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Abstract

Semi-solid deformation mechanisms are important in a range of manufacturing and natural phenomena, which range from squeeze
casting to magma flows. Using fast synchrotron X-ray tomography and a bespoke precision thermomechanical rig, we performed a
four-dimensional (3-D plus time) quantitative investigation of the granular behaviour of equiaxed dendritic three-phase materials. This
methodology produced new insights into the formation of damage during the isothermal semi-solid compression (�30% liquid fraction)
of an Al–15 wt.%Cu alloy at both a macroscopic and microscopic level. Grain rearrangements, such as translation and rotation, were
observed and lead to local dilatancy. The resulting flow of Cu-rich intergranular liquid into the dilated interstices gave rise to a local
increase in liquid fraction, followed by rapid void growth above a critical axial strain of �6.4%. The local normal and shear strain
distributions were quantified using digital volume correlation, identifying dilatant shear bands. At a microstructural level, the individual
grains were also seen to undergo intragranular deformation, leading to bending and fragmentation of dendrites as grains interlock.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://creativecommons.org/
licenses/by/3.0/).

Keywords: Semi-solid deformation; Granular mechanics; Microstructural response; Dilatancy; Hot tearing
1. Introduction

The microstructural and mechanical response of semi-
solid mixtures in the range of 20–50% liquid fraction during
deformation is termed semi-solid mechanics. This range of
liquid fraction is important in both materials processing
(e.g. metallic component fabrication [1,2]) and many
natural phenomena (e.g. magma flows [3,4]). For example,
http://dx.doi.org/10.1016/j.actamat.2014.05.035
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during the casting of aerospace or automotive metallic com-
ponents, the thermal contraction and/or imposed deforma-
tion during solidification can influence the microstructure
and defects formed (e.g. grain size [5], porosity [6], segrega-
tion [7] and hot tearing [1,8]). In many industrial processes
where deformation is imposed, such as semi-solid process-
ing and twin roll casting, the effect is particularly strong
[5,9]. Therefore, an improved understanding of the response
of a solidifying structure to deformation is important when
designing a range of manufacturing processes.

Semi-solid systems are conventionally treated as
homogeneous media, described using governing laws based
on a continuum approach [10,11]. However, this treatment
org/licenses/by/3.0/).
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cannot account for localized phenomena, such as strain
localization, which leads to defects such as shear banding
or void formation [12]. A granular mechanics approach
has been proposed by some authors to link the microstruc-
tural evolution to the semi-solid responses due to deforma-
tion, by treating solid grains as particulate suspensions
[5,12–15]. For example, Spencer et al. [13] discovered that
a semi-solid metallic alloy’s viscosity depends on the solid
fraction and decreases with increasing shear rate (shear-
thinning), analogous to colloidal suspensions. Tzimas and
Zavaliangos [16] discussed the occurrence of dilatancy in
semi-solid equiaxed alloys during compression, and more
recently Gourlayet al. [2] reported that partially solidified
alloys exhibit Reynolds dilatancy under shear leading to
strain localization. Dilation is also an important feature
of saturated granular materials. The previous studies sug-
gest that the size and morphology of solid particles and
the liquid fraction influence the occurrence of granular
phenomena in semi-solid alloys [17,18]. Although granular
mechanics can explain some features observed during the
deformation of three-phase solids, many other behaviours
have been observed in such systems that are not currently
explained by these models, such as grain-to-grain interac-
tions and liquid flow, and the resulting localized phenom-
ena at a microstructural scale, such as flow of solid
particles [19,20] agglomeration/deagglomeration [9,21],
viscoplastic deformation of grains [1,22,23] and damage
formation [24–26]. Whether such behaviour can be
explained by granular mechanics needs to be validated
through experiments.

Commonly, constitutive equations have been used to
describe the mechanical behaviour of semi-solid alloys via
continuum analysis of a range of tests, including: tensile
loading [26–29], compression [30–32], direct shear [33], rhe-
ometry [13,17,34] and indentation [35]. It is worth noting
here that compression has been extensively used due to
its ease of implementation and close resemblance to many
key industrial processes. Additionally, properties such as
the yield stress and viscosity of a semi-solid mush can be
directly measured [30–32]. However, in most of these stud-
ies, the effects of deformation on microstructure were
quantified only using post mortem analysis, limiting our
understanding of any time-dependent kinetics. To under-
stand and quantify the underlying kinetics or microstruc-
ture-dependent interactions, simultaneous measurement
of the mechanical properties of semi-solid alloys and direct
quantification of microstructural evolution with time is
necessary.

A few recent studies have reported direct observation of
granular shear deformation in semi-solid Al–15 wt.%Cu
alloys [19] and low-carbon steel [36] using X-ray radiogra-
phy, but did not measure the macroscopic mechanical
behaviour. However, these 2-D studies did provide the first
direct evidence of local dilatancy, induced by rearrange-
ment of grains under shear deformation in metallic systems
[19,37,38]. Unfortunately, these radiographic observations
require a very thin sample thickness, and may not represent
the 3-D bulk behaviour due to restricted out-of-plane
motion and the friction of particles along the sample con-
tainer wall.

Ultra-fast X-ray tomography can now overcome many
of the limitations of radiography, resolving real-time 4-D
information [39–42]. This technique has been used by
several authors to quantify microstructure and defect
formation during solidification [43–45] and under tension
[8,46,47]. In this study, we present the first in situ 4-D
(3-D plus time) quantitation of semi-solid compression of
equiaxed dendritic grains. Using a bespoke thermomechan-
ical rig designed for X-ray tomography, both the macro-
scopic mechanical behaviour and the evolution of
microstructure and damage are simultaneously measured.
The microstructural dynamics can then be correlated with
the true stress and strain measurements, providing funda-
mental understanding of the responses of partially solidified
alloys to the imposed loading. We demonstrate that this
methodology can provide unique advantages when develop-
ing and validating semi-solid constitutive models, elucidat-
ing the behaviour of granular semi-solid systems and the
nature of underlying granular deformation mechanisms.

2. Experimental methods

2.1. Materials

An Al–15 wt.%Cu alloy was selected for two key rea-
sons: firstly to achieve a solid fraction typical of widely
used commercial alloys (e.g. A356 [48]); and secondly for
its X-ray attenuation variation between the primary phase
and interdendritic liquid. The latter is due to the higher
electron density of copper and its low partition coefficient,
resulting in preferential segregation into the interdendritic
liquid. Cylinders 3 mm diameter and 4 mm high were wire
electrodischarge machined from 2 kg cast cylinders. Their
microstructure was equiaxed dendritic, with a grain size
of �600 lm.

2.2. Testing apparatus and procedures

Semi-solid compression tests were performed using
the bespoke P2R mechanical test rig [8] designed for
in situ X-ray tomographic experiments, with air-bearing
continuous rotation built into the load train. This allows
simultaneous tension, compression and/or torsion during
tomography, with 100 nm motion and 0.1 N load measure-
ment precision. A bespoke PID-controlled resistance
furnace with an X-ray-transparent window [8,41,49] was
mounted on the mechanical rig, and the entire thermome-
chanical setup was integrated into the I12 beamline at
Diamond Light Source (Fig. 1a).

The experimental setup is shown in the insert of Fig. 1a.
The specimen was placed at the centre of a boron nitride
holder (inner diameter 7 mm, wall thickness 1 mm) to
ensure that the sample was secure and the deformation
was unconstrained. A pre-load of 3 N was applied to
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Fig. 1. Picture of P2R compression rig at the I12 beamline in Diamond
Light Source with furnace; the insert shows a schematic of the setup: (1)
compression (top) ram; (2) specimen; (3) boron nitride holder.

B. Cai et al. / Acta Materialia 76 (2014) 371–380 373
stabilize the sample during rotation for tomography. The
specimen was heated at a rate of 40 �C min�1 to
555 ± 2 �C, where it is semi-solid with a liquid fraction of
30% ± 2%, and held isothermally for 10 min during which
slight coarsening occurred. (Note: the liquid fraction was
determined by image analysis of tomographic scans, but
compares well with the equilibrium phase diagram.) The
sample was then compressed at a displacement rate of
5 lm s�1 (an initial strain rate of �1.25 � 10�3 s�1). After
20 s, continuous fast X-ray tomographic imaging was initi-
ated, and 24 datasets were continuously captured over 96 s
(i.e. one tomogram every 4 s of 720 images collected over
180�).

A monochromatic X-ray beam with photon energy of
53 keV was used in the experiment. A Phantom V7.3
(a) (b) (c)

(f) (g) (h)

Fig. 2. (a)–(d) Series of longitudinal slices from 3-D volume of semi-solid
compression; (f)–(i) mid-height transverse slices; (e) and (j) grain displacement f
of displacement field, “+”shows the central point of displacement field).
high-speed camera (Vision Research, USA), together with
a LuAg:Ce single-crystal scintillator was used, offering a
field of view of 9.8 � 7.3 mm2 and a voxel size of
12.25 lm; the exposure time was 5.5 ms.

2.3. 3-D image reconstruction and quantification

A filtered back-projection algorithm was used to recon-
struct the 3-D tomographic datasets, including ring artefact
removal [50]. Each reconstructed 3-D dataset was
800 � 600 � 600 pixels. Image processing and analysis
was performed using Avizo 7.0.1 (Visualization Science
Group, France), ImageJ (US NIH, Bethesda, MD, USA)
[51] and MATLAB2012b (Mathworks Inc., USA).The first
stage was a 3-D median filter algorithm to reduce noise,
followed by registration using a 3-D affine registration
approach. A longitudinal section of an individual tomo-
gram is shown in Fig. 2a, where the a-Al dendrites are dark
grey, and the Cu-enriched interdendritic liquid is light grey.
Global thresholding was used to segment the images into
solid, liquid and void. Voids smaller than 27 voxels were
discounted as noise. The local thickness of the liquid chan-
nel was determined using BoneJ, an ImageJ plugin [52].

The length (li, where i is the scan step), maximum
cross-section area (Ai) and volume (Vi) of the sample were
measured from the 3-D tomographic volume, and used
to calculate the true axial ðel ¼ lnðli

lo
ÞÞ and lateral

ðea ¼ lnðAi
Ao
ÞÞ strains.

2.4. Digital volume correlation

Digital volume correlation (DVC; Davis Strain Master,
version 8.1), was used to provide a full-field displacement
field and 3-D strain map. DVC tracks intensity patterns
within small subvolumes in a digital 3-D image, calculating
their motion between frames, and hence displacements and
(d) (e)

(i) (j)

1 mm

Al–15 wt.%Cu alloy with liquid fraction of 30% ± 2% under semi-solid
rom el = �1.2% to el = �12.6% (the dashed line indicates the discontinuity



Fig. 3. (a) Grain motion in the transverse mid-height section; (b) average
radial marker displacement vs. height (st1 at t = 24 s (el = �1.2%), st2 at
t = 52 s (el = �4.2%), st3 at t = 84 s (el = �8.3%) and st4 at t = 116 s
(el = �12.6%)).

(a)

Upper

Middle

Lower

(b) Upper

Middle

Lower

15 8545 [µm]

Fig. 4. (a) Variation in transverse cross-sectional area; (b) variation of
area liquid fraction (line-weighted average) along deformation axis. Insert:
the 3-D rendering of liquid channel thickness at el = �12.6%.
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strains [53]. Cuboidal subvolumes with an edge length of 24
pixels were chosen as a balance between being large enough
to contain a unique pattern for matching, whilst being
small enough to avoid affine straining over a deformation
increment [54]. Using a 50% overlap and four passes, a dis-
placement matrix grid of 12 pixels or 147 lm was obtained.
The displacement field (Vi (i = x, y, z)) was used to calcu-
late the strain tensor (eij (i, j = x, y, z)); the coordinates
are displayed in Fig. 1, z being the vertical axis in the direc-
tion of loading. The six unique components of eij define the
3-D strain state, and can be transformed onto the octahe-
dral planes, which are the eight planes forming equal angles
with each of the principal strain directions, resulting in the
octahedral normal strain (en):

en ¼
1

3
ðexx þ eyy þ ezzÞ ð1Þ

and the octahedral shear strain (es):

es¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðexx� eyyÞ2þðexx�ezzÞ2þðeyy�ezzÞ2þ6ðe2

xyþ e2
xzþe2

yzÞ
q

ð2Þ
en describes the volume change, equivalent to three times
the volumetric strain, while es is the maximum value of
the shear strain on any plane. Both components are
independent of the orientation of the coordinate system.
3. Results and discussion

3.1. Dilation during semi-solid compression

Initially (Fig. 2a and f), there is a uniform distribution of
interdendritic liquid throughout the sample with only
minor microstructural variations. As compression proceeds
(el = �1.2%), the sample shows typical barrelling (Fig. 2b)
due to friction at the platens. Near the centre the a-Al equi-
axed dendritic grains separate (Fig. 2c and d), drawing
interdendritic liquid into that region and increasing the
local liquid fraction (Fig. 2 f and g). We also observe void
nucleation and growth with increasing strain, showing the
complex, heterogeneous interaction and deformation of the
three phases (solid dendritic grains, interdendritic liquid
and voids) under compression.

Grain movement during semi-solid compression can be
quantified using markers at the grain centroids and den-
drite tips. The marker motion was quantified at axial strain
intervals of �4% in longitudinal and transverse slices using
the bottom ram as the frame of reference (Fig. 2e and j).
Grains just below the top ram (upper part) move vertically
downward, while grains in the middle region move simulta-
neously downwards and outwards. The motion in a single
transverse mid-height plane is plotted in Fig. 3a and the
radial motion at the central plane in Fig. 3b. As grains
move, they also undergo small rotations.
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The change in sample cross-sectional area is quantified
in Fig. 4a, and the corresponding increase in intergranular
liquid fraction in Fig. 4b. The fraction liquid fluctuates due
to variations in grain and dendrite morphology, with peri-
odicities at both of these length scales. The distribution of
local thickness of the liquid channels in the final stage of
deformation was measured via a medial axis method [52]
and plotted in the inserts of Fig. 4b. Fig. 5a and c compare
the local thickness of the liquid channel in a central cube
with an edge length of 1.47 mm (see black box in Fig. 4b)
15 >8545 [µm

(a)

300 µm

(c)

(e)

300 µm

Fig. 5. (a, c) Liquid channel local thickness in central region for the subvo
respectively. Liquid channels with local thickness larger than 73.5 lm were re
at el = �1.2% and the final deformation step
(el = �12.6%)). The intergranular channels are initially thin
and highly tortuous (Fig. 5a), with regions thicker than
73 lm only at the grain triple points (Fig. 5b). By the final
stage of deformation (Fig. 5c), the liquid channel thickness
has increased dramatically in the central region, with inter-
connected regions thicker than 73 lm between almost all
grains (Fig. 5d and quantitatively in Fig. 5e). This expan-
sion of intergranular regions is an example of dilatancy,
first described by Osborne Reynolds [55]. The grains were
]

(d)

(b)

300 µm

300 µm

lume box in Fig. 4 at t = 24 s (el = �1.2%) and t = 116 s (el = �12.6%),
ndered in (b) and (d); (f) distribution of the liquid channel thickness.
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naturally packed initially, and when pushed, rearranged
themselves to accommodate strain, widening the interstices
in between.

We also observed another phenomenon that is less well
reported. The dilation of the grains in the central region
introduces a zone of low liquid pressure, which draws in
interdendritic liquid from surrounding regions. In alloys
this flow has an additional effect: it locally increases the
average Cu concentration via mass transport, reducing
the local equilibrium melting temperature, leading to local
remelting of the solid grains. Although such remelting is
best known in solute plumes/freckles due to thermal solute
convection [56], observations in semi-solid tension via
in situ X-ray radiography [57] and tomography [58] on
Al–Cu alloys have indicated it can happen during
0 4.5 >9Volu

(g) (h

(a) (b)

(d) (e)

Fig. 6. (a)–(d) Evolution of voids (coloured according to its size) during sem
grey) at a deformation rate of 5 lm s�1 with an axis strain of (a) 0, (b) �4.
deformation axis. (f) Evolution of void fraction as a function of time (inserted
deformation. This local change in composition will further
contribute to the increase in liquid fraction in the central,
dilated region. Hence dilatancy in semi-solid alloys is differ-
ent from that in insoluble soils, as localized changes in ther-
modynamic equilibrium may cause greater localization of
shear banding. This effect may be significant in other fields
such as volcanology, where an igneous magma is also a
granular system that has a solid fraction that is dependent
on local composition; deformation of a magma mass may
cause the onset of dilation, producing zones of higher
liquid fraction within the strain localized region [3] where
remelting might also occur.

Dilatancy not only causes the increase of liquid
volume fraction in the deformed region, but also leads
to the formation of voids/damage (Figs. 2 and 6). (Note
me [106 µm3] 

300 µm 

I II III

)

(c)

(f)

1 mm

i-solid compression at fl = �30% of a Al–15 wt.%Cu sample (transparent
2%, (c) �8.3%, (d) �12.6%. (e) Variation of void fraction in area along

images shows void closure at stage I).
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we use the term damage interchangeably with voids, as
the linkage of them leads to loss of mechanical integrity.)
Three distinct stages of void evolution were identified in
Fig. 6:

I. Initial pore shrinkage;
II. An incubation period; and

III. Final rapid growth leading to cracking.

During stage I, the initial, 0.11% pre-existing porosity
(Fig. 6a) shrinks as a result of both compressive strain
and liquid feeding into the pore space (Fig. 6a and b,
and one example is shown in Fig. 6h). Interestingly, Terzi
et al. [47] also observed this during the initial stages of
semi-solid tensile loading. During stage II, existing voids
grow slightly along dendritic boundaries (Fig. 6b–d), and
a few new ones are initiated. Two competing factors arise
controlling the formation of voids in the mush zone: (i) ten-
sile strain imposed on the liquid channel trying to open up
a void; and (ii) the liquid feeding tending to feed the dilated
space. Thus, when a critical amount of tensile strain is
imposed on the liquid channels and the liquid fails to feed
the dilated space, voids grow or are nucleated, resembling
hot tear formation [57,59]. During the last stage (stage
III), voids both rapidly grow and coalesce (starting at an
axial strain of �6.4%), as seen in Fig. 6d–f. The damage
penetrates into the sample (Fig. 6d), extending in the verti-
cal direction (Fig. 6f and g).
A

C

D

E

A

C

DF

250 µm

250 µm

G

(a)

(d) (e)

(h) (i)

t=24 s ( = -1.2%) t=84s ( =

t=0 s ( =0%) t=56 s ( =-4.2%)

(b)

250 µm

Fig. 7. (a)–(c) Zoomed longitudinal slice showing the bending and breakage of
marked “C” in images (a)–(c) at time 0 s, then at subsequent times (e)–(g) as the
D. (h)–(k) 3-D rendering of a-Al grain F at subsequent times as the primary
Damage formation in a semi-solid depends on a balance
between strain rate and fluid flow. At high strain rates,
damage forms faster as liquid flow is insufficient to feed
the newly dilated interdendritic space. The complex den-
dritic morphology and solid fraction also play a strong role
as these control the interdendritic volume fraction and
severity of dilatancy.

3.2. Bending and fragmentation of grains

Although dilatancy was the predominant mechanism for
accommodating strain, other deformation mechanisms
were also observed. Due to the irregular dendritic morphol-
ogy, some grains interlocked, causing deformation within
individual grains (termed intragranular deformation), spe-
cifically bending and fragmentation of the primary dendrite
stems.

An example of this is shown in Fig. 7a–c; seven grains
are labelled A–G to explain the breakage of C, bending
of F and the associated force chain. When dendrite F is
pushed down, its stem fragments near one tip (Fig. 7b).
Load is transmitted to A and B from the grains above, pin-
ning them against C, eventually shearing the dendritic stem
of grain C (Fig. 7f and g). This breakoff may also have been
added by local remelting, although the tomography resolu-
tion was insufficient to quantify this.

Looking now at grains E, F and G, a similar micro-
mechanism is observed for F, leading to its eventual
E

F

A

C

D

E

F

C 

F 

A 

D 

E 

G G
H

G 

(f) (g)

(g) (k)

-8.3%) t=116 s ( =-12.6%)

t=84s ( =-8.3%) t=116 s ( =-12.6%)

(c)

dendrites at time (a) 24 s, (b) 84 s (c) 116 s; (d) 3-D rendering of a-Al grain
primary arm fragments due to loading from neighbouring grains to A and

arm stem bends due to slow loading from neighbouring grains E and G.



Fig. 8. (a) Load and true stress curve vs. time during semi-solid
compression. (b) Axial strain, lateral strain and ezz vs.time.
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bending. These grains also form a micro shear cell, where E
and G tend to shear F in an anticlockwise direction
(Fig. 7b). Under this configuration, the primary stem of
grain F bends �15 � without breaking (Fig. 7k).

The current observations indicate that dendrites are
sheared by their neighbours through a direct-shear mecha-
nism; the shear force imposes a sufficiently high bending
moment on the dendrite arms to bend and ultimately break
(a) (b) (c)

(e) (f) (g)

Fig. 9. (a)–(d) The development of octahedral normal strain; and (e)–(h) shear
el = 0–�8.3%, (c) and (g) el = 0–�8.3%, (d) and (h) el = 0–�12.6%.
off portions of these equiaxed dendritic grains. Throughout
the sample, many bent dendrites were observed, but break-
off was less prevalent. Higher-resolution studies would be
required to quantify the loads and stresses responsible for
breaking individual dendrites.

For this particular solid fraction, dendritic morphology
and strain rate, the predominant mechanisms, in order of
prevalence, are: (i) dilatancy; (ii) grain deformation; and
(iii) dendrite fragmentation. Granular models, particularly
discrete element models of semi-solid materials, commonly
consider the solid grains as rigid particles and treat parti-
cle–particle deformation as elastic deformation [14]. How-
ever, the present study suggests that the deformation of
semi-solid equiaxed dendritic structures is considerably
more complex.

3.3. Stress and strain measurement

In this section we correlate the granular flow behaviour
and microstructural evolution to the measurement of the
mechanical properties (stress and strain) during semi-solid
deformation. During deformation, displacement and load
values were recorded every millisecond (Fig. 8a). (Note
the load fluctuates with the periodicity of sample rotation,
required for tomography, due to slightly non-concentric
loading; therefore, a weighted moving averaged load was
used.) The resulting stress–time curve (Fig. 8a) has a max-
imum stress of �1.4 MPa at 68 s (axial strain of �6.4%),
corresponding to the initiation of rapid damage formation
(stage II to stage III), slowly decreasing afterwards. The
total work done on the sample is mainly consumed by: (i)
grain rearrangement; (ii) deformation within grains; (iii)
grain fragmentation; (iv) liquid flow through restricted
channels; and (v) formation and growth of voids.

The axial and lateral strains vs. time (Fig. 8b) monoton-
ically decrease and increase respectively during compres-
sion, as expected. The axial strain as calculated by DVC
(ezz) is also plotted in Fig. 8b, correlating well with the
s [%]z 

n [%]

0.5 mm

(d)

(h)

strain during semi-solid compression: (a) and (e) el = 0–�4.2%, (b) and (f)
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traditional measurement (el). The increase in standard
deviation of ezz indicates that the strain becomes more
inhomogeneous during the course of the deformation,
shown even more clearly by the DVC results (Fig. 9).

During the initial stages of deformation, the specimen
predominantly exhibits relatively homogeneous negative
normal strain, indicating compaction within the sample
(Fig. 9a). As deformation progresses, positive normal
strain (corresponding to dilation) occurs locally within
the central region (Fig. 9b), accumulating with increasing
deformation (Fig. 9c and d). The region with the highest
positive normal strain (>3%) is mainly located in the cen-
tral region of the specimen (Fig. 9d). The octahedral shear
strain tends to concentrate into a band (Fig. 9e–h), with the
highest shear strain exceeding 12% (Fig. 9h). This suggests
that the shear localization occurs as deformation increases,
indicating the presence of dilatant shear bands.

In summary, the qualitative and quantitative analysis of
this first 4-D in situ observation of an equiaxed dendritic
semi-solid alloy during compression has not only high-
lighted the key mechanisms by which deformation occurs
in semi-solids, but also shown how dilatancy gives rise to
defect formation (shear bands and voids).The experimental
methodology, techniques and analysis procedure used are
generic in nature and can be applied to a wide range of
cross-disciplinary research fields.

4. Conclusions

High-speed synchrotron X-ray tomographic microscopy
was used to quantitatively analyze the compressive defor-
mation of semi-solid equiaxed dendritic Al–15 wt.%Cu at
�30% liquid fraction. The results confirm the behaviour
of this semi-solid structure as a granular system, highlight-
ing how the deformation is accommodated not only by
granular flow and associated dilatancy, but also by the for-
mation of microshear cells resulting in intragranular bend-
ing and breakage of dendrites. These mechanisms lead to
defect formation, causing segregation (which may cause
local remelting, further increasing dilatant shear band for-
mation), and damage formation, reducing mechanical
strength. Three distinct stages of void evolution were iden-
tified: I, initial pore shrinkage; II, an incubation period
with slow pore growth; and III, final rapid damage growth,
both from the surface and via coalescence of internal and
externally connected voids. These stages are directly linked
to the granular behaviour of the solid phase. Using DVC,
analysis of the full-field strain evolution showed regions
of high strain concentrations corresponding to the forma-
tion of shear bands at a granular (microstructural) level.
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