection, 𝜓. In this analysis we assumed 201 

that only the slow-clearing infections last long enough to be detected in population-based 202 

studies. The clearance rate (denoted 𝜆𝑥 above) is therefore equal to the slow clearance rate 203 

in the clearance model, and the transmission probability we estimated is the probability 204 

that an infection is transmitted and then follows the slow-clearing course.  205 

 206 

Partnership dynamics 207 

We used negative binomial distributions to model the estimated numbers of new partners 208 

reported in the last year by men and women. A negative binomial distribution with size 𝛼 209 

and mean 𝜇 can arise as a mixture of Poisson distributions, where the mixing distribution for 210 

the Poisson rate is a Gamma distribution with shape 𝛼 and rate 𝜇
𝛼

.(19) In our model, the 211 

shape and rate depend on the sex of the individual, but are constrained so that the 212 
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expected number of partnerships per man must equal the expected number of partnerships 213 

per woman.  214 

 215 

Prevalence 216 

We used our model to calculate the probability 𝜋𝑗 of each individual j being infected, given 217 

the number of partners they reported. The infection status of j has a Bernoulli distribution 218 

with parameter 𝜋𝑗: 219 

 220 

𝑃(𝛿𝑗|𝜋𝑗) = 𝑃𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛿𝑗|𝜋𝑗) = {
𝜋𝑗 𝛿𝑗 = 1

1 − 𝜋𝑗 𝛿𝑗 = 0 221 

where 222 

𝛿𝑗 = {1 if 𝑗 is infected
0 if 𝑗 is uninfected 223 

 224 

Full likelihood 225 

The log-likelihood of the data is given by: 226 

𝐿 = 𝐿𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 + 𝐿𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 + 𝐿𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 227 

where: 228 

• 𝐿𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 is the log-likelihood associated with partnership turnover (negative 229 

binomial distribution); 230 

• 𝐿𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒  is the log-likelihood associated with clearance, and 231 

• 𝐿𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 is the log-likelihood associated with the infection status of each 232 

participant at the time of testing in the survey (Bernoulli distribution).  233 

 234 

Inference and Estimation 235 
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 236 

Priors 237 

We used uninformative priors for all parameters except the sensitivity of chlamydia 238 

diagnosis by culture, which enters the model for chlamydia clearance. This had a 239 

𝜓 ~ Beta(78,8) prior, based on studies comparing the performance of culture diagnosis and 240 

NAATs.(14) 241 

 242 

Bayesian methods and sampling of posterior distribution 243 

Estimation was carried out by sampling from the posterior using a Markov chain Monte 244 

Carlo (MCMC) algorithm implemented in the Stan software,(20) within the R 245 

environment.(21) The data, Stan model file and R scripts used for handling input and results 246 

are all available online at https://github.com/joanna-lewis/ct_transmission_probs. We ran 247 

four chains for 2000 iterations each, discarding the first 1000 “warmup” iterations of each 248 

chain. Posterior predictive checks were carried out, comparing simulated and observed 249 

partner number distributions, and prevalence in men and women reporting different 250 

numbers of partners. We also used prior distributions for the proportion of infections 251 

leading to symptoms for men and women to simulate the annual number of symptomatic 252 

infections that would have occurred under the parameter values inferred (see 253 

supplementary information). 254 

 255 

Sensitivity Analysis 256 

 257 

We conducted three sensitivity analyses to investigate different aspects of our model, which 258 

are described in detail in Supplementary Information. First, we relaxed the assumption of 259 
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equal average numbers of partnerships in men and women. Secondly, we constructed a 260 

model in which individuals only form partnerships with members of the opposite sex 261 

reporting the same number of partnerships. This tests two aspects of the model: (a) by 262 

imposing totally assortative mixing by number of partners, it tests the effect of assuming 263 

that partners are chosen at random from all those available; and (b) by allowing for differing 264 

force of infection in individuals reporting different numbers of partners, it tests the effect of 265 

using a single average transmission probability across all partnerships. Finally, we used data 266 

from Natsal-2 to investigate the effect of studying the number of partnerships without a 267 

condom, rather than total partnership numbers. 268 

 269 

Results 270 

For all parameters split 𝑅̂ statistics for the MCMC sampling were between 0.9990 and 271 

1.0032, indicating good convergence, and the effective sample size was greater than 0.4 per 272 

transition of the Markov chain. No transitions ended with a divergence. 273 

 274 

In Natsal-2 the mean number of new partners per year was inferred as 0.59 (95%CrI 0.54-275 

0.65). Overall chlamydia prevalence was 2.1% (95%CrI 1.6-2.8%) in men and 2.0% (95%CrI 276 

1.4-2.8%) in women, compared to survey-based estimates of 2.4% (95%CI 1.5-3.6%) and 277 

1.5% (95%CI 1.0-2.1%). In NHANES the mean number of new partners inferred was 0.92 278 

(95%CrI 0.85-1.00). Prevalence was 1.7% (95%CrI 1.3-2.3%) in men and 3.7% (95%CrI 2.8-279 

4.6%) in women, compared to survey-based estimates 1.9% (95%CI 1.3-2.6%) and 2.3% 280 

(95%CI 1.7-3.0%). 281 

 282 
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Figure 2 shows posterior distributions for the per-partnership transmission probabilities, 283 

derived using Natsal-2 and NHANES. Using Natsal-2, the posterior median transmission 284 

probabilities were 32.1% (95%CrI 18.4-55.9%) (male-to-female) and 21.4% (95%CrI 5.1-285 

67.0%) (female-to-male). Using NHANES, they were 34.9% (95%CrI 22.6-54.9%) (male-to-286 

female) and 4.6% (95%CrI 1.0-13.1%) (female-to-male). The posterior distributions for all 287 

parameters are summarized in Supplementary Table S4.  288 

 289 

Posterior predictions for the partner number distributions generally agreed with data but 290 

there was some discrepancy, especially in women (Supplementary Figure S2). Predicted 291 

numbers of infections, by reported numbers of partners, agreed well with observations in 292 

both sexes, for both studies (Supplementary Figure S3).  293 

 294 

For Natsal-2 we simulated median (2.5th-97.5th centile) 109,000 (25,000-327,000) 295 

symptomatic cases in men; the number of diagnoses recorded in 2000 was estimated as 296 

30,000-41,000.(22) In women we simulated median (2.5th-97.5th centile) 46,000 (25,000-297 

77,000) symptomatic cases; 48,000-105,000 diagnoses were recorded.(22) For NHANES, we 298 

simulated median (2.5th-97.5th centile) 397,000 (83,000-1149,000) symptomatic cases in 299 

men; the number of diagnoses recorded in 2009 was 307,000. We simulated median (2.5th-300 

97.5th centile) 429,000 (259,000-682,000) symptomatic cases in women, and 879,000 301 

diagnoses were recorded. 302 

 303 

In the sensitivity analyses we found that relaxing the assumption of equal partnership 304 

numbers in men and women led to no meaningful differences in the posterior ditributions 305 

for transmission probabilities. In a model where partnerships formed only between 306 
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individuals reporting the same number of partners, we found evidence of higher 307 

transmission probabilities in couples reporting fewer partners. Our model using data on 308 

partnerships without a condom resulted in posterior distributions shifted to slightly higher 309 

transmission probabilities, but the shift was small compared with the width of the 310 

distribution. 311 

 312 

Discussion 313 

We have described a new statistical model for inferring the per-partnership transmission 314 

probability of a sexually transmitted infection, and have applied it to population-level data 315 

on chlamydia from the UK and the US. Our method provides its estimates with uncertainty, 316 

which is crucial for modelling and understanding chlamydia epidemiology and control. 317 

Estimates of average per-partnership (as opposed to per-sex-act) transmission probability 318 

are valuable for building predictive models of control measures, because data availability 319 

means that behavioural models can be parameterised more reliably in terms of number of 320 

partnerships than number of sex acts. Our estimates incorporate data from several sources 321 

including population based surveys and make use of information that is often disregarded, 322 

contained in the correlation between the number of partners reported and the probability 323 

of chlamydia infection.  324 

 325 

In the UK we found a male-to-female transmission probability of 32.1% per partnership 326 

(95%CrI 18.4-55.9%), which was consistent with the corresponding US result of 34.9% 327 

(95%CrI 22.6-54.9%). The posterior for female-to-male transmission probability inferred 328 

from the UK data was much more uncertain, with posterior median 21.4% (95%CrI 5.1-329 
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67.0%). The equivalent for the US data was lower, but with a narrower and overlapping 330 

credible interval: 4.6% (95%CrI 1.0-13.1%).  331 

 332 

Posterior predictive checks agreed well with the original data, indicating a well-specified 333 

model. The main exception is the partnership number data in women: in both Natsal-2 and 334 

NHANES, higher partner numbers are under-reported compared to simulations. Under-335 

reporting of partner numbers by women is a recognized phenomenon which has been 336 

widely discussed.(23) The partnership number distributions may explain the low female-to-337 

male transmission estimated using NHANES. If NHANES respondents reported new 338 

partner(s) in the last year, and more than one partner in total, then we took the number of 339 

new partners to be one less than the total number of partners: in fact, this proxy is an upper 340 

bound, as more than one could have been an existing partner. If the number of partners and 341 

hence the contact rate is over-estimated by this proxy then there will be a corresponding 342 

reduction in the per-partnership transmission probability. 343 

 344 

Katz estimated a male-to-female transmission probability of 39.5% (95%CI 19.3-59.7%) per 345 

partnership:(9) consistent with our estimate. Katz’s estimate for female-to-male 346 

transmission probability is 32.3% (95%CI 10.0-54.6%): well within our credible interval for 347 

UK data, but barely overlapping for the US estimate. Althaus et al.’s ODE-based pair model 348 

produced a higher estimated transmission probability per partnership (55.5%, IQR 49.2-349 

62.5%), assuming two partners every six months (four per year).(10) However, they note 350 

that their model does not account for heterogeneity in transmissibility of chlamydia, 351 

whereas ours allows for differences by sex. We also account for sex differences in chlamydia 352 



16 
 

clearance rate and heterogeneity in partnership turnover rates, which is an important 353 

feature in explaining observed partner number distributions. 354 

 355 

Our model assumes a closed system at steady state. These assumptions are reasonable as 356 

the number of people entering and leaving the sexually-active population each year is small 357 

compared to the total population, and any changes in the model parameters are slow 358 

compared to the dynamics of the system. We have ignored the role of same-sex contacts, 359 

but their effect on our estimates is also likely to be small because only people with at least 360 

one opposite-sex partner were included in the data. We chose to include people reporting 361 

partners of both sexes in our analysis to maximise the amount of data used, and because 362 

excluding them ignores their involvement in the heterosexual network and could bias our 363 

results.  364 

 365 

Another assumption of the analysis is that individuals choose partnerships at random from 366 

all the partnerships offered by the opposite sex. Whilst we know that sexual mixing is to 367 

some extent assortative, sensitivity analysis indicates that assortativity would not lead to 368 

greatly differing force of infection per contact in people reporting different numbers of 369 

partners (see Supplementary Information). There was some evidence from this analysis of a 370 

higher transmission probability in people reporting no new partners, particularly in the 371 

NHANES dataset. This could reflect lower condom use or longer partnerships and would be 372 

an interesting avenue for further research. However, even if there are qualitative 373 

differences between partnerships, leading to heterogeneity in transmission probabilities, 374 

this does not invalidate the concept of a single average across all partnerships, which is still 375 

a hugely useful quantity for modelling. In a further sensitivity analysis we modelled number 376 
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of partnerships without a condom, estimated using data from Natsal-2. The posterior 377 

distributions suggested that qualitative differences such as condom use may reduce 378 

population-average transmission probabilities, but to an extent that is small compared with 379 

the uncertainty in the estimates. It might be valuable for sexual behavior surveys to collect 380 

explicit information on the annual number of new partnerships without a condom for 381 

parameter inference and predictive modelling, and our sensitivity analysis suggests that our 382 

model could be used to infer transmission probabilities from such data. 383 

 384 

The evidence synthesis approach that we used can readily incorporate further data as it 385 

becomes available, so that improved data collection would allow our analysis to be 386 

augmented to improve our estimates. For example, there is particular uncertainty in the 387 

proportion of infections that become symptomatic in each sex, and in the clearance rate of 388 

untreated infections in men; the latter limiting the precision of the female-to-male 389 

transmission probability. We have argued elsewhere that surveillance and screening 390 

programmes could be used to collect data on long-term chlamydia clearance in men to 391 

inform a more precise estimate of clearance rate(15). Additionally, it has been suggested 392 

that previous exposure to chlamydia may confer partial immunity,(24) which would reduce 393 

the transmission probability to older and/or more sexually active individuals, who would be 394 

more likely to have had a prior infection. Whilst further empirical study of chlamydia 395 

immunology is required, it is interesting that the posterior predictive checks showed that 396 

our model tends to under-predict prevalence in those reporting few partners and over-397 

predict in those reporting several partners (Figure S4), which would be consistent with 398 

partial immunity in high-risk individuals who are more likely to have been infected before.  399 

 400 
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In conclusion, it is important to use rigorous parameter estimates in computational models, 401 

and to quantify their uncertainty and its effect on conclusions and recommendations. Our 402 

method provides such estimates for the probability of chlamydia transmission, and with 403 

appropriate data the methods described here could also be applied to other sexually 404 

transmitted infections which can be represented using the SIS model. The estimates can be 405 

used in transmission modeling to understand the effect of control policies on patterns of 406 

prevalence.   407 



19 
 

Ethics 408 

This was a secondary analysis of publicly-available data, and no additional ethical approval 409 

was required or sought. 410 

 411 

Funding 412 

JL and PJW were supported by the National Institute for Health Research (NIHR) Health 413 

Protection Research Unit (HPRU) in Modelling Methodology at Imperial College London in 414 

partnership with Public Health England (PHE) (grant number HPRU-2012-10080). PJW was 415 

also supported by the NIHR HPRU in Modelling and Health Economics, a partnership 416 

between PHE, Imperial College London and LSHTM, for funding (grant number 417 

NIHR200908). Additionally, PJW was supported by the MRC Centre for Global Infectious 418 

Disease Analysis (grant number MR/R015600/1); this award is jointly funded by the UK 419 

Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office 420 

(FCDO) under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 421 

programme supported by the European Union (EU). MJP was supported by the NIHR 422 

Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS 423 

Foundation Trust and the University of Birmingham. 424 

 425 

This paper presents independent research, and the funders had no role in study design, data 426 

collection and analysis, decision to publish, or preparation of the manuscript. The views 427 

expressed are those of the authors and not necessarily those of the Department of Health 428 

and Social Care, EU, FCDO, MRC, National Health Service, NIHR, or PHE. 429 

 430 

Data availability 431 



20 
 

The raw data analysed in this study has been made publicly available by the researchers in 432 

question, and can be accessed as described in the References.  433 

 434 

Conflict of interest 435 

None declared. 436 

 437 

References 438 

1. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 439 

2018. Atlanta: U.S. Department of Health and Human Services. 2019. 440 

2. . National chlamydia screening programme (NCSP): data tables. 441 

http://www.chlamydiascreening.nhs.uk/ps/data.asp Accessed 6 January 2016. 442 

3. Lewis J, White PJ. Estimating local chlamydia incidence and prevalence using surveillance 443 

data. Epidemiology 2017; 28:492-502. 444 

4. Gottlieb SL, Xu F, Brunham RC. Screening and treating Chlamydia trachomatis genital 445 

infection to prevent pelvic inflammatory disease: interpretation of findings from 446 

randomized controlled trials. Sex Transm Dis 2013; 40:97-102. 447 

5. Lewis J, White PJ. Changes in chlamydia prevalence and duration of infection estimated 448 

from testing and diagnosis rates in England: a model-based analysis using surveillance 449 

data, 2000--15. Lancet Public Health 2018; 3:e271-78. 450 

6. Price MJ, Ades AE, De Angelis D, et al. Risk of pelvic inflammatory disease following 451 

Chlamydia trachomatis infection: analysis of prospective studies with a multistate model. 452 

Am J Epidemiol 2013; 178:484-492. 453 



21 
 

7. Davies B, Anderson S, Turner KME, Ward H. How robust are the natural history 454 

parameters used in chlamydia transmission dynamic models? A systematic review. Theor 455 

Biol Med Model 2014; 11:8. 456 

8. Althaus CL, Turner KME, Schmid BV, Heijne JCM, Kretzschmar M, Low N. Transmission of 457 

Chlamydia trachomatis through sexual partnerships: a comparison between three 458 

individual-based models and empirical data. J R Soc Interface 2012; 9:136-146. 459 

9. Katz BP. Estimating transmission probabilities for chlamydial infection. Stat Med 1992; 460 

11:565-577. 461 

10. Althaus CL, Heijne JCM, Nicola Low M. Towards more robust estimates of the 462 

transmissibility of Chlamydia trachomatis. Sex Transm Dis 2012; 39:402-404. 463 

11. Turner KM, Adams EJ, Gay N, Ghani AC, Mercer C, Edmunds WJ. Developing a realistic 464 

sexual network model of chlamydia transmission in Britain. Theor Biol Med Model 2006; 465 

3:3. 466 

12. Fenton KA, Korovessis C, Johnson AM, et al. Sexual behaviour in Britain: reported 467 

sexually transmitted infections and prevalent genital Chlamydia trachomatis infection. 468 

Lancet 2001; 358:1851-1854. 469 

13. National Health and Nutrition Examination Survey. 470 

https://www.cdc.gov/nchs/nhanes/index.htm Accessed 17 July 2020. 471 

14. Price MJ, Ades AE, De Angelis D, et al. Mixture-of-exponentials models to explain 472 

heterogeneity in studies of the duration of Chlamydia trachomatis infection. Stat Med 473 

2013; 32:1547-60. 474 

15. Lewis J, Price MJ, Horner PJ, White PJ. Genital C. trachomatis infections clear more 475 

slowly in men than women, but are less likely to become established. J Infect Dis 2017; 476 

216:237-244. 477 



22 
 

16. Johnson A, Fenton K, Copas A et al. National Survey of Sexual Attitudes and Lifestyles, 478 

2000-2001 [computer file]. Colchester, Essex: UK Data Archive [distributor], 2005. SN: 479 

5223, http://doi.org/10.5255/UKDA-SN-5223-1. 480 

17. Centers for Disease Control and Prevention (CDC) and National Center for Health 481 

Statistics (NCHS). National Health and Nutrition Examination Survey Data. [computer 482 

file]. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease 483 

Control and Prevention [distributor]. 484 

18. Handcock MS, Jones JH. Likelihood-based inference for stochastic models of sexual 485 

network formation. Theor Popul Biol 2004; 65:413-422. 486 

19. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. 487 

Chapman &Hall/CRC Press, London, third edition. 2013. 488 

20. Stan Development Team. RStan: the R interface to Stan, Version 2.10.1. http://mc-489 

stan.org/interfaces/rstan.html Accessed 7 June 2016. 490 

21. R Core Team. R: A Language and Environment for Statistical Computing. 2016. 491 

22. Chandra N, Soldan K, Dangerfield C, et al. Filling in the gaps: estimating numbers of 492 

chlamydia tests and diagnoses by age group and sex before and during the 493 

implementation of the English National Screening Programme, 2000 to 2012. 494 

Eurosurveillance 2017; 22:30453. 495 

23. Morris M. Telling tails explain the discrepancy in sexual partner reports. Nature 1993; 496 

365:437-440. 497 

24. Batteiger BE, Xu F, Johnson RE, Rekart ML. Protective immunity to Chlamydia 498 

trachomatis genital infection: Evidence from human studies. Journal of Infectious 499 

Diseases 2010; 201 (Suppl 2):S178-S189. 500 

  501 



23 
 

Figure Legends 502 

Figure 1: SIS (susceptible-infected-susceptible) model of chlamydia infection and recovery 503 

for individual j, of sex x. 𝜋𝑗 is the probability of being infected with chlamydia and 1 − 𝜋𝑗  is 504 

the probability of being susceptible. 𝐹𝑗 is the force of infection and 𝜆𝑥 is the recovery rate. 505 

 506 

Figure 2: Posterior distributions for the per-partnership probability of chlamydia 507 

transmission, derived using number of new partners reported in (A) The second National 508 

Study of Sexual Attitudes and Lifestyles (Natsal-2), and (B) the National Health and Nutrition 509 

Examination Surveys (NHANES) 2009-2014 (all studies combined). The yellow line in each 510 

figure represents male-to-female transmission probability and the green line female-to-511 

male. 512 
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1. Methods 
The aim of the study is to provide a mathematical and statistical model that can be used to infer per-
partnership transmission probability from survey data. 
 

a. Mathematical model 
Let each individual j experience a force of infection Fj, which depends on his or her rate of forming 
infectious contacts (partnerships). Assume that all women recover from infection at the same rate, λf, and 
all men recover at the same rate, λm. We use a susceptible-infected-susceptible (SIS) model of infection 
and recovery (Figure 1). The probability that individual j is infected at a given moment is !", and the 
probability that he or she is susceptible is 1 − !".  
 

 
 
Assuming only heterosexual transmission, the force of infection is the rate at which an individual makes 
contacts with infected members of the opposite sex, multiplied by the per-contact transmission 
probability. We denote the sex of individual j with the symbol x, and the opposite sex with the symbol x’. 
The rate of contacting infected members of the opposite sex is %&", and the per-contact transmission 
probability from the opposite sex is '&(→&. Then: 
 

*" = %&"'&(→&. 
 
At steady state, the number of new infections per unit time equals the number of recoveries, so we know 
also that: 

*",1 − !"- = %&"'&(→&,1 − !"- = .&!"  
 
Hence, 

'&(→& =
!"

1 − !"
.&
%&"

 

and 
!"

1 − !"
= %&"'&(→&

.&
 

 
The following assumptions are implicit in this argument and are discussed in the main text: 

1. Closed system: the number of people entering and leaving the system is negligible. 
2. Steady state: prevalence is stable, and force of infection and recovery rate do not change. 
3. Identical partnerships: all partnerships have the same risk of transmission, regardless of partnership 

length and frequency of sex acts. 
 
Our model considers asymptomatic infections; symptomatic infections prompt treatment-seeking and are 
therefore short-lived and unlikely to cause onward infection or to be detected in population-based 
surveys. 
 

Figure S1: Susceptible-infected-susceptible (SIS) model of chlamydia infection 
and recovery. 
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b. Data 
We infer parameter values in the model by synthesizing data from several sources. 
 

i. Clearance of untreated chlamydia infection 
Data informing the clearance rate of untreated chlamydia infection in men and women came from studies 
in the literature synthesized in previous analyses.1,2 In each study people found to be infected with 
chlamydia were re-tested at a later date, having remained untreated in the interim. The number who 
cleared their infection provides information on the clearance rate. Nine studies in women and eight in men 
were included, involving a total of 569 women and 165 men. Further details are provided in the original 
papers describing this analysis.1,2 
 

ii. Partnership numbers 
We used data on sexual behaviour and chlamydia infection from two population-based studies: the second 
National Study of Sexual Attitudes and Lifestyles (Natsal-2),3 and the three National Health and Nutrition 
Examination Surveys (NHANES) conducted biennially between 2009 and 20144. The ideal data to inform 
the sexual contact rate would be the number of new sexual partnerships formed in the last year.  
 
In Natsal-2, participants reported their number of opposite-sex partners in the last year and were then 
asked: 

• Was this [woman/man] a new partner who you had sex with for the first time during the last year? 
(if they had reported one partner) or 

• How many of these [women/men] were new partners who you had sex with for the first time during 
the last year? (if they had reported more than one partner). 

This information was used to inform the distribution of number of new partners in the last year in the 
Natsal-2 population. 

We combined data from the three NHANES conducted between 2009 and 2014 to achieve a larger sample 
size than would be possible using just one study.4 Participants were asked: 

• In the past 12 months, with how many [women/men] have you had vaginal sex? and 
• In the past 12 months, did you have any kind of sex with a person that you never had sex with 

before? 
We used these two questions to provide a proxy for the number of new partners in the last year according 
to the following algorithm: 

• If a participant stated they had had no new partners in the last year, we took the number of new 
partners to be zero.	

• If a participant stated they had had new partner(s) in the last year, and reported one partner in 
total, we took the number of new partners to be one. 

• If a participant stated they had had new partner(s) in the last year, and reported more than one 
partner in total, we took the number of new partners to be one less than the total number of 
partners. 

 
This approach is similar to the use elsewhere of “shifted negative binomial” distributions for modelling 
partner numbers.5 
 

iii. Infection status 
The publicly-available data from both Natsal-2 and NHANES also includes chlamydia infection status, 
diagnosed using nucleic acid amplification tests (NAATs) on urine samples, which provides information on 
the prevalence of infection in individuals reporting different numbers of partners. Natsal-2 participants 
were eligible for a urine sample if they were aged 18-44 years and had ever had sex, and a randomly-
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selected half of these eligible participants were invited to provide samples. All NHANES participants aged 
14-39 years were invited to provide a sample for chlamydia testing, but the publicly-available data 
excludes 14-17-year-olds. 
 
The raw data on numbers of partnerships reported by susceptible and infected men and women in Natsal-
2 and NHANES are provided in Supplementary Tables S1 and S2. 
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Table S1: Raw data from the Second National Study of Sexual Attitudes and Lifestyles (Natsal-2) used to inform the model. 
 

Number 
of new 
partners 

Number of Men Chlamydia 
prevalence in men 
(95%CI) (%) 

Number of Women Chlamydia 
prevalence in 
women (95%CI)(%) 

Unweighted Weighted Unweighted Weighted 
Uninfected Infected Total Uninfected Infected Total Uninfected Infected Total Uninfected Infected Total 

0 784 9 793 1063.78 13.57 1077.35 1.3 (0.5, 2.5) 1346 17 1363 1210.19 11.38 1221.57 0.9 (0.5, 1.5) 
1 243 6 249 266.15 6.57 272.72 2.4 (0.8, 5.6) 309 9 318 213.90 5.11 219.01 2.3 (1.0, 4.7) 
2 98 4 102 99.39 4.91 104.30 4.7 (1.1, 12.5) 76 5 81 55.64 2.85 58.49 4.9 ( 1.4, 11.6) 
3 51 3 54 48.32 4.62 52.94 8.7 (1.5, 25.1) 27 2 29 16.57 1.82 18.39 9.9 (1.0, 33.2) 
4 18 2 20 16.79 3.05 19.84 15.4 (1.3, 50.0) 18 0 18 13.40 0 13.40 0* 
5 14 1 15 13.55 0.94 14.50 6.5 (0.1, 32.8) 9 2 11 7.33 0.86 8.19 10.5 (0.9, 36.2) 
6 8 1 9 8.88 1.94 10.83 18.0 (0.4, 67.7) 3 0 3 2.04 0 2.04 - 
7 6 0 6 7.92 0 7.92 0* 2 0 2 1.06 0 1.06 - 
8 1 0 1 1.62 0 1.62 0* 1 0 1 0.48 0 0.48 - 
9 5 2 7 5.68 1.51 7.19 21.0 (2.1, 60.6) 1 0 1 1.26 0 1.26 - 
10 3 1 4 4.09 0.58 4.67 12.4 (0.0, 1.0)  1 1 2 0.48 0.25 0.73 34.1‡ 
11 1 0 1 1.76 0 1.76 0* 0 1 1 0 0.62 0.62 100* 
12 3 0 3 4.46 0 4.46 0* 0 0 0 0 0 0 - 
13 1 0 1 0.99 0 0.99 0* 1 0 1 0.81 0 0.81 0* 
15 1 0 1 1.16 0 1.16 0* 0 0 0 0 0 0 - 
19 1 0 1 0.78 0 0.78 0* 0 0 0 0 0 0 - 
20 0 0 0 0 0 0 - 2 0 2 1.91 0 1.91 0* 
36 0 0 0 0 0 0 - 1 0 1 0.46 0 0.46 0* 
39 0 0 0 0 0 0 - 1 0 1 0.44 0 0.44 0* 
55 1 0 1 0.44 0 0.44 0* 0 0 0 0 0 0 - 
Overall 
mean 
number 
of 
partners 

0.85 2.41 0.89 0.71 2.07 0.74 Overall prevalence 
in men: 
2.38 (1.52, 3.55) 

1.03 1.51 1.04 0.95 1.31 0.96 Overall prevalence 
in women: 
1.48 (1.01, 2.08) 

 
CI: confidence interval 
*Confidence intervals cannot be calculated where 0% or 100% of individuals were infected. ‡A confidence interval could not be calculated because of the small number of individuals. 
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Table S2: Raw data from the National Health and Nutrition Examination Surveys (NHANES; 2009-2014 combined) used to inform the model. 
 

Number of 
new 
partners 

Number of Men Chlamydia 
prevalence in 
men (95%CI) (%) 

Number of Women Chlamydia 
prevalence in 
women (95%CI)(%) 

Unweighted Weighted Unweighted Weighted 
Uninfected Infected Total Uninfected Infected Total Uninfected Infected Total Uninfected Infected Total 

0 1617 29 1646 1662.23 25.61 1687.84 1.5 (0.9, 2.3) 1901 43 1944 1898.59 34.05 1932.65 1.8 (1.2, 2.5) 
1 306 12 318 330.54 10.92 341.46 3.2 (1.4, 6.3) 291 18 309 289.92 10.79 300.71 3.6 (2.0, 5.9) 
2 123 4 127 109.99 2.99 112.98 2.6 (0.6, 7.1) 78 7 85 78.20 5.21 83.42 6.3 (1.8, 14.9) 
3 72 2 74 61.48 0.83 62.31 1.3 (0.1, 5.5) 34 2 36 31.85 1.20 33.05 3.6 (0.1, 18.5) 
4 58 2 60 55.29 0.65 55.94 1.2 (0.1, 4.9) 17 0 17 15.40 0 15.40 0* 
5 19 2 21 23.46 0.72 24.18 3.0 (0.0, 92.3) 15 1 16 14.50 0.44 14.94 2.9 (0.0, 93.5) 
6 23 1 24 22.14 0.55 22.69 2.4 (0.0, 19.3) 4 1 5 4.78 0.44 5.22 8.43‡ 
7 13 0 13 14.68 0 14.68 0* 8 0 8 8.31 0 8.31 0* 
8 11 0 11 9.24 0 9.24 0* 3 1 4 5.22 1.35 6.57 20.6‡ 
9 19 1 20 17.35 0.62 17.97 3.5 (0.0, 98.8) 3 0 3 1.91 0 1.91 0* 
10 3 0 3 2.89 0 2.89 0* 2 0 2 0.98 0 0.98 0* 
11 8 0 8 6.41 0 6.41 0* 7 0 7 4.25 0 4.25 0* 
12 5 0 5 4.31 0 4.31 0* 0 1 1 0 0.62 0.62 0* 
13 3 0 3 3.21 0 3.21 0* 0 0 0 0 0 0 - 
14 8 1 9 5.09 0.53 5.62 9.4‡ 1 0 1 0.42 0 0.42 0* 
17 3 1 4 2.72 0.44 3.16 13.9‡ 1 0 1 0.69 0 0.69 0* 
18 3 0 3 2.36 0 2.36 0* 0 0 0 0 0 0 - 
19 6 0 6 3.99 0 3.99 0* 0 1 1 0 0.39 0.39 100* 
21 2 0 2 2.90 0 2.90 0* 0 0 0 0 0 0 - 
23 0 0 0 0 0 0 - 1 0 1 0.82 0 0.82 0* 
24 3 1 4 3.36 0.52 3.89 13.5‡ 2 0 2 4.13 0 4.13 0* 
29 2 0 2 1.60 0 1.60 0* 1 0 1 0.60 0 0.60 0* 
34 1 0 1 0.80 0 0.80 0* 1 0 1 1.24 0 1.24 0* 
38 1 0 1 0.62 0 0.62 0* 0 0 0 0 0 0 - 
39 1 0 1 0.36 0 0.36 0* 0 0 0 0 0 0 - 
44 1 0 1 2.11 0 2.11 0* 0 0 0 0 0 0 - 
49 4 0 4 5.52 0 5.52 0* 1 0 1 1.60 0 1.60 0* 
78 1 0 1 0.90 0 0.90 0* 0 0 0 0 0 0 - 
79 1 0 1 0.64 0 0.64 0* 0 0 0 0 0 0 - 
89 0 0 0 0 0 0 - 1 0 1 2.22 0 2.22 0* 
99 1 1 2 0.75 0.52 1.27 41.2‡ 0 0 0 0 0 0 - 
Overall 
mean 
number of 
partners 

1.26 3.74 1.31 1.18 2.53 1.20 Overall 
prevalence in 
men: 
1.87 (1.33, 2.56) 

0.52 1.17 0.54 0.57 1.01 0.58 Overall prevalence 
in women: 
2.25 (1.65, 3.00) 

 
CI: confidence interval 
*Confidence intervals cannot be calculated where 0% or 100% of individuals were infected. ‡A confidence interval could not be calculated because of the small number of individuals. 
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c. Statistical model 

We conducted a Bayesian evidence synthesis using data from the sources described to construct a 
likelihood. This was combined with appropriate priors to provide a posterior distribution for the model 
parameters. 
 

i. Partnership dynamics 
We used negative binomial distributions to model the estimated numbers of new partners reported in the 
last year by men and women. A negative binomial distribution with size ! and mean " can arise as a 
mixture of Poisson distributions, where the mixing distribution for the Poisson rate is a Gamma distribution 
with shape ! and rate 

#

$

. Formally, let the number of new partners reported by individual j be represented 

by the random variable Nj which has a Poisson distribution with rate σj: 
%
&
	~	)*+,,*-./

&
0,  

so that 

).-
&
|/
&
0 = )

3456647
.-

&
|/
&
0 =

8
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;
/
&

7
;

-
&
!

 

Now, let the partner change rate be a random variable having a Gamma distribution with shape !
&
 and 

rate =
&
=

#
;

$
;

: 
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&
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It can be shown6 by integrating over the Poisson rate /

&
 that Nj has a negative binomial distribution with 

size !
&
 and mean "

&
= 	

!
&

=
&

I : 

%
&
	~	%J."

&
, !
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&
|"
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&
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In our model, the shape and rate depend on the sex of the individual: 
 

.!
&
, =
&
0 = T

(!
D
, =
D
) for men

.!
W
, =
W
0 for women

 

 
As we are considering heterosexual transmission, the expected number of partnerships per man must 
equal the expected number of partnerships per woman, so we constrain the negative binomial partnership 
number distributions in men and women to have the same mean: 

!
D

=
D

X =

!
W

=
W

I = ". 

 
The Gamma distribution is the conjugate prior for the Poisson. Given that we observe nj new partnerships 
in a year in individual j, we can “update” our knowledge of the partner change rate in individual j and say 
that 

/
&
	~	>?@@?.!

&
+ -

&
, =
&
+ 10 

(See 6 for a full discussion of conjugate priors, including the Poisson model.) 
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ii. Prevalence 
As described above, the probability that individual j is infected with chlamydia is a function of the Poisson 
rate of forming partnerships with infected people (Y

Z&
), the per-partnership transmission probability 

([
Z\→Z

), and the clearance rate (^
Z
): 

 
 _

&

1 − _
&

=

Y
Z&
[
Z\→Z

^
Z

 (1) 

 
The rate of individual j forming infectious contacts, Y

Z&
, equals the rate of forming contacts, /

&
, multiplied 

by the proportion of contacts offered by the opposite sex that are infectious, _
`

Z\: 
 Y

Z&
= /

&
_
`

Z\ (2) 
 
_
`

Z\ is calculated by integrating (numerically) the product of prevalence and expected number of 
partnerships formed, over all possible partner change rates in sex x’, and then dividing by the total 
expected number of partnerships formed, "

Z\
= ": 

 

_
`

Z\
=

1

"

a )(/|", !
Z
b)

/_
`

Z
[
Z→Z\

/_
`

Z

[
Z→Z\

+	^
Z

c

:de

/f/ 

 
Substituting (2) into (1), the probability that an individual j is infected, _

&
, therefore fulfills the equality: 

_
&

1 − _
&

=

/
&
_
`

Z\
[
Z\→Z

^
Z

_
&

=

1

1 + g
&

 

where  

g
&
=

^
Z

/
&
_
`

Z\

[
Z\→Z

 

 
For individual j, the exact value of /

&
 is not known, but the reported number of new partners, nj, provides 

some information, allowing us to update our Gamma prior as described above. The expected prevalence in 
individuals reporting nj partners is calculated by integrating the product of prevalence and the updated 
Gamma probability density for individual j: 
 

_
&

= a )
BCDDC

./|!
&
+ -

&
, =
&
+ 10

1

1 +	g(/
&
)

c
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$
;
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&
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&
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/
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8
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;
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Z
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⁄
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The infection status of j has a Bernoulli distribution with parameter _

&
: 

 

).j
&
|_
&
0 = )

Lkl74mnn5
.j
&
|_
&
0 = o

_
&

j
&
= 1

1 − _
&

j
&
= 0

 

where 

j
&
= o

1 if q	is infected
0 if q	is uninfected

 

 
iii. Infection clearance rate   

We modelled immunological clearance of infection using the parameter ^
Z

. The statistical model is 
described elsewhere,1 and allows for two courses of infection: fast- or slow-clearing. A proportion p of 
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incident infections clear fast, and the remainder, 1 – p, clear slow. In this analysis we assume that only the 
slow-clearing infections last long enough to be detected in population-based studies. The clearance rate 
(denoted ^

Z
 below) is therefore equal to the slow clearance rate in the clearance model, and the 

transmission probability we estimate is the probability that an infection is transmitted and then follows the 
slow-clearing course. The parameter values are inferred from published observational data in men and 
women1,2. 
 
In the absence of data on the rates of testing and treating for asymptomatic chlamydia infection at the 
time of Natsal-2 and NHANES, we were not able to account in our model for chlamydia clearance via 
treatment of asymptomatic infections. We investigated the results of this decision in our predictive checks 
(see below). 
 

iv. Full likelihood 

The full set of model parameters is {", =, /, s, ^, t, u}, where u =
w
&

/
&

X = _
`

Z\
[
Z\→Z

 for transmission from 

x’ to x or _
`

Z
[
Z→Z\

 for transmission from x to x’. From these we derive the parameters x!, _, _
`
, [y. The 

meaning of each symbol is summarized in Table S3. 
 
Table S3: Summary of symbols used to describe the model. 
 

Symbol Description 
" Mean number of new partnerships per person. 

= = .=
D
, =
W
0 Rate parameters for gamma distributions 

/ = (/
F
, /
z
, … ) Poisson rates of partnership formation. 

s = (s
D
, s
W
) 

Proportion of infections in men and women which are fast-
clearing. 

^ = (^
D
, ^
W
) Clearance rate of slow-clearing infections 

t 
Sensitivity of culture diagnosis methods (for the clearance 
rate model). 

u = .u
W→D

, u
D→W

0 
Per-partnership prevalence, multiplied by per-partnership 
transmission probability. 

! = .!
D
, !
W
0 Shape parameters for gamma distributions. 

_ = (_
F
, _

z
, … ) Expected chlamydia prevalence in each individual. 

_
`
= ._

`

D
, _

`

W

0 
Proportion of all partnerships in which the man/woman is 
infected. 

[ = .[
D→W

, [
W→D

0 
Per-partnership transmission probability from an infected  
man/woman to a susceptible woman/man. 

 
Survey weights |

5
 are incorporated by multiplying the relevant component of the log-likelihood by the 

weight. The log-likelihood of the data is given by: 
} = }

~ml74�kl
+ }

ÄnkClC7Äk
+ }

57WkÄ~547
 

where: 
• }

~ml74�kl
 is the log-likelihood associated with the partnership turnover data in men and women. 	

}
~ml74�kl

= }
~ml74�kl

D

+ }
~ml74�kl

W  

=Å|
&
× )

KL
.-

&
|!
D
, =
D
0

D

+Å|
&
× )

KL
.-

&
|!
W
, =
W
0

W

 

 
• }

ÄnkClC7Äk
 is the log-likelihood associated with the clearance data:	
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}
ÄnkClC7Äk

= Å )
É574D5Cn

(Ñ|-
~k6~

, Ö)

ÜC~C

 

 
where ntest is the number of people tested for each data point, r is the number who had cleared 
their infection and θ is the proportion expected to clear the infection (full details provided 
elsewhere1).  

 
• }

`lk�Cnk7Äk
 is the log-likelihood associated with the prevalence data in men and women reporting 

different numbers of partners:	
 

}
`lk�Cnk7Äk

=Å|
&
)
Lkl74mnn5

.j
&
|_
&
0

D

+Å|
&
)
Lkl74mnn5

.j
&
|_
&
0

W

 

 
d. Inference and Estimation 

 
i. Priors 

Prior distributions for the parameters were as follows: 
 
"	~	Exponential(0.1) (uninformative) 
=	~	Exponential(0.1) (uninformative) 
s	~	Beta(1,1) (uninformative) 
^
6n4á

	~	Exponential(0.001) (uninformative) 
t	~	Beta(78,8) (based on studies comparing test performance7) 
u~	Exponential(0.001) (uninformative) 

 
ii. Bayesian methods and sampling of posterior distribution 

Estimation was carried out by sampling from the posterior using a Markov chain Monte Carlo (MCMC) 
algorithm implemented in the Stan software,8 within the R environment.9 The data, Stan model file and R 
scripts used for handling input and results are all available online at https://github.com/mrc-
ide/ct_transmission_prob. MCMC estimation is carried out by drawing thousands of samples from the joint 
posterior distribution. We ran four chains for 2000 iterations each, discarding the first 1000 “warmup” 
iterations of each chain. The results reported below are summary means, medians and credible intervals of 
the marginal distributions from this sampled joint posterior. 
 

iii. Posterior predictive checks 
We carried out graphical posterior predictive checks6 to check the fit of the model. We simulated values 
for the data (number of partners and infection status for each individual), using each sample from the joint 
posterior distribution. The simulated data were compared to observed data to look for any systematic 
differences.  
 
We expect that a proportion ä

Z
 of incident chlamydia infections in sex x will cause symptoms that prompt 

testing and treatment, while the remaining 1 − ä
Z

 are asymptomatic. As noted above, our model 
considers asymptomatic infections, so the modelled force of infection represents the force of 

asymptomatic infection. The force of symptomatic infection is 
ã
å

F9ã
å

 times the force of asymptomatic 

infection, and we expect to observe symptomatic diagnoses in the population at this per-person rate. We 
used prior distributions for ä	(ä

D
	~	J8ç?(11, 5); ä

W
	~	J8ç?(27, 90) 7), the posteriors for force of 

infection, and the population size, to simulate the annual number of symptomatic diagnoses.  
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2. Results 
 

a. Posterior parameter distributions 
 
Table S4: Summary of posterior distributions for model parameters, inferred using data from the second National Study of Sexual Attitudes and Lifestyles 
(Natsal-2) and National Health and Nutrition Examination Surveys (NHANES). The first six parameters were sampled directly; the last three were calculated 
from the first six, as described in the text. 
  

Parameter 

Natsal NHANES 
Men Women Men Women 
Mean Median 

 (95% CrI) 
Mean Median  

(95% CrI) 
Mean Median  

(95% CrI) 
Mean Median  

(95% CrI) 
! 
(Mean partnerships) 

0.593 0.592  
(0.545, 0.646) 

Shared parameter 0.922 0.921 
(0.848, 1.001) 

Shared parameter 

" 
(Rate parameter for 
gamma distribution) 

0.512 0.510  
(0.437, 0.597) 

0.366 0.364  
(0.291, 0.453) 

0.176 0.176 
(0.156, 0.198) 

0.137 0.136, 
(0.116, 0.160) 

p 
(Proportion of infections 
fast-clearing) 

0.314 0.314  
(0.208, 0.423) 

0.206 0.206  
(0.150, 0.266) 

0.316 
 

0.316  
(0.209, 0.430) 

0.207 0.207  
(0.152, 0.267) 

# (year-1) 
(Slow clearance rate) 

0.642 0.571  
(0.144, 1.54) 

0.737 0.735  
(0.601, 0.884) 

0.634 0.566  
(0.122, 1.512) 

0.735 0.733  
(0.600, 0.883) 

$ 
(Sensitivity of culture 
diagnosis*) 

0.911 0.912  
(0.860, 0.953) 

Shared parameter 0.911 0.912  
(0.859, 0.954) 

Shared parameter 

% = '%(→*, %*→(, 
(-. × 0; see below) 

0.025 0.022 
(0.005, 0.062) 

0.028 0.028  
(0.018, 0.043) 

0.014 0.012  
(0.003, 0.033) 

0.040 0.039 
(0.028, 0.056) 

1 
(Shape parameter for 
gamma distribution) 

0.303 0.303  
(0.262, 0.350) 

0.217 0.215  
(0.179, 0.261) 

0.162 0.162  
(0.146, 0.179) 

0.126 0.126 
(0.111, 0.142) 

-. 
(Proportion of all 
partnerships infected.) 

0.087 0.086  
(0.062, 0.115) 

0.105 0.104  
(0.069, 0.148) 

0.114 0.113  
(0.084, 0.147) 

0.261 0.261  
(0.207, 0.317) 

0 = '0(→*, 0*→(, 
(Per-partnership 
transmission probability) 

0.252 0.214 
(0.051, 0.670) 

0.334 0.321  
(0.184, 0.559) 

0.052 0.046  
(0.010, 0.131) 

0.358 0.349 
(0.226, 0.549) 

CrI: credible interval 
*Culture sensitivity at re-testing for chlamydia clearance, in people previously diagnosed by culture.1
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b. Posterior predictive checks 
i. Partner number distributions 

Figure S2 illustrates the model’s agreement with partnership number data, showing the actual and 
simulated proportions of men and women who reported each number of partners. Transparent grey circle 
markers represent simulations from the posterior distributions; lines show the 50th (solid) and 2.5th/97.5th 
(dashed) centiles of the simulations, and red crosses show the data. For a perfect model and completely 
accurate reporting of the data, we would expect the dashed lines to enclose 95% of data points. 
 
In both studies, the partnership numbers simulated in men generally agreed well with the data. The 
predictive properties were less good in women, with under-reporting of high partner numbers compared 
to simulations. If the average number of partnerships formed by men and women were allowed to differ 
then the agreement between simulations and data was improved and the posterior distributions for 
transmission probability remained similar. In our model we chose to constrain the average number in men 
and women to be equal because this is a necessary condition in reality. 

 
Figure S2: Simulated (grey) and observed (red) proportions of men (left) and women (right) reporting 
different numbers of new partners in the last year in the second National Study of Sexual Attitudes and 
Lifestyles (Natsal-2; top) and National Health and Nutrition Examination Studies (NHANES) 2009-2014 
(bottom). The main graph in each panel uses a linear scale on the y-axis, and the inset shows the same 
information but on a log scale. Simulations are shown using transparent grey markers, so that several 
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superimposed markers appear as a darker grey. The solid and dashed lines show the 2.5th, 50th and 97.5th 
centiles of the simulations. The observed data shown takes into account the survey weights. 
 

ii. Infection status 
We checked the predictive properties of the infection model by using each sampled parameter set to 
simulate infection status in each survey participant, given their reported number of partners. In Figures S3 
(Natsal-2) and S4 (NHANES), each transparent grey marker shows simulated prevalence among the 
participants reporting a given number of partners, which agreed well with the observed data. Only a small 
number of participants reported the highest numbers of partners (see bar graphs in lower panels), so only 
a few levels of prevalence were possible in those with several partners. For example, one man in Natsal-2 
reported 19 partners, so simulated prevalence could only be 0 (one man, uninfected) or 1 (one man, 
infected).
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Figure S3: Simulated (grey) and observed (red) chlamydia prevalence (y-axis) in men and women reporting different numbers of new partners in the last year 
(x-axis) in the second National Study of Sexual Attitudes and Lifestyles (Natsal-2). Simulations are shown using transparent grey markers, so that several 
superimposed markers appear as a darker grey. The solid and dashed lines join the 2.5th, 50th and 97.5th centiles of the simulations. The observed data 
takes into account the survey weights. Bar charts below each plot show the (unweighted) number of survey participants reporting each number of 
partnerships.
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Figure S4: Simulated (grey) and observed (red) chlamydia prevalence (y-axis) in men and women reporting different numbers of new partners in the last year 
(x-axis) in the National Health and Nutrition Examination Studies (NHANES). Simulations are shown using transparent grey markers, so that several 
superimposed markers appear as a darker grey. The solid and dashed lines join the 2.5th, 50th and 97.5th centiles of the simulations. The observed data 
takes into account the survey weights. Bar charts below each plot show the (unweighted) number of survey participants reporting each number of 
partnerships.
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iii. Symptomatic infections 

Table S5 shows the median and central 95% range of simulated numbers of symptomatic chlamydia cases, 
based on our posterior distributions and the male and female populations of England aged 15-44 in 2000 
(Natsal-2), or the US aged 15-39 in 2009 (NHANES). For comparison, we also report the number of 
diagnoses recorded in surveillance systems covering approximately the same times and locations. In men 
in both studies and women in Natsal-2 the range of our simulations overlapped with the range from 
surveillance, suggesting that most of the observed diagnoses can be accounted for by treatment-seeking in 
response to symptoms, and that few additional diagnoses were made as a result of asymptomatic testing. 
In women in NHANES, more diagnoses were observed than we expected to be sought by symptomatic 
cases alone, so it seems likely that there was additional testing of asymptomatic women which would 
merit further empirical investigation. 
 
Table S5: Numbers of symptomatic chlamydia cases simulated using posterior parameter distributions 
inferred using Natsal-2 and NHANES data, and diagnoses recorded in surveillance systems covering 
approximately the same times and locations. For comparison to Natsal-2 we used diagnosis rate ranges in 
15-44-year-olds in 2000,10 and for NHANES we used the range of recorded diagnoses over the years 2009-
2014.11 
 

Survey Group Simulated symptomatic cases 
(1000s; median and 95% CrI) 

Observed 
diagnoses (1000s) 

Natsal-2 Men aged 15-44 years 109 (25-327) 30-41 
Women aged 15-44 years 46 (25-77) 48-105 

NHANES Men aged 15-39 years 397 (83-1149) 307-398 
Women aged 15-39 years 429 (259-682) 879-981 

 
c. Sensitivity Analysis 

i. Balancing partnership numbers 
We tested the effect of constraining the mean numbers to be equal by repeating the analysis, relaxing the 
constraint of equal mean partnership number in men and women (see online code). Figure S5 illustrates 
this model’s agreement with partnership number data. In both studies the agreement between simulations 
and observations is improved compared to the constrained model, especially in women, but more than 5% 
of observations still fell outside the 95% prediction interval. Using Natsal-2, the posterior median (95%CrI) 
for the mean number of new partners per year in men was 0.75 (0.67-0.83) and in women was 0.40 (0.35-
0.45). Inferred transmission probabilities were 32.4% (18.4-55.5)% (male-to-female) and 26.2% (5.8-84.8)% 
(female-to-male). Using NHANES, the inferred mean number of partners in men was 1.10 (1.08-1.33) and 
in women was 0.58 (0.52-0.66). Transmission probabilities were 31.3% (20.4-48.7)% (male-to-female) and 
6.3% (1.4-18.0)% (female-to-male). Therefore, constraining the mean number of partnerships to be equal 
did not materially change the posterior distributions for transmission probabilities. 
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Figure S5: Simulated (grey) and observed (red) proportions of men (left) and women (right) reporting 
different numbers of new partners in the last year in the second National Study of Sexual Attitudes and 
Lifestyles (Natsal-2; top) and the National Health and Nutrition Examination Surveys (NHANES) 2009-2014 
(bottom). In this model, the mean number of partnerships was not constrained to be equal between the 
sexes. Simulations are shown using transparent grey markers, so that several superimposed markers 
appear as a darker grey. The solid and dashed lines show the 2.5th, 50th and 97.5th centiles of the 
simulations. The observed data shown takes into account the survey weights. 
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ii. Condom use 
In Natsal-2 participants were asked, With how many different women/men have you had vaginal (or anal) 
intercourse in the past year without using a condom? To investigate the potential effects of condom use on 
our estimates, we used this question to estimate the number of new partners without a condom: 

• If participants reported 0 partners without a condom then we classified them as having 0 new 
partners without a condom. 

• If participants reported the same number of partners in the last year as partners without a condom 
(i.e. if all partners in the last year were without a condom) then we classified the number of new 
partners without a condom as the same as the total number of new partners. 

• If neither of these conditions applied then we classified the number of new partners without a 
condom as the reported number of partners without a condom. 

 
We used the same model as in the main analysis to estimate the transmission probabilities in partnerships 
where condoms were not always used. Figure S6 shows the posterior distributions compared to the 
posteriors in the main analysis. 
 
As expected, the posterior distributions were shifted slightly to the right, suggesting higher transmission 
probabilities in partnerships without a condom, but the shift was small compared to the uncertainty in the 
estimates. The posterior median (95% credible interval) transmission probabilities were 40.1% (21.5-
72.8)% from men to women and 31.6% (7.2-96.1)% from women to men. We conclude that it might be 
valuable for sexual behavior surveys to collect information on the annual number of new partnerships 
without a condom for parameter inference and predictive modelling. In the absence of such data, 
however, it is more reliable to calculate an average probability across all new partnerships, and we have no 
reason to suppose that such an average is not valid. 

 
 

Figure S6: Posterior distributions for the per-partnership probability of chlamydia transmission, derived 
using data from the second National Study of Sexual Attitudes and Lifestyles (Natsal-2). The orange lines 
represent male-to-female transmission probability and the green lines female-to-male. The solid lines 
represent distributions inferred from reported numbers of new heterosexual partners, as in the main 
analysis. The dashed lines represent distributions inferred from the estimated number of new partners 
without a condom, as described in the text above. 
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iii. Assortative mixing 
The model reported in the main text assumes random mixing between men and women – that is, that for 
individual j, the probability that a partnership they form with a member of the opposite sex is a potential 
source of infection does not depend on j’s partnership formation rate. In fact, evidence indicates that 
sexual mixing is assortative,12,13 although this is difficult to quantify precisely. 
 
To investigate the potential effects of assortative mixing in our model, we reasoned that if individuals with 
more partners tend to form partnerships with others who also have more partners – and therefore the 
partners are more likely to be infected with chlamydia – then !"#$ would be higher in people with more 
partners. If the transmission probability were the same for every partnership then we would therefore 
expect the product 

%#$→# = !"#$(#$→# 
to be higher in people with more partners. 
 
We ran an adapted model which allows % to be different for men and women reporting different numbers 
of partners. If people with more partners are more likely to form partnerships with infected people then 
we would expect % to be higher in those individuals.  
 
Figure S7 shows the posterior distributions for % that we inferred in men and women reporting different 
numbers of partners. For Natsal-2, although the posterior distributions for % were slightly higher in people 
reporting no new partners, there was considerable overlap and therefore no evidence of significantly 
higher prevalence in partnerships presented to individuals with high partnership formation rate than to 
those with low formation rate. In NHANES the posterior distributions suggested higher values for % in both 
men and women reporting no new partners: the opposite of what we would expect if there is assortative 
mixing. This pattern may arise if there is a higher transmission probability in slow-turnover partnerships, 
because they tend to last longer and have more sex acts during the infectious period, possibly with lower 
levels of condom use.  
 
We found no evidence in either Natsal-2 or NHANES of higher % in people reporting more partners, 
providing confidence that the random mixing in the model has not affected our results.  
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Figure S7: Posterior distributions for	% inferred separately for men and women reporting different 
numbers of partners. Error bars show median and 95% credible interval, and green polygons are 
histograms of the posteriors.
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