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Polynomial systems arising from a Weil descent have many 
applications in cryptography, including the HFE cryptosys-
tem and the elliptic curve discrete logarithm problem over 
small characteristic fields. Understanding the exact complex-
ity of solving these systems is essential for the applications. 
A first step in that direction is to study the first fall degree
of the systems. In this paper, we establish a rigorous general 
bound on the first fall degree of polynomial systems arising 
from a Weil descent. We also provide experimental data to 
study the tightness of our bound in general and its plausible 
consequences on the complexity of polynomial systems arising 
from a Weil descent.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The problem of finding solutions to systems of polynomial equations over a finite field 
arises in many aspects of mathematics and in particular in cryptography. In this paper, 
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we consider the situation where the system arises from a Weil descent on a polynomial 
operator of given degree on an extension field.

More precisely, let F be a finite field of order q and let K be an extension of F of 
degree n. Let P : Km → K be a polynomial function. Through the identification K ∼= Fn, 
an equation of the form P (X) = Y becomes a system of equations p1(x11, . . . , xmn) = y1,

. . . , pn(x11, . . . , xmn) = yn over the base field F. The polynomial P has two degrees, one 
over K which is the degree of P as a polynomial over K and one as a polynomial operator 
on the F-vector space K. We set D = deg

K
P and d = deg

F
P . For instance, if q = 2

and P (X) = X7 + X5 + 1 then D = 7 and d = 3 since the functions X2i are all linear 
over F.

When P is quadratic over the base field, the polynomial P and the corresponding 
system form the basic structure behind Patarin’s HFE cryptosystem [19]. This partic-
ular case is now reasonably well understood [2,7,6,9,16]. Various generalizations of the 
HFE cryptosystem have been proposed involving operators P with higher degree over 
the base field [20,21,25]. Higher degree operators also arise in Diem’s algorithm for the 
discrete logarithm problem on binary elliptic curves and in the factorization problem for 
SL(2, F2n) [14,15,22].

One particularly effective approach to solving a polynomial system of equations is 
to apply a Gröbner basis algorithm such as Faugère’s F4 or F5 [11,12]. In order to 
understand the complexity of this approach, we need to know the degree of regularity of 
the system, which is the highest degree polynomial that occurs in the algorithm before 
it successfully terminates. Since this degree is hard to determine precisely we use a 
proxy, the first fall degree. The first fall degree is defined to be the first degree at which 
non-trivial relations between the pi occur; the trivial relations being relations such as 
pipj − pjpi = 0 and (pq−1

i − 1)pi = 0.
Contributions of this paper. We find a bound on the first fall degree of systems of 

equations arising from a multivariate polynomial operator. In particular if the operator 
is univariate of degrees D and d over the fields K and F respectively, then our bound is

Dff ≤
(q − 1) logq(D − d + 1) + q + d + 1

2

This generalizes the result in [6] where the bound when d = 2 was given as

Dff ≤
(q − 1)(�logq(D − 1)� + 1)

2 + 2 =
(q − 1)�logq(D − 1)� + q + 3

2

Our bound also generalizes the bound in [22] for multivariate polynomials over F2. In 
that paper it was shown that if the operator has degree at most 2t − 1 over K in any 
of the m variables, then the first fall degree is bounded by mt + 1. Our bound easily 
implies this bound as well as its generalization to an arbitrary base field of order q: if the 
operator has degree at most qt − 1 in any of the m variables, then the first fall degree 
is bounded by (q − 1)mt + 1. Moreover, our result gives a much sharper bound than 
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that given in [22] when the degree d over F is smaller than for random polynomials with 
degree D over K.

We then experimentally study these systems using the Gröbner basis routine of the 
Magma computer algebra system. Our experimental results suggest that our bound can 
probably be slightly improved in general. Further results also suggest that the first fall 
degree of these systems might be a good approximation of their degree of regularity 
in general, an assumption taken in several previous works on similar systems. We note 
that under this heuristic assumption, Gröbner basis attacks on generalizations of HFE 
systems to operators of higher degree would have quasi-polynomial time complexity. 
This generalizes the result of Ding and Hodges [6] in the case when d = 2. Under the 
assumption of a variant of Fröberg’s conjecture, subexponential complexity was also 
established for the Kipnis–Shamir MinRank attack on HFE systems over an arbitrary 
base field by Bettale, Faugère and Perret in [2,3]. For the case of HFE with d = 2, the 
bound on the degree of regularity for this approach is substantially better (≈ logq(D)) 
than the bound provided here (≈ q logq(D)) for the first fall degree.

2. First fall degree

We first introduce the notion of first fall degree in a fairly abstract setting. Let F be a 
finite field of characteristic p. Let A be a finite dimensional filtered algebra over F; that 
is there exist a positive integer N and subspaces A0 ⊂ A1 ⊂ · · · ⊂ AN = A such that 
AiAj ⊂ Ai+j . The degree of an element a ∈ A is defined to be the smallest d such that 
a ∈ Ad. Suppose also that there exists a power of p, q = pm such that for all elements 
a of degree d ≥ 1, deg aq < dq. The canonical example of such an object is the ring of 
functions from Fn to F; here A ∼= F[X1, . . . , Xn]/(Xq

1 −X1, . . . , Xq
n −Xn) where q = |F|.

A degree fall for a subspace V of A is a combination of multiples of elements of V
whose degree is less than the expected bound. That is, it is a combination 

∑
aivi whose 

degree is less than max{deg ai + deg vi}. Such combinations can be thought of as formal 
combinations 

∑
ai ⊗ vi in the tensor product A ⊗ V with evaluation of the combination 

in A given by the linear map ψ: A ⊗V → V such that ψ(
∑

ai ⊗ vi) =
∑

aivi. There are 
a number of degree falls that we want to ignore because they occur for trivial reasons. 
If deg v = degw = d and v − v′ ∈ Ad−1 and w − w′ ∈ Ad−1 (so v and v′ have the same 
highest degree term in some sense) then w′⊗v−v′⊗w is a degree fall. Also for any v ∈ A, 
vq−1 ⊗ v is a degree fall. We are interested in degree falls that are not combinations of 
such trivial degree falls and particularly in the first degree at which a non-trivial degree 
fall exists.

More formerly, degree falls of degree k will be elements of the kernel of the composed 
map

Ak−d ⊗ V → Ak−dV ∼= Ak−dV + Ak−d−1V
(Ak−dV ) ∩Ak−d−1 Ak−d−1
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This kernel obviously also contains Ak−d−1 ⊗V and we want to ignore this part of it; so 
we should consider the domain of the map as

Ak−d ⊗ V

Ak−d−1 ⊗ V
∼= Ak−d

Ak−d−1
⊗ V

Thus the degree falls are the kernel of the map

ψ: Ak−d

Ak−d−1
⊗ V → Ak−dV + Ak−d−1V

Ak−d−1

The trivial degree falls are a subspace of the kernel and the non-trivial degree falls can be 
considered as the quotient of the kernel by the space of trivial degree falls. At this point 
it becomes apparent that the degree falls are best approached through the associated 
graded ring. This is the algebra GrA defined to be the vector space 

⊕
j Aj/Aj−1 equipped 

with multiplication defined in the following way. If deg(a) = d, and deg(a′) = d′, then 
(a + Ad−1).(a′ + Ad′−1) = aa′ + Ad+d′−1.

Thus rather than giving a formal definition of first fall degree in a filtered algebra, 
we shall define it in a graded algebra and then pull back this information to the original 
ring from the associated graded ring.

Denote by B =
⊕N

k=0 Bk a graded finite dimensional algebra over F. That is, B is 
the direct sum of the subspaces Bk and BjBk ⊂ Bj+k. Suppose further that there exists 
a q = pm such that bq = 0 for all b ∈

⊕N
k=1 Bk. A homogeneous subspace of B is a 

subspace V ⊂ Bd for some d. If V and W are F-vector spaces, we denote by V ⊗W the 
tensor product of V and W . If V is a homogeneous subspace of degree d, we have linear 
maps φj : Bj ⊗ V → BjV for all j = 0, . . . , N given by φj(

∑
i bi ⊗ vi) =

∑
i bivi. Let 

Rj(V ) = kerφj . This yields an exact sequence

0 −→ Rj(V ) −→ Bj ⊗ V −→ BjV −→ 0

Inside Rj(V ) there is a subspace of “trivial relations” Tj(V ) spanned by the elements

(1) b(v ⊗ w − w ⊗ v) where v, w ∈ V and b ∈ Bj−d;
(2) b(vq−1 ⊗ v) where v ∈ V and b ∈ Bj−(q−1)d.

Definition 2.1. For a homogeneous subspace V ⊂ Bd, we define the first fall degree of V
to be the first degree at which non-trivial relations occur

Dff(V ) = min
{
j
∣∣ Tj−d(V ) � Rj−d(V )

}
We now return to the case of a filtered algebra A as defined above. For any subspace V

of Ad we define V̄ = (V + Ad−1)/Ad−1 ⊂ Ad/Ad−1. If V ∩ Ad−1 = 0, then there are 
F-linear combinations of elements of V that have degree less than d, so the first fall 
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degree is d. Since this information is lost in the passage from V to V̄ , we define the first 
fall degree to be d in this case and otherwise to be the first fall degree of V̄ .

Definition 2.2. For a subspace V ⊂ Ad, we define the first fall degree of V by

Dff(V ) =
{
d if dim V̄ < dimV

Dff(V̄ ) otherwise

We will also use the notation Dff(p1, . . . , pn) to mean Dff(V ) where V is the vector 
space spanned by the pi.

Let us note a couple of important general properties of the first fall degree of graded 
algebras. Both of these results are proved in [7] in the specific case they were considering. 
These proofs extend easily to the more general framework we are considering. For the 
sake of completeness we provide full details. We first note that extension of the base field 
does not affect the first fall degree.

Lemma 2.3. Let B be a graded algebra over F, let K be an extension field of F and let 
B̃ = K ⊗F B. Let Ṽ = K ⊗F V ⊂ B̃. Then Dff(V ) = Dff(Ṽ ).

Proof. Notice that the Dff(V ) is the smallest j such that the sequence

0 −→ Tj−d(V ) −→ Bj−d ⊗F V −→ Bj−dV −→ 0

is not exact, while Dff(Ṽ ) is the smallest j such that the sequence

0 −→ Tj−d(Ṽ ) −→ B̃j−d ⊗K Ṽ −→ B̃j−dṼ −→ 0

is not exact. Observe that B̃j−d ⊗K Ṽ = K ⊗F Bj−d ⊗F V and B̃j−dṼ = K ⊗F Bj−dV . 
Moreover Tj−d(Ṽ ) = K ⊗F Tj−d(V ). Thus the second sequence identifies with the se-
quence

0 −→ K⊗F Tj−d(V ) −→ K⊗F Bj−d ⊗F V −→ K⊗F Bj−dV −→ 0

By the exactness of the tensor product, this sequence is exact if and only if the first 
sequence is. �

Since extension of the base field commutes with passage to the associated graded 
algebra, we have an analogous result for filtered algebras.

Corollary 2.4. Let A be a filtered algebra over F, let K be an extension field of F and let 
Ã = K ⊗F A. Let V ⊂ Ad and let Ṽ = K ⊗F V ⊂ Ã. Then Dff(V ) = Dff(Ṽ ).

Secondly, the first fall degree of a subspace is at least that of the original space.
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Definition 2.5. Let V ⊂ Bd be a subspace of dimension m; let V ′ be a subspace of V of 
dimension m − 1 and let vm ∈ V \V ′. Define

T s
k (V ) =

{
ξ ∈ Bk ⊗ V ′ ∣∣ ∃c ∈ Bk−d(q−s) such that ξ + cvq−s

m ⊗ vm ∈ Tk(V )
}

Note that T 1
k (V ) = Bk ⊗ V ′ ∩ Tk(V ). Our aim is to show that T 1

k (V ) ⊂ Tk(V ′).

Lemma 2.6. If k < Dff(V ), then for s ≥ 1,

T s
k (V ) ⊂ Tk

(
V ′) + vmT s+1

k−d(V )

Proof. Let {v1, . . . , vm−1} be a basis for V ′. Let ξ ∈ T s
k (V ) so that ξ+cvq−s

m ⊗vm ∈ Tk(V )
for some c. Then,

ξ + cvq−s
m ⊗ vm =

∑
i<j

bij(vi ⊗ vj − vj ⊗ vi) +
∑
i

civ
q−1
i ⊗ vi

Set

L =
∑

1≤i<j≤m−1
bij(vi ⊗ vj − vj ⊗ vi) +

m−1∑
i=1

civ
q−1
i ⊗ vi ∈ Tk

(
V ′)

Then

ξ − L +
∑
i<m

bimvm ⊗ vi =
∑
i<m

bimvi ⊗ vm + cmvq−1
m ⊗ vm − cvq−s

m ⊗ vm

∈ Bk ⊗ V ′ ∩Bk ⊗ vm = 0

So

ξ = L−
∑
i<m

bimvm ⊗ vi = L− vm
∑
i<m

bim ⊗ vi

and
∑
i<m

bimvi ⊗ vm + cmvq−1
m ⊗ vm − cvq−s

m ⊗ vm = 0

The latter equation implies that
∑
i<m

bimvi + cmvq−1
m − cvq−s

m = 0

and hence that
∑

bim ⊗ vi + cmvq−2
m ⊗ vm − cvq−s−1

m ⊗ vm ∈ Rk−d(V ) = Tk−d(V )

i<m
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since k < Dff(V ). Thus

∑
i<m

bim ⊗ vi +
(
cmvs−1

m − c
)
vq−s−1
m ⊗ vm ∈ Tk−d(V )

so 
∑

i<m bim ⊗ vi ∈ T s+1
k−d . Thus ξ ∈ Tk(V ′) + vmT s+1

k−d(V ) as claimed. �
Theorem 2.7. For any subset V ′ ⊂ V , Bk ⊗ V ′ ∩ Tk(V ) = Tk(V ′) for k < Dff(V ).

Proof. It suffices to prove the result in the case where dimV/V ′ = 1. Iterating the lemma
yields that

Bk ⊗ V ′ ∩ Tk(V ) = T 1
k (V ) ⊂ Tk

(
V ′) + vsmT s+1

k−sd(V )

Eventually the term vsmT s+1
k−sd(V ) will be zero because either vsm = 0, or Tk−sd = 0. Thus 

Bk ⊗ V ′ ∩ Tk(V ) ⊂ Tk(V ′). The opposite inclusion is trivial. �
Theorem 2.8. Let B be a graded algebra. Let V be a homogeneous subspace and let V ′ be 
a subspace of V . Then Dff(V ) ≤ Dff(V ′).

Proof. If k ≤ Dff(V ), then Rk−d(V ′) ⊂ Bk−d⊗V ′∩Tk−d(V ) = Tk−d(V ′) by Theorem 2.7. 
Hence Dff(V ′) ≥ Dff(V ). �
3. Multivariate operators

Suppose that F is a field with q elements and K is an extension of F of degree n so 
that |K| = qn. Set A = Fun(Km, K) = K[X1, . . . , Xm] where Xqn

j = Xj . Consider a 
multivariate polynomial function P (X1, . . . , Xm) ∈ K[X1, . . . , Xm]. Fix a dual basis for 
K over F:

{
(ei, xi), i = 1, . . . , n

∣∣ ei ∈ K, xi ∈ K∗ = HomF(K,F)
}

where 
∑

i xi(z)ei = z for all z ∈ K. Identify K with Fn via the linear isomorphism 
z �→ (x1(z), . . . , xn(z)) and set

pi = xi ◦ P : Km → F

Then P identifies with the system of multivariate functions (p1, . . . , pn) : Km → Fn.
Let πj : Km → K be the j-th projection. Define xji : Km → F by xji = xi ◦ πj and let

AF = Fun
(
Km,F

)
= F[x11, . . . , x1n, . . . , xm1, . . . , xmn]

Note that xq
ji = xji.
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We are interested in understanding the first fall degree of the system {p1, . . . , pn} in 
terms of properties of the operator P . The connection lies in the fact that

A = Fun
(
Km,K

)
= K⊗F Fun

(
Km,F

)
= K⊗F AF

Let V =
∑

i Fpi ⊂ AF. As observed in Corollary 2.4, the first fall degree of V is the same 
as the first fall degree of K ⊗F V =

∑
i Kpi calculated in K ⊗F AF = A. The following 

result is well-known and has been observed in varying forms by many authors. It is an 
easy consequence of Artin’s Lemma on independence of characters [18, Lemma 2.33].

Lemma 3.1. 
∑

i Kpi =
∑

i KP qi .

Proof. First note that when m = 1 we have

K[X] = Fun(K,K) = K⊗F Fun(K,F) = K[x1, . . . , xn]

and that the space of F-linear maps is 
∑

i KXqi =
∑

i Kxi. Since xi ◦ P = pi and 
Xqi ◦ P = P qi , it follows that

∑
i

Kpi =
{
L ◦ P

∣∣∣ L ∈
∑
i

Kxi

}

=
{
L ◦ P

∣∣∣ L ∈
∑
i

KXqi
}

=
∑
i

KP qi �

Thus the first fall degree of the subspace V =
∑

i Fpi of AF is equal to the first fall 
degree of the subspace VK =

∑
KP qi of A equipped with the filtration by degree over F. 

That is,

A0 = K, A1 =
∑
i,j

KXqi

j + K, Ai+1 = A1Ai

Denote the associated graded ring of A with respect to this filtration by B =
⊕

Ai/Ai−1. 
Define Xij = Xqi

j + A0 ∈ B1 = A1/A0 for i = 0, . . . , n − 1 and j = 1, . . . , m. Then

B = K[X01, . . . , Xn−1,m]

where Xq
jk = 0 for all j and k.

Definition 3.2. Suppose that P (X1, . . . , Xm) ∈ K[X1, . . . , Xm] has degree d over F. The 
P qi also has degree d over F so P qi ∈ Ad. We define Pi = P qi +Ad−1 ∈ Bd = Ad/Ad−1. 
In particular, P0 = P + Ad−1 ∈ Bd.
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For example if P is the quadratic operator P (X1, . . . , Xm) = X1X
qθ1

1 + · · ·+XmXqθm
m

then P0 = X01Xθ1,1 + · · · + X0mXθm,m.

Theorem 3.3. Let P (X1, . . . , Xm) ∈ K[X1, . . . , Xm] = Fun(Km, K). Let {x1, . . . , xn} be 
a basis for HomF(K, F) and let pi = xi ◦ P . Let P0 be as defined above. Then

Dff
(
{p1, . . . , pn}

)
≤ Dff(P0)

Proof. Using Corollary 2.4, Theorem 2.8 and Lemma 3.1, we have

Dff
(
{p1, . . . , pn}

)
= Dff

(∑
i

Fpi

)
= Dff

(∑
i

Kpi

)
= Dff

(∑
i

KP qi
)

= Dff

(∑
i

KPi

)
≤ Dff(P0) �

4. First fall degree of a single polynomial

Let q be a power of a prime, let K be a finite field whose order is divisible by q and 
let B = K[X1, . . . , Xn]/〈Xq

1 , . . . , X
q
n〉. Let N = n(q − 1), the largest possible degree of 

an element of B. Let λ be a homogeneous element of degree d. Since λq−rλr = λq = 0, 
for any positive integer m we have a complex of the form

· · · λq−r−−−−→ Bm−dq
λr−−→ Bm−d(q−r)

λq−r−−−−→ Bm
λr−−→ Bmλr (∗)

(Recall that in a complex the image of one map is contained, but not necessarily equal 
to, the kernel of the next map.) The homology spaces of a complex are defined to be 
the kernel of one map factored out by the image of the previous one. We denote the 
homology spaces for this complex by

H
(
λr, Bk

)
= Ann(λq−r) ∩Bk

λrBk−rd

Note that Ann(λq−r) ∩Bk is the set of all annihilators of λq−r of degree k and λrBk−rd

is the space of trivial annihilators of λq−r of degree k. Thus the homology H(λq−1, Bk)
can be thought of as the vector space of non-trivial relations on λ and is non-zero if and 
only if there is a non-trivial degree fall at degree k + d. Moreover

Dff(λ) = min
{
k
∣∣ H(

λq−1, Bk

)
= 0

}
+ d

If all the homology spaces are zero (that is, the complex is exact), the dimension of 
Bmλr can be calculated as the alternating sum

dimBmλr = dimBm − dimBm−d(q−r) + dimBm−dq − dimBm−dq−d(q−r) + · · ·
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Recall that dimBk, being the number of ways of arranging k objects into n cells with 
at most q − 1 objects in each cell, is the generalized binomial coefficient Cq(n, k) – the 
coefficient of zk in the expansion of (1 + z + · · · + zq−1)n [23, p. 104]. If the complex is 
exact, the dimension of Bkλ

r is given by

dimBkλ
r = Cq(n, k) − Cq

(
n, k − d(q − r)

)
+ Cq(n, k − dq) − · · ·

=
�k/dq�∑
j=0

Cq(n, k − jdq) − Cq

(
n, k − d(q − r) − jdq

)

Define

γq(n, d, r, k) =
�k/dq�∑
j=0

Cq(n, k − jdq) − Cq(n, k − rd− jdq)

(If we make the convention that Cq(n, k) = 0 for k < 0, we can equally well write the 
summation as 

∑∞
j=0 since the terms for j > �k/dq� are all zero.) In this notation, if our 

complex is exact,

dimBkλ
r = γq(n, d, q − r, k)

We also want to consider the same summation extending in both directions, so we define

Γq(n, d, r, k) =
∞∑

j=−∞
Cq(n, k − jdq) − Cq(n, k − rd− jdq)

For fixed q, n, d and r, Γq(n, d, r, k) is a qd-periodic function of k. We begin by collecting 
together some elementary properties of these functions.

Lemma 4.1.

(1) γq(n, d, r, k) = Cq(n, k) − γq(n, d, q − r, k − dr).
(2) Γq(n, d, r, k) = γq(n, d, r, k) − γq(n, d, r, N − d(q − r) − k).

Proof. Part (1) follows immediately from the definition. For part (2) observe that 
Cq(n, k) = Cq(n, N − k) so that

γq
(
n, d, r,N − d(q − r) − k

)
=

∞∑
j=0

[
Cq

(
n,N − d(q − r) − k − dqj

)
− Cq

(
n,N − d(q − r) − k − dr − dqj

)]

=
∞∑[

Cq

(
n, d(q − r) + k + dqj

)
− Cq

(
n, d(q − r) + k + dr + dqj

)]

j=0
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=
∞∑
j=0

[
Cq

(
n, k − dr + dq(j + 1)

)
− Cq

(
n, k + dq(j + 1)

)]

= −
−1∑

j=−∞

[
Cq(n, k − dqj) − Cq(n, k − dr − dqj)

]
= γq(n, d, r, k) − Γq(n, d, r, k) �

Key to the calculations that follow is the following dimensional symmetry. Note that 
since dimBN = 1, the multiplication map induces a non-degenerate pairing Bk⊗BN−k →
BN

∼= F. Let η: BN → F be an isomorphism.

Lemma 4.2. The bilinear form 〈·, ·〉: Bkλ
r ⊗ BN−rd−kλ

r → F defined by 〈bλr, cλr〉 =
η(bλrc) is non-degenerate. Hence dimBkλ

r = dimBN−rd−kλ
r.

Proof. Let μ = λr. Define first the form 〈·, ·〉μ: Bk ⊗ BN−rd−k → F by 〈b, c〉μ = η(bμc). 
Then the left radical of this form is {b ∈ Bk | (bμ)c = 0, ∀c ∈ BN−rd−k} = {b ∈
Bk | bμ = 0} = Ann(μ) ∩ Bk. Similarly the right radical is Ann(μ) ∩ BN−rd−k. Since 
Bk/(Ann(μ) ∩ Bk) ∼= Bkμ and BN−rd−k/(Ann(μ) ∩ BN−rd−k) ∼= BN−rd−kμ, the result 
follows. �
Theorem 4.3. Suppose for some positive integer t, that H(λq−1, Bk) = 0 for all k ≤ t. 
Then H(λq−r, Bk−d(r−1)) = 0 for all 1 ≤ r < q and all k ≤ t.

Proof. We use induction on r, the base case r = 1 being the hypothesis. Sup-
pose k ≤ t and take a ∈ Ann(λr) ∩ Bk−d(r−1). Then aλr = 0, so (aλ)λr−1 = 0. 
Thus aλ ∈ Ann(λr−1) ∩ Bk−d(r−2). By the inductive hypothesis, aλ = bλq−r+1 for 
some b ∈ Bk−d(q−1). Thus (a − bλq−r)λ = 0 and a − bλq−r ∈ Bk−d(r−1). From 
the hypothesis we deduce that there exists a c such that a − bλq−r = cλq−1 which 
implies that a ∈ λq−rBk−d(q−1). Thus Ann(λr) ∩ Bk−d(r−1) = λq−rBk−d(q−1) and 
H(λq−r, Bk−d(r−1)) = 0. �
Corollary 4.4. Suppose that H(λq−1, Bk) = 0 for all k ≤ t. Then dimBkλ

r = γq(n, d,
q − r, k) for k ≤ t − d(r − 1).

Proof. As observed above, it suffices to show that the complex

· · · λq−r−−−−→ Bk−dq
λr−−→ Bk−d(q−r)

λq−r−−−−→ Bk
λr−−→ Bkλ

r

is exact for k ≤ t − d(r − 1). The homology spaces of this complex are H(λq−r, Bk−dqj)
and H(λr, Bk−d(q−r)−dqj) for j ≥ 0. Since k−dqj ≤ t −d(r−1) and k−d(q− r) −dqj ≤
t − d(q − r − 1) all of these spaces are zero by Theorem 4.3. �
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Theorem 4.5. Suppose that H(λq−1, Bk′) = 0 for all k′ ≤ (N − d)/2. Then

dimH
(
λq−1, Bk

)
= Γq(n, d, q − 1, k) for k =

⌊
(N − d + 2)/2

⌋
Proof. Set k = �(N − d + 2)/2�, so that (N − d)/2 < k ≤ (N − d + 2)/2. Note that

dimH
(
λq−1, Bk

)
= dim

(
Ann(λ) ∩Bk

)
− dimλq−1Bk−d(q−1)

= dimBk − dimBkλ− dimBk−d(q−1)λ
q−1

Since k > (N − d)/2, we have N − d − k < (N − d)/2. Using Lemma 4.2 we see that

dimBkλ = dimBN−d−kλ = γq(n, d, q − 1, N − d− k)

On the other hand, since k ≤ (N−d +2)/2, we have k−d(q−1) ≤ (N−d +2)/2 −d(q−1) ≤
(N − d)/2 − d(q − 2). So dimBk−d(q−1)λ

q−1 = γq(n, d, 1, k − d(q − 1)). Putting all this 
together and using Lemma 4.1 yields

dimH
(
λq−1, Bk

)
= Cq(n, k) − γq(n, d, q − 1, N − d− k) − γq

(
n, d, 1, k − d(q − 1)

)
= γq(n, d, q − 1, k) − γq(n, d, q − 1, N − d− k)

= Γq(n, d, q − 1, k) �
In the quadratic case it is shown in [17] that if q is prime and λ has maximal rank, then 

the dimension of this space is always given by such a formula. In fact, in the maximal 
rank case

dimH
(
λq−r, Bk

)
= Γq(n, 2, q − r, k) if N

2 − r < k <
N

2 + (q − r)

and is zero elsewhere. We expect something similar to hold in the higher degree case.

Conjecture 1. If q is prime, then for generic λ,

dimH
(
λq−1, Bk

)
=

⎧⎪⎨
⎪⎩

0 if k ≤ (N − d)/2
Γq(n, d, q − 1, k) if (N − d)/2 < k < (N + (q − 1)d)/2
0 if k > (N + (q − 1)d)/2

We deliberately leave the definition of generic vague. Certainly we expect the conjec-
ture to only hold if λ has maximal rank in the following sense.

Definition 4.6. Let λ be a homogeneous element of B. The rank of λ is the smallest 
integer s such that there exist μ1, . . . , μs ∈ B1 with λ ∈ F[μ1, . . . , μs]. That is, s is the 
smallest number of linear elements required to generate λ.
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In the quadratic case (d = 2), we know from [17] that the conjecture is true precisely 
when λ has maximal rank. The proportion of quadratic polynomials in n variables that 
have maximal rank is given by the q-Pochhammer symbol [5, Theorem 3.4](

1
q
; 1
q2

)
�(n+1)/2�

=
(

1 − 1
q

)(
1 − 1

q3

)
. . .

(
1 − 1

q1+2�(n−1)/2�

)

which tends to 1 as q tends to infinity. The proof used in [17] for the quadratic case relies 
heavily on the classification of quadratic forms. Since no such classification exists for 
higher degree forms, the proof cannot be generalized to the higher degree case (d > 2). 
When d > 2, experimental evidence suggests that the conjecture is true for most λ but 
that being of maximal rank is no longer sufficient (see Appendix B). It also suggests 
that even when the conjecture fails, the differences between the actual and conjectured 
values of dimH(λq−1, Bk) are small.

In order to deduce information about the first fall degree we need information about 
the non-vanishing of Γq(n, d, r, k).

Theorem 4.7. If 2 ≤ d ≤ n(q − 1), then

Γq

(
n, d, q − 1, (N − d + 2)/2

)
> 0

Proof. See Appendix A. �
Corollary 4.8. There exists an integer k ≤ (N − d + 2)/2 such that H(λq−1, Bk) = 0.

Proof. If H(λq−1, Bk′) = 0 for all k′ ≤ (N − d)/2, then for k = �(N − d + 2)/2�, 
dimH(λq−1, Bk) = Γq(n, d, q − 1, k) > 0 by Theorems 4.5 and 4.7. �
Theorem 4.9. Let λ be an element of degree d and rank s. Then Dffλ ≤ (s(q−1) +d +2)/2.

Proof. Without loss of generality we can assume that λ ∈ F[X1, . . . , Xs]. Set B̃ =
F[X1, . . . , Xs] and B̂ = F[Xs+1, . . . , Xn]. Then

H
(
λq−1, Bk

) ∼= ⊕
i

H
(
λq−1, B̃k−i

)
⊗ B̂i

So H(λq−1, B̃k) = 0 ⇒ H(λq−1, Bk) = 0. By Corollary 4.8, H(λq−1, B̃k) = 0 for some 
k ≤ (s(q − 1) − d + 2)/2. Hence the first fall degree of λ in B is less than or equal to 
(s(q − 1) − d + 2)/2 + d = (s(q − 1) + d + 2)/2. �
5. Weil descent

We now return to the setting of Weil descent. We have an operator P : Km → K and 
a linear isomorphism that identifies K with Fn. Through this isomorphism, an equa-
tion P (X) = Y over K corresponds to a system of n equations p1(x11, . . . , xmn) = y1,
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. . . , pn(x11, . . . , xmn) = yn. By Theorem 3.3, the first fall degree of this system is 
bounded by the first fall degree of the single polynomial P0 as an element of B =
K[X01, . . . , Xn−1,m]/〈Xq

01, . . . , X
q
n−1,m〉. Recall that in Definition 4.6 we defined the rank 

of P0 to be the smallest integer r such that there exist r linear elements 
1, . . . , 
r ∈ B1
for which P0 ∈ K[
1, . . . , 
r]. Combining Theorem 4.9 and Theorem 3.3 we obtain

Theorem 5.1. Suppose deg
F
P = d and RankP0 = s. Then

Dff(p1, . . . , pn) ≤
(
s(q − 1) + d + 2

)
/2

For example if P (X) = X1+qr1

1 + · · · + X1+qrm
m , then P is quadratic over F, and 

P0 = X01Xr1,1 + · · · + X0mXrm,m which has rank 2m. Thus the first fall degree of the 
associated system is bounded by m(q−1) +2. In this case the bound is intuitive because 
we can see that Xq−1

1 . . . Xq−1
m P (x) has degree (m − 1)(q − 1) + 2 over F, rather than 

the expected m(q − 1) + 2, so we have a degree fall.
Following [22] we look at the case where the degree of P in any individual variable is 

bounded by qt − 1. When q = 2, this theorem yields their result that Dff(p1, . . . , pn) ≤
mt + 1.

Theorem 5.2. Suppose that the degree of P in any individual variable is bounded by qt−1. 
Then

Dff(p1, . . . , pn) ≤ (q − 1)mt + 1

If further, deg
F
P = d, then Dff(p1, . . . , pn) ≤ (q − 1)mt/2 + d/2 + 1.

Proof. First note that the rank s of P0 is bounded by mt since it is contained in the 
algebra generated by the mt variables Xji for i = 1, . . . , m and j = 0, . . . , t − 1. So 
Theorem 5.1 implies that Dff(p1, . . . , pn) ≤ (q − 1)mt/2 + d/2 + 1. This proves the 
second assertion. To find the first bound it remains to bound d when the degree of P in 
any individual variable is bounded by qt − 1.

The monomial in Xi of maximal degree over F which has degree less than or equal to 
qt − 1 is of course

Xqt−1
i =

(
Xi.X

q
i . . . X

qt−1

i

)q−1

which has F-degree (q − 1)t. Thus the monomial of highest F-degree that can occur in 
P is

Xqt−1
1 . . . Xqt−1

m

and this has F-degree (q − 1)mt. Thus the degree d = deg
F
P is bounded by (q − 1)mt. 

Hence,
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Dff(p1, . . . , pn) ≤ mt(q − 1) + (q − 1)mt + 2
2 = (q − 1)mt + 1

as required. �
To see how the bound in Theorem 5.1 yields a much sharper bound in specific situa-

tions consider the quadratic operator over F2 given by

P (X1, . . . , Xm) = X1X
2θ

1 + · · · + XmX2θ

m

The Petit–Quisquater bound (Theorem 5.2) in this situation is (θ + 1)m + 1. However 
as we noticed above, Theorem 5.1 yields the much lower bound of m + 2.

We now consider the single variable case and show that our result also generalizes the 
result for HFE systems given in [6].

Lemma 5.3. RankP0 ≤ �logq(degP − d + 1)� + 1.

Proof. Suppose that P (X) =
∑D

k=0 akX
k. Let d = deg

F
P and let s = RankP0. Then 

P must involve a monomial of degree at least qs−1; otherwise P0 would be contained in 
the sub-algebra generated by X0, . . . , Xs−2 and would have rank less than or equal to 
s − 1. The lowest possible degree for a monomial of degree d over F and involving Xqs−1

is qs−1 + (d − 1). Hence qs−1 + (d − 1) ≤ D. Since s − 1 is an integer, this implies that 
s − 1 ≤ �logq(D − d + 1)�. In other words, RankP0 ≤ �logq(degP − d + 1)� + 1. �
Theorem 5.4. Let P : K → K be a polynomial function with deg

K
P = D and deg

F
P = d. 

Then

Dff(p1, . . . , pn) ≤
(
(q − 1)

⌊
logq(D − d + 1)

⌋
+ d + q + 1

)
/2

Proof. Lemma 5.3 and Theorem 5.1. �
In HFE cryptosystems, P is quadratic over F; so d = 2. In this case the formula above 

reduces to the inequality

Dff(p1, . . . , pn) ≤
(
(q − 1)

⌊
logq(D − 1)

⌋
+ q + 3

)
/2

which is the bound given in [6] for such systems.
Note that we do not expect the bound in Theorem 5.4 to be particularly sharp since the 

first fall degree of a vector space is generally less than the first fall degree of any particular 
member. For instance, consider the case when q = 2 and n = 4. Let λ = x1x3 +x2x4 and 
ν = x1(x2 + x3) + x3x4. Let V = {0, λ, ν, λ + ν} be the subspace generated by ν and λ. 
Then λ, ν and λ + ν all have a first fall degree of 4 because they have rank 4. However, 
Dff(V ) = 3 since x2λ + x3ν = 0.
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6. Experimental results and perspectives

We now discuss the tightness of our bounds and the possible consequences of these 
bounds for the complexity of Gröbner basis algorithms on polynomial systems aris-
ing from a Weil descent. To this aim, we performed experiments using Magma’s 
GroebnerBasis routine on various instances of the system of equations p1(x11, . . . , xmn) =
y1, . . . , pn(x11, . . . , xmn) = yn augmented with the field equations xq

ij − xij = 0.

6.1. Tightness of our bounds

We first study the tightness of the bounds computed in Section 5. In our experiments, 
we fixed m = 1 and we ran 100 experiments for various values of the parameters n, d
and t. For each experiment, we generated a random polynomial of degree d over F and 
D ≤ qt−1 over K, and we solved the corresponding system using Magma’s Gröbner basis 
routine. The value B reported in Table 1 is the first fall degree bound �((q−1)�logq(D−
d +1)� +d + q+1)/2� derived in this paper. The value Dff is the average first fall degree 
of the systems for the 100 experiments, as observed by looking at Magma’s verbose
output.

For each set of p, t, d and n values, we observed no variability at all in the first 
fall degree among the 100 experiments we performed. As expected, the actual first fall 
degree does not depend on n in general, but seems to be completely determined by the 
parameters p, t and d. The only exception we observed in our experiments occurs for the 
parameters p = 3, t = 5, d = 2, where the experimental first fall degree is smaller for 
n = 11 than for all larger n values. The results of Table 1 also suggest that our upper 
bound on the first fall degree can be slightly improved. We leave as an open problem to 
either find a better upper bound or to exhibit some particular polynomials that would 
reach our bounds.

6.2. Gröbner basis algorithms

Gröbner basis algorithms essentially perform Gaussian elimination on Macaulay ma-
trices. These matrices contain the coefficients of all polynomials qi,j := mjpi up to a 
certain degree, one row per polynomial, for all possible monomials mj. The degree is 
progressively increased in the course of the algorithm, until new low degree polynomials 
and finally a Gröbner basis are found by linearization. At that time, the system can be 
easily solved when it has a small number of solutions.

Magma’s Gröbner basis routine uses Faugère’s F4 algorithm [11] by default. The 
algorithm proceeds in several steps to compute a degree reverse lexicographic ordering 
Gröbner basis, every step corresponding to a certain degree at which new polynomials 
are added. The algorithm first adds all polynomials up to the original maximal degree of 
the equations. It then performs linear algebra on the coefficients of these polynomials. If 
no polynomial of lower degree is obtained after the linear algebra step, then the degree 
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Table 1
Experimental first fall degrees and degrees of regularity. B is the bound provided by Theorem 5.4; 
Dff and Dreg are average values (over 100 experiments) of the experimental first fall degrees and degrees 
of regularity; Dsr is the degree of regularity [1,24] of a semi-regular system of n equations of degree d in n
variables.

p t d n B Dff Dreg Dsr

2 6 2 11 5 4.0 4.0 4
2 6 2 13 5 4.0 4.0 4
2 6 2 17 5 4.0 4.0 5

2 6 3 11 5 5.0 5.0 5
2 6 3 13 5 5.0 5.0 6
2 6 3 17 5 5.0 5.0 7

2 6 4 11 6 5.0 5.0 6
2 6 4 13 6 5.0 5.0 7
2 6 4 17 6 5.0 5.1 8

2 6 5 11 6 6.0 6.0 7
2 6 5 13 6 6.0 6.0 8
2 6 5 17 6 6.0 6.0 9

2 7 2 11 5 4.0 4.0 4
2 7 2 13 5 4.0 4.0 4
2 7 2 17 5 4.0 4.0 5

2 7 3 11 6 5.0 5.0 5
2 7 3 13 6 5.0 5.0 6
2 7 3 17 6 5.0 5.0 7

2 7 4 11 6 6.0 6.0 6
2 7 4 13 6 6.0 6.0 7
2 7 4 17 6 6.0 6.0 8

2 7 5 11 7 6.0 6.0 7
2 7 5 13 7 6.0 6.0 8
2 7 5 17 7 6.0 6.1 9

2 7 6 11 7 7.0 7.0 8
2 7 6 13 7 7.0 7.0 9
2 7 6 17 7 7.0 7.0 10

p t d n B Dff Dreg Dsr

3 3 2 11 5 4.0 4.7 5
3 3 2 13 5 4.0 4.5 6
3 3 2 17 5 4.0 4.5 7
3 3 2 19 5 4.0 4.5 7
3 3 2 23 5 4.0 4.8 8
3 3 2 29 5 4.0 4.7 9

3 4 2 11 6 5.0 5.2 5
3 4 2 13 6 5.0 5.7 6
3 4 2 17 6 5.0 5.9 7
3 4 2 19 6 5.0 6.0 7
3 4 2 23 6 5.0 6.0 8

3 4 3 11 7 6.0 6.6 7
3 4 3 13 7 6.0 6.6 8
3 4 3 17 7 6.0 6.4 10
3 4 3 19 7 6.0 6.8 10
3 4 3 23 7 6.0 6.8 12

3 5 2 11 7 5.0 5.2 5
3 5 2 13 7 6.0 6.4 6
3 5 2 17 7 6.0 6.6 7
3 5 2 19 7 6.0 6.8 7

3 5 3 11 8 7.0 7.6 7
3 5 3 13 8 7.0 7.4 8
3 5 3 17 8 7.0 7.7 10

3 5 4 11 8 7.0 7.6 9
3 5 4 13 8 7.0 7.7 10

is increased by one in the next step, otherwise the degree may either stay unchanged 
or even be decreased in the next step. Eventually when a degree reverse lexicographic 
ordering Gröbner basis has been found, Magma’s Gröbner basis routine uses FGLM 
algorithm [13] to convert it into a lexicographic Gröbner basis.

When the system has few solutions, the cost of FGLM can be neglected and the 
complexity of Gröbner basis algorithms can be estimated by the cost of linear algebra. 
This cost is bounded by (mn)ωDreg in our case, where mn is the number of variables, ω is 
the linear algebra constant and Dreg is the maximal degree occurring in the algorithm 
before it successfully terminates. This degree called the degree of regularity of the system, 
is therefore a very important complexity parameter. Finding rigorous bounds for the 
degree of regularity has proved to be a difficult problem, though effective bounds have 
been found in a number of special cases [1,4,8,10].

The first fall degree studied in this paper corresponds to the first degree at which the 
F4 algorithm will find non-zero “low degree” polynomials, and where it will therefore 
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(at least temporarily) not increase the degree in the next step. The first fall degree 
provides a lower bound on the degree of regularity and is often easier to evaluate. At 
first sight, this degree provides only a lower bound on the complexity of Gröbner basis 
algorithms. However when not only one but many non-trivial degree falls occur at the 
first fall degree, Gröbner basis algorithms may quickly terminate after this degree is 
reached, and the first fall degree may therefore be a reasonable approximation of the 
degree of regularity.

6.3. First fall degree and degree of regularity

We then investigate the heuristic assumption that the first fall degree is a good approx-
imation of the degree of regularity for polynomial systems arising from a Weil descent. 
This assumption was explicitly taken in [22] and more or less explicitly taken in several 
previous works on HFE [7,6,16]. The conjecture that binary ECDLP is subexponential 
in [22] or that inverting HFE is quasi-polynomial in [7,6,16] crucially require at least a 
relaxed version of this assumption (on a family of polynomials with increasing degrees 
and number of variables in the ECDLP case), so it is very important to establish to what 
extent it might be true. (An alternative approach to establishing quasi-polynomial com-
plexity for HFE systems is described in [2] where it is shown that quasi-polynomiality 
follows from a version of Fröberg’s conjecture.)

In Table 1, we report the maximal degree Dreg reached by the Gröbner basis routine, 
averaged over our 100 experiments. For comparison, we provide the value Dsr of the 
degree of regularity of a semi-regular system of equations of degree d in n variables 
over Fp [1,24]

Dsr = min
{
d
∣∣ [td]((1 − tp

)n(1 − t2
)m)

/
(
(1 − t)n

(
1 − t2p

)m)
≤ 0

}
(that is, Dsr is the degree of the first power of t in the expansion of (1 − tp)n(1 −
t2)m/((1 − t)n(1 − t2p)m) whose coefficient is non-positive). We observe that as d and n
grow the average experimental degree of regularity diverges from the degree of regularity 
of semi-regular systems whereas it remains close to the observed first fall degree. This 
provides some evidence in favor of the assumption that the first fall degree is a good 
approximation of the degree of regularity for polynomial systems arising from a Weil 
descent.

We note that under this assumption, the results of Section 5 provide a heuristic up-
per bound (nm)ωO(Dff) on the complexity of Gröbner basis algorithms on the systems 
considered in this paper, where 2 ≤ ω < 3 is the linear algebra constant. A better up-
per bound nωO(Dff) can be obtained using the block structure of the systems [14,22]. In 
particular if q and d are fixed and if D is polynomial in n, then by Theorem 5.4, the com-
plexity of solving such systems is then bounded by 2O(log2(n)) which is quasi-polynomial 
in n.
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7. Conclusion

We have given a universal bound on the first fall degree of a system of equations 
arising from Weil descent.

Dff(P ) ≤
(
(q − 1) logq(D − d + 1) + d + q + 1

)
/2

where q is the order of the base field, D is the degree of the univariate polynomial P and 
d is its degree over the base field. This formula generalizes that given in [6] when d = 2.

We have then conducted experiments on several systems of this kind. The experimental 
results suggest that our bound could be slightly improved in further work. Moreover, 
they suggest that a heuristic assumption appearing in previous works [22,7,6,16] could 
be satisfied in our setting as well, at least for all the parameters we could test. Under this 
assumption, the complexity of the direct algebraic attack can be estimated by nO(3Dff). 
In the standard view of HFE systems, q and d are fixed and D is polynomial in n. Our 
result then implies that the complexity in this situation is quasi-polynomial in n.

The heuristic assumption needed to obtain this complexity is that Gröbner basis algo-
rithms terminate at a degree only slightly higher than the first fall degree defined here. 
Our theoretical understanding of the first fall degree has grown substantially over the 
last few years, yet little progress has been made on quantifying precisely the connection 
between the first fall degree and the termination of these algorithms. It would be ex-
tremely useful to have some kind of probabilistic bound on the difference between these 
two degrees.

Appendix A. Proof of non-vanishing of Γq(n, d, r, k)

We now give a brief proof of Theorem 4.7. Define PCq(n, r, k) =
∑∞

j=−∞ Cq(n, k+rj)
so that

Γq(n, d, r, k) = PCq(n, dq, k) − PCq(n, dq, k − dr)

Lemma A.1. Let q, d, n and r be positive integers then Γq(n, d, r, k) is anti-symmetric 
about (N + dr)/2. That is,

Γq(n, d, r,N + dr − k) = −Γq(n, d, r, k)

Proof. Since Cq(n, N − k) = Cq(n, k), we also have PCq(n, N − k) = PCq(n, k). Then

Γq(n, d, r,N + dr − k) = PCq(n, dq,N + dr − k) − PCq(n, dq,N + dr − k − dr)

= PCq(n, dq, k − dr) − PCq(n, dq, k)

= −Γq(n, d, r, k) �
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We split the proof of Theorem 4.7 into two cases, when d > n and when d ≤ n. The 
reason for this is that when d > n, the period dq exceeds n(q−1) and so PCq(n, dq, k) triv-
ializes to Cq(n, k) and is zero some of the time. When n > d the behavior of Γq(n, d, r, k)
is much more complicated and we need for our inductive hypothesis that Γq(n, d, r, ) be
strictly increasing. This is not true when d > n due to the trivialization.

Proposition A.2. Let q, n and d be positive integers such that n < d ≤ n(q − 1). Then

Γq

(
n, d, q − 1, N − d + 2

2

)
> 0

Proof. Note that since d > n, we have that dq > n(q−1) +1. For an integer b let b′ be the 
least positive residue modulo dq. Hence PCq(n, dq, k) = Cq(n, k′). Let k = (N −d +2)/2
and note 0 < k < dq but also

Γq(n, d, q − 1, k) = Cq(n, k) − Cq

(
n,

(
k − d(q − 1)

)′)
if k − d(q − 1) > 0 we are done because Cq is increasing on [0, N/2]. If k − d(q − 1) < 0
then k + d is the least positive residue. So we need to demonstrate that

Cq(n, k) > Cq(n, k + d)

which by the symmetry of Cq about N/2 amounts to showing

|k −N/2| < |k + d−N/2|

We see

|k −N/2| =
∣∣∣∣N − d + 2 −N

2

∣∣∣∣ =
∣∣∣∣2 − d

2

∣∣∣∣ <
∣∣∣∣d + 2

2

∣∣∣∣ = |k + d−N/2| �
Theorem A.3. Let q, n, r and d be positive integers such that 1 < d ≤ n. Then for k in 
the range

(
N − d(q − r)

2 ,
N + dr

2

)

we have that Γq(n, d, r, k) > 0.

Proof. Fix q, r and d as positive integers such that q, d > 1 and 0 < r < q. We proceed 
by induction on n beginning with the base case n = d. First note that since d = n our 
interval is(

d(q − 1) − d(q − r)
,
d(q − 1) + dr

)
=

(
d(r − 1)

,
d(q + r − 1)

)

2 2 2 2
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Note that Cq(d, k) is only non-zero for k in the range [0, d(q − 1)] and that if k ∈ [0, dq)
then PCq(d, qd, k) = Cq(d, k).

Let k ∈ (d(r−1)/2, d(q+r−1)/2). Suppose first that k ≤ N/2 and write k = N/2 − j

where 0 ≤ j ≤ N/2. Then

Γq(n, d, r, k) =
{
Cq(d, k) − Cq(d, k − dr) if dr ≤ k

Cq(d, k) − Cq(d, k − dr + dq) if dr > k

Note that (as a function of k) Cq(d, k) is symmetric about d(q − 1)/2 and increasing 
on [0, d(q − 1)/2]. So to show that Γq(d, d, r, k) > 0 it suffices to show that k − dr + dq

cannot lie in the range [N/2 − j, N/2 + j] if dr > k. But

k > d(r − 1)/2 ⇒ N/2 − j = d(q − 1)/2 − j > d(r − 1)/2 ⇒ d(q − r) > 2j

Hence k − dr + dq = N/2 − j + d(q − r) > N/2 + j. A similar argument works when 
k > N/2. This proves the result in the case n = d.

Now take n > d and set N ′ = (n − 1)(q − 1). The inductive hypothesis states that 
Γq(n −1, d, r, k) > 0 if k ∈ ((N ′−d(q−r))/2, (N ′+dr)/2). Let k ∈ ((N−d(q−r))/2, (N+
dr)/2). Note that Γq satisfies the q-nomial recurrence relation

Γq(n, d, r, k) =
q−1∑
i=0

Γq(n− 1, d, r, k − i)

In order for terms on the right hand side to be negative we must have either k ≥
(N ′ + dr)/2 or k − q + 1 ≤ (N ′ − d(q − r))/2. Suppose that k ≥ (N ′ + dr)/2 and let 
s = k− (N ′ + dr)/2. Then 2s < q− 1 and the antisymmetry of Lemma A.1 implies that ∑2s

i=0 Γq(n − 1, d, r, k − i) = 0. Since the remaining terms of the summation must be 
positive by the inductive hypothesis, we can conclude that Γq(n, d, r, k) > 0. A similar 
argument works in the case when k − q + 1 ≤ (N ′ − d(q − r))/2. �
Appendix B. Examples of dimH(λq−r, Bk)

Conjecture 1 proposed a formula for values of dimH(λq−r, Bk) when q is prime and 
λ is generic in some sense. An analysis of 30 randomly chosen polynomials in the case 
q = 7, n = 5, m = 1 and d = 6 found that the conjecture held in 22 of these cases. 
For the eight polynomials for which the conjecture failed, the values of dimH(λq−r, Bk)
differed from the conjectured values in 2–6 different positions. Two examples are given 
in Table 2 with the values which differed from the conjectured values given in red (in 
the web version). The conjectured values in each case were 0.

Similar results were found for smaller values of q, n and d.
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Table 2
dimH(λq−r, Bk).

q − r q − r

k 1 2 3 4 5 6 1 2 3 4 5 6
1 0 0 0 0 5 5 0 0 0 0 5 5
2 0 0 0 0 15 15 0 0 0 0 15 15
3 0 0 0 0 35 35 0 0 0 1 35 35
4 0 0 0 55 70 70 0 0 0 55 70 70
5 0 0 0 121 126 126 0 0 0 121 126 126
6 0 0 0 209 210 209 0 0 1 209 210 209
7 0 0 199 325 325 320 0 0 199 325 325 320
8 0 0 400 470 470 455 0 0 400 470 470 455
9 0 0 605 640 640 605 0 0 605 640 640 605

10 0 356 811 826 826 756 0 356 811 826 826 756
11 0 690 1010 1015 1015 889 0 690 1010 1015 1015 889
12 1 980 1189 1190 1189 980 0 980 1189 1190 1189 980
13 315 1204 1330 1330 1325 1005 315 1204 1330 1330 1325 1005
14 594 1350 1420 1420 1405 950 594 1350 1420 1420 1405 950
15 811 1416 1451 1451 1416 811 811 1416 1451 1451 1416 811
16 950 1405 1420 1420 1350 594 950 1405 1420 1420 1350 594
17 1005 1325 1330 1330 1204 315 1005 1325 1330 1330 1204 315
18 980 1189 1190 1189 980 1 980 1189 1190 1189 980 0
19 889 1015 1015 1010 690 0 889 1015 1015 1010 690 0
20 756 826 826 811 356 0 756 826 826 811 356 0
21 605 640 640 605 0 0 605 640 640 605 0 0
22 455 470 470 400 0 0 455 470 470 400 0 0
23 320 325 325 199 0 0 320 325 325 199 0 0
24 209 210 209 0 0 0 209 210 209 1 0 0
25 126 126 121 0 0 0 126 126 121 0 0 0
26 70 70 55 0 0 0 70 70 55 0 0 0
27 35 35 0 0 0 0 35 35 1 0 0 0
28 15 15 0 0 0 0 15 15 0 0 0 0
29 5 5 0 0 0 0 5 5 0 0 0 0
30 1 0 0 0 0 0 1 0 0 0 0 0
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