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LIGO and Virgo

P Schmidt1 for the LIGO Scientific and Virgo Collaboration
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University of Birmingham, Edgbaston, B15 2TT, United Kingdom

E-mail: pschmidt@star.sr.bham.ac.uk

Abstract. From September 2015 until August 2017, the Advanced LIGO and Virgo
gravitational-wave detectors conducted their first two observing runs O1 and O2. Since the
milestone detection of gravitational waves from two coalescing black holes, GW150914, a further
nine binary black holes collisions as well as one binary neutron star inspiral have been identified,
firmly establishing the field of gravitational-wave astronomy. After a commissioning break, the
third observing run commenced on April 1, 2019 which has since seen the public announcement
of several tens of gravitational-wave candidate events. In this proceedings, we summarise the
observations during O1 and O2 and briefly discuss the current status.

1. Introduction
Coalescing compact binaries are amongst the strongest emitters of gravitational waves (GWs)
with frequencies accessible to current ground-based GW detectors. The observation of the GWs
from such merger events allows us to shed light on binary formation channels, enable precision
tests of General Relativity in its strong-field regime, and open up new avenues of astronomy
research.

During the first observing run (O1) of Advanced LIGO, which took place from September
12th, 2015 until January 19th, 2016 the first observations of GWs from stellar-mass binary black
holes (BBH) [1, 2, 3, 4] were made. The second observing run (O2) of the Advanced LIGO
detectors [5] commenced on November 30th, 2016, and ended on August 25th, 2017. On August
1st, 2017 the Advanced Virgo detector [6] joined O2, enabling the first three-detector observations
of GWs [7, 8].

The current network of ground-based interferometers is particularly sensitive to GWs
from the inspiral, merger and ringdown of compact binaries in a frequency range between
15 Hz and a few kHz. In total, the first two observing runs have seen eleven confident
detections of GWs, ten from BBH mergers and one from a binary neutron star (BNS)
signal: GW150914, GW151012, GW151226, GW170104, GW170608, GW170729, GW170809,
GW170814, GW170818, GW170823 and GW170817 [9].

These eleven GW events were identified by two matched-filter searches [10, 11, 12, 13], using
relativistic models of GWs from compact binary mergers, as well as one unmodeled search for
short-duration transient signals (bursts) [14].

GWs from compact binaries carry information about the characteristic properties of the source
such as the masses and spins. These are extracted via Bayesian inference by using theoretical
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models of the GW signal that describe the inspiral, merger and ringdown of the final object for
BBH [15, 16, 17, 18, 19, 20, 21, 22], and the inspiral (and merger) for BNS [23, 24, 25]. Such
models are built by combining post-Newtonian calculations [26, 27, 28, 29, 30], the effective-one-
body formalism [31, 32, 33, 34, 35, 36] and numerical relativity [37, 38, 39, 40, 41, 42]. Based
on a variety of theoretical models, we estimate the total mass of GW170729 to be 84.4+15.8

−11.1
M�, making it the heaviest BBH observed to date. GW170818 is the second BBH observed
in triple-coincidence between the two LIGO observatories and Virgo after GW170814 [7]. As
the sky location is primarily determined by the differences in the times of arrival of the GW
signal at the different detector sites, LIGO-Virgo coincident events have a vastly improved sky
localization, which is crucial for electromagnetic (EM) follow-up campaigns [43, 44, 45, 46].

The observation of these GW events allows us to place constraints on the rates of stellar-mass
BBH and BNS mergers in the Universe and probe their mass and spin distributions, putting
them into astrophysical context. For BBH we find a merger rate of 9.7−101 Gpc−3y−1; for BNS
110−3840 Gpc−3y−1. The non-observation of GWs from a neutron star – black hole binary yields
a strong 90% upper limit of 610 Gpc−3y−1. The details of the calculation and the astrophysical
implications of these observations are discussed in Refs. [9] and [47] respectively.

For complete information on the events discussed here, including data products, we direct
the reader to the GWTC-1 catalog paper1 [9], references therein and the Gravitational Wave
Open Science Center [52].

2. Gravitational-wave observations during O1 and O2
The eleven GW detections were identified by three searches that analysed noise-subtracted
coincident strain data from the three interferometers. The two matched-filter searches target
GWs from compact binaries with a redshifted total mass of 2-500M�, a mass ratio between 1 and
1:98, and with maximal dimensionless spins of 0.998 for black holes (BHs) and 0.05 for neutron
stars (NSs). The burst search does not use waveform models to compare against the data, but
instead identifies regions of excess power in the time-frequency representation of the gravitational
strain, and is optimised for the detection of compact binaries with a total mass less than 100M�.
Each search identifies coincident candidate events (triggers) that are ranked by their statistical
significance, which is quantified by the inverse false-alarm-rate (IFAR). All coincident triggers
with a false-alarm-rate less than 1 per 30 days and a probability of astrophysical origin > 50%,
are designated as confident GW detections. Figure 1 shows the observed distribution of events
as a function of the IFAR, as well as the expected background and the Poisson uncertainty bands
for one of the matched filter searches. The foreground distribution, i.e. the eleven GW events,
clearly stand out from the background.

The GW signal emitted by compact binary mergers depends on a set of intrinsic and extrinsic
parameters that fully characterise the source. In General Relativity, astrophysical black holes are
fully described by their mass m and (dimensionless) spin angular momentum vector ~χ. Neutron
stars depend on additional intrinsic parameters related to the nuclear equation of state (EoS) of
the matter they are made of. Observing the GWs emitted by compact binaries and comparing
them to theoretical signal models allows us to infer the source parameters. For low-mass binaries
the best measured mass parameter is the chirp mass Mc := (m1m2)3/5/(m1 + m2)1/5, where
m1 and m2 denote the component mass of each binary companion. For more massive binaries,
the total mass, M = m1 + m2, is measured best. In current observations, the individual spins
are poorly constrained but the dominant spin effects are captured by a single effective inspiral
spin parameter [15, 53], χeff := (m1χ1L + m2χ2L)/M , where χiL denotes the spin component
parallel to the orbital angular momentum. The source parameters are inferred via Bayesian
1 We note that independent analyses of the publicly available GW strain data have been conducted. Results
from these analyses can be found in Refs. [48, 49, 50, 51].
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Figure 1. Cumulative histogram of
search results for one of the matched-
filter searches, GstLAL [12, 13], as
a function of IFAR. The dashed line
shows the expected background. The
shaded regions indicate sigma Poisson
uncertainty bounds. The blue dots
are the eleven GW events found by
the search. Events with a measured
or bounded IFAR greater than 3000
years are indicated by an arrow.
Figure adapted from Ref. [9].

inference [54] by comparing a variety of theoretical, general relativistic waveform models against
the data. Some key parameters such as the component masses and the effective inspiral spin are
shown in Fig. 2.

The observed black hole binaries span a wide range of total source-frame masses, from
GW170608, the lightest BBH with 18.6+3.2

−0.7 M� to GW170729, the heaviest BBH with 84.4+15.8
−11.1

M�. In particular, the heavy black holes observed raise interesting questions regarding their
possible formation process and history. However, no black holes in either the upper or lower
mass gap have been identified in the first two observing runs [55, 56, 57, 58]. Further, all ten
BBH observations are consistent with equal mass.

The black hole spins are more difficult to constrain as their effects on the GW signal are of
higher post-Newtonian order but they are of particular interest for the discrimination between
different binary formation scenarios. The currently best measured spin-related quantity is
the effective inspiral spins, χeff , whose measurements are shown in the right panel of Fig. 2.
Apart from GW170729, and marginally also for GW151226, a vanishing or small χeff is
consistent with the data for the majority of events. Possible misalignment between the orbital
angular momentum and the black holes spins, which induces precession [59, 60], is currently
unconstrained but future observations may yield the first measurements of precession.

The observation of GWs from merging BBH allows us to probe the predictions of General
Relativity in the previously unexplored highly dynamical strong-field and strong-curvature
regime. The current observations are all found to be consistent with Einstein’s theory of
gravity [61], but as the uncertainties on the measurements decrease in future observations,
deviations from GR or signs of exotic physics may be uncovered.

The first two observing runs did not only bring ten BBHs but also the historic observation
of GWs from a binary neutron star inspiral, GW170817 [8]. To date, thousands of neutron stars
have been observed electromagnetically, yet little is known about the matter they are made of:
Their interior is thought to be made of cold, ultradense matter – conditions very difficult to
achieve in laboratory experiments [62]. The observation of GWs from a binary neutron star,
however, provides a unique means to probe the nature of matter under such extreme conditions
and infer the as of yet unknown equation of state (EoS). This is possible as the presence of matter
modifies the GW signal in comparison to that of a BBH due to the tidal response of the star. The
additional signature induced in the GW depends on the EoS through a macroscopic parameter
known as the tidal deformability Λ̃ [63]. The observation of GW170817 has allowed us to put the
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Figure 2. Left: 90% credible regions of the two-dimensional posterior probability density (PDF)
for the inferred source component masses for all eleven GW events. Right: One-dimensional
PDF for the effective inspiral spin, where the horizontal lines indicate the mean and the 90%
bounds. Adapted from Ref. [9]

first direct constraint on the tidal deformability and thereby on the EoS [64, 65]. The analysis
of GW170817 finds that soft EoSs, which yield rather compact NSs, are preferred. [65, 66].
The observation of more GWs from binary neutron stars will allow us to populate the famous
mass-radius diagram and zoom in on the true EoS.

GW170817 is one of the most observed events in astronomy. Shortly after the GW was
detected, a gamma-ray burst was registered in a region of the sky consistent with GW170817 [45].
It is the first example of multi-messenger astronomy combining observations in GWs, the entire
electromagnetic, cosmic rays and neutrinos. This joint observation has confirmed the long-
standing hypothesis that some short gamma-ray bursts are caused by binary neutron star
mergers and that the subsequent EM counterpart is a kilonova [67]. Moreover, the joint GW-EM
observation has allowed to use GW170817 as a standard siren and make a first Hubble constant
measurement with GWs [68].

3. O3 and beyond
After a commissioning period during which the two LIGO detectors and Virgo underwent
significant upgrades to improve their respective sensitivities, the third observing run (O3) began
on April 1, 2019. Different to the previous two observing runs, GW candidate events, which are
above a certain significance threshold, are immediately shared with the scientific community in
order to enable low-latency follow up. As of October 2019, a total of 33 detection candidates
were shared publicly. These candidates were identified in low-latency by matched filter searches
and, as for previous runs, will be thoroughly analysed offline.

Candidates of particular interest include a neutron star – black hole candidate from August
14, S190814bv, as well as a binary neutron star candidate, S190425z, from April 25, 2019.
In addition, on August 29, two binary black hole candidates were identified within around 20
minutes of each other. The complete list of public alerts can be obtained from the Gravitational-
Wave Candidate Event Database [69].

O3 is scheduled to last for one year. Recently, the Japanese GW detector KAGRA [70]
has achieved its first periods with a locked interferometer and is aiming to join O3 either later
this year or early in 2020. Even though KAGRA is expected to join the GW detector network
with a significantly lower sensitivity than that of the currently operating facilities, a fourth
detector operating will increase the duty cycle and, for close events, help to improve the sky



TAUP 2019

Journal of Physics: Conference Series 1468 (2020) 012218

IOP Publishing

doi:10.1088/1742-6596/1468/1/012218

5

localisation [71], which is crucial for EM follow-up.
After a further upgrade, LIGO, Virgo and KAGRA are anticipated to achieve their full design

sensitivity for O4, currently scheduled for late 2021. Further upgrades and possibly a fifth GW
observatory in India, promise hundreds of GW detections in the years to come.
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[53] Racine É 2008 Phys. Rev. D 78 044021 (Preprint 0803.1820)
[54] Veitch J et al. 2015 Phys. Rev. D 91 042003 (Preprint 1409.7215)
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