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Summary 

While 3,4-methylenedioxymethamphetamine (MDMA/‟ecstasy‟) is cytostatic towards 

lymphoma cells in vitro, the concentrations required militate against its translation directly to 

a therapeutic in vivo. The possibility of „redesigning the designer drug‟, separating desired 

anti-lymphoma activity from unwanted psychoactivity and neurotoxicity, was therefore 

mooted. From an initial analysis of MDMA analogues synthesized with a mod ified α-

substituent, it was found that incorporating a phenyl group increased potency against 

sensitive, Bcl-2-deplete, Burkitt‟s lymphoma (BL) cells 10-fold relative to MDMA. From this 

lead, related analogs were synthesized with the „best‟ compounds (containing 1- and 2-

naphthyl and para-biphenyl substituents) some 100-fold more potent than MDMA versus the 

BL target. When assessed against derived lines from a diversity of B-cell tumors MDMA 

analogues were seen to impact the broad spectrum of malignancy. Expressing a BCL2 

transgene in BL cells afforded only scant protection against the analogues and across the 

malignancies no significant correlation between constitutive Bcl-2 levels and sensitivity to 

compounds was observed. Bcl-2-deplete cells displayed hallmarks of apoptotic death in 

response to the analogues while bcl-2-overexpressing equivalents died in a caspase-3-

independent manner. Despite lymphoma cells expressing monoamine transporters, their 

pharmacological blockade failed to reverse the anti-lymphoma actions of the analogues 

studied. Neither did reactive oxygen species account for ensuing cell death. Enhanced 

cytotoxic performance did however track with predicted lipophilicity amongst the designed 

compounds. In conclusion, MDMA analogues have been discovered with enhanced 

cytotoxic efficacy against lymphoma subtypes amongst which high-level Bcl-2 – often a 

barrier to drug performance for this indication – fails to protect.    
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Abbreviations 

ABC   Activated B-Cell-like  

BL  Burkitt‟s lymphoma 

DAT  Dopamine transporter 

DLBCL  Diffuse large B-cell lymphoma  

EBV  Epstein-Barr virus 

FL  Follicular lymphoma  

GCB   Germinal B-Cell-like  

MDMA  3,4-methylenedioxymethamphetamine  

NHL  Non-Hodgkin lymphomas  

PARP  Poly (ADP-ribose) polymerase 

PI  Propidium iodide 

PTLD   Post-transplant lymphoproliferative disease 

SERT  Serotonin transporter 
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Introduction 

The incidence of B-cell lymphomas, constituting around 95% of all the non-Hodgkin 

lymphomas (NHL), is increasing steadily year-on-year. NHL is a heterogeneous group of 

neoplasia ranging from indolent examples like slow growing follicular lymphoma (FL) to 

highly aggressive, rapidly proliferating entities exemplified by diffuse large B-cell lymphoma 

(DLBCL) - the most common of the NHL in Europe, Australasia and the US - and Burkitt‟s 

lymphoma (BL): rare in the West but endemic in the World‟s malarial belt. The diversity of 

tumors reflects a composite of factors including the differentiation stage of the target B-cell 

and the mutations/translocations arising therein. Multiple profiling platforms such as gene 

array are disclosing additional heterogeneity within previously considered single clinical 

entities which can be manifested molecularly, cellularly and prognostically. DLBCL for 

example is now considered a composite of disease subtypes comprising primarily „Activated 

B-Cell-like‟ (ABC) cases and those that are „Germinal B-Cell-like‟ (GCB): survival rates 

among the former being substantially worse than the latter. Moreover, within ABC DLBCL 

constitutive expression of the pro-survival gene BCL2 further discriminates a substantially 

inferior subgroup with regards overall survival even in the face of intense therapy. 

 

Anti-apoptotic BCL2, originally identified as the gene translocating to the IGH locus on 

chromosome 14 in the hallmark t(14;18) of FL, offers a considerable barrier to drug efficacy 

in lymphoma treatment. BL, while extremely aggressive, lacks genetic alterations in BCL2, is 

deplete in Bcl-2 protein and has a high cure rate using combination chemotherapy. Over the 

past decade we have adopted BL as a template on which to explore novel therapeutic 

opportunities for lymphoma: BL offering a sensitive monitor of pro-apoptotic/anti-proliferative 

activities and at the same time being a tumor that is readily adaptable to tissue culture with 

derived lines remaining „biopsy-like‟ when maintained in early passage. Transfection of 
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BCL2 on a constitutive promoter into these cells allows the opportunity to model directly on 

an otherwise isogenic background the impact of its dysregulated, high level expression on 

the efficacy of promising new drug candidates. Within this context we have been 

investigating compounds which target components of neurotransmitter pathways that can be 

found in immune cells and their cancers: most notably the transporters for serotonin and 

dopamine (SERT and DAT, respectively), each expressed in a broad range of the NHL 

subtypes and other B-cell malignancies [1-5].  

 

Amongst such compounds, the amphetamine derivatives fenfluramine and 3,4-

methylenedioxymethamphetamine (MDMA, „Ecstasy‟) were found to be anti-proliferative 

against B-cell lines of diverse malignant B-cell origin. It was shown (at least with 

fenfluramine) that in Bcl-2-deplete BL cells, growth arrest was accompanied by apoptotic cell 

death following activation of caspase-3: these latter features being reversed on introducing 

BCL2 as a transgene [4]. Unfortunately the concentrations of the amphetamine derivatives 

required to elicit anti-proliferative/pro-apoptotic activity in vitro were too high for safe 

translation to a cancer therapeutic in vivo. Therefore we mooted for MDMA the potential of 

“redesigning the designer drug” to enhance lymphoma killing while reducing neurotoxicity 

and psychoactivity.  

 

Research by Shulgin and co-workers [6-9] suggests that extending the - or N-substituent of 

MDMA to anything larger than an ethyl group abolishes the drug‟s psychoactivity. Nash and 

Nichols, studying acute effects in rats, showed that a simple substitution of the methyl group 

at the -C of MDMA with an ethyl substituent, creating MBDB, significantly diminishes the 

amount of dopamine released in the striatum [10]. The-substituent was therefore deemed 

a rational plinth for redesign. We now describe improved cytotoxic performance of MDMA 
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analogues with modified -substituents against a spectrum of B-cell malignancies giving 

attention to the mechanisms and pathways to cell death, including the impact of anti-

apoptotic Bcl-2. A companion study details in full the chemistry and synthesis of the 

analogues while providing evidence for diminished neurotoxicity and psychoactivity of 

selected compounds, together with a brief description of their rank potency in targeting a BL 

cell line [11]. 

 

Materials and Methods 

Compounds  

MDMA and analogues with modified α-substituents were synthesized by reductive amination 

of the corresponding piperonyl ketones as described recently [11]. All target amines were 

converted to their hydrochlorides and were tested as such. 

 

Cell culture  

Cell lines deriving from different B-cell malignancies and variants of the L3055 BL cell line 

were as described previously [4]. EBV-transformed lymphoblastoid cell lines were from the 

School of Cancer Sciences, University of Birmingham U.K. All cell lines were cultured in 

RPMI 1640 medium supplemented with 2mM glutamine, 10% v/v FCS, 100 U/ml penicillin, 

100 U/ml streptomycin under 5% CO2 at 37C and passaged three times weekly.  

 

Cellular cytotoxicity 

Cellular cytotoxicity/viability was assessed by staining treated cells with propidium iodide (PI, 

a DNA binding dye incapable of penetrating intact cell membranes, (Sigma Aldrich, Dorset, 

UK)) at a final concentration of 0.85 µg/ml or 1.15 µg/ml prior to flow cytometric analysis 
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(FACS Calibur BD) of PI+ve versus PI-ve cells. Results were analysed using FlowJo 8 

software for Macintosh.  

 

Apoptosis 

Apoptosis was assessed by dual staining of cells with PI and PhiPhiLux (Oncoimmunin, 

Gaithersburg, MD, USA) an indicator of active caspase-3 followed by analysis on FACS 

exactly as described previously [4]. Activation of caspase-3 was additionally assessed by 

staining cells with a rabbit antibody specific for the active form of caspase-3 (BD Pharmigen, 

Oxford, UK), followed by FACS analysis; non-immune rabbit IgG (control) was from Sigma 

Aldrich. Cells were pre-treated using the FIX and PERM kit for intracellular staining (Caltag, 

Invitrogen, Paisley, UK) according to the manufacturer‟s instructions. Cleavage of poly(ADP-

ribose) polymerase-1 (PARP-1) as determined by Western blot and mitochondrial 

membrane permeability as assessed by JC-1 staining were performed as detailed 

elsewhere [3]. Bcl-2 protein content of cells was determined by Western blot as described 

previously [3]. 

 

Treatment with antioxidants 

Cells were pre-treated with catalase (Sigma Aldrich, Dorset, UK) for 1 h or PEG-catalase 

(Sigma Aldrich, Dorset, UK) for 1.5 h before seeding cells onto 96-well plates containing 

MDMA/MDMA analogue. Cells at final density at 105/ml were incubated with drug for 24 h 

and cell viability was assessed by PI uptake analysed by flow cytometry.  

 

Lipophilicity calculations  

Estimates of lipophilicity were obtained from the “average log P” value output by the applet 

ALOGPs 2.1 available online [12]. A plot of average log P versus pIC50 showing the SEM in 
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each variable was constructed and a curve was fitted by weighted linear regression using 

Grafit 4, where the weighting of each point was inversely proportional to the respective error 

in pIC50. Due to the uniformity in the magnitude of errors of average log P across the dataset, 

these were ignored when the weighted curve was fitted. 

 

Pharmacological interpretation and statistics 

Pharmacological interpretation of cytotoxicty assays to generate the pIC50 and Hill coefficient 

of a compound‟s activity against L3055 cells was performed using a four parameter logistic 

equation with iterative fitting using Kaleida Graph [13]. Regression analysis for cytotoxic 

response vs Bcl-2 expression was calculated as a ratio between remaining cell viability 

(assessed as in 2.3 above) following treatment with MDMA and analogues and the optical 

density (computed using ImageJ for Macintosh) of Bcl-2 vs calnexin protein bands as 

determined by Western blot. Graphs were created in OriginPro 8 (OriginLab, Northampton, 

MA). 

 

Results 

Substitutions at the α-carbon in MDMA can augment cytotoxic performance against 

L3055 Burkitt’s lymphoma cells 

The first generation of α-substituted MDMA analogues (Fig. 1a) synthesized contain either 

novel alkyl/cycloalkyl groups (compounds 1-5) or, in the case of compound 6, a phenyl 

substituent (structures presented in Fig. 1b). When assessed for anti-lymphoma potential 

against L3055, a prototype early-passage BL cell line, compound 6 was the most potent 

(approximately 10-fold>MDMA) both in inhibiting 3H-thymidine incorporation (data not 

shown) and in its cytotoxic efficacy (Fig. 1c): pIC50 = 4.12 ± 0.03 versus pIC50 = 3.39 ± 0.09 
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for MDMA (Fig. 1b-c). Compound 6 therefore formed the template on which to design the 

next generation of compounds in the quest for a lymphoma therapeutic based on MDMA. 

 

Larger aromatic α-substituents enhance cytotoxic potential towards L3055 cells 

The second generation of α-modified MDMA analogues all contain aromatic rings (two in the 

case of compounds 16, 17, 18), apart from compound 7, which possesses a cyclohexyl 

group (Fig. 2a). The substituents in this series of MDMA analogues differ from each other 

with respect to three-dimensional structure, rigidity, and electron density: the benzene ring 

possessing all six carbons within one plane (sp2-hybridized) by contrast to the cyclohexyl 

group, where the carbon atoms are sp3-hybridized and therefore non-planar and 

conformationally flexible. Compound 8 has an α-benzyl group and thus an additional sp3-

hybridized carbon between the main carbon chain and the aromatic α-substituent. This 

provides additional flexibility compared to phenyl substituents, and extends the aromatic ring 

from the main chain, exploring the depth of a putative hydrophobic pocket in the target 

receptor(s). 

 

Compounds 9, 10 and 11 are more polar than their parent (6) due to the addition of a 

methoxy group. The lone pairs of electrons make the methoxy oxygens hydrogen bond 

acceptors, and also increase the electron density in the aromatic ring. Compounds 9-11 

differ only in the position of the methoxy group. Similarly, compounds 13, 14 and 15 possess 

ortho-, meta-, and para-methyl groups, respectively, exploring steric tolerance within the 

binding site(s). The ortho-substituents in 9 and 13 are also likely to reduce the range of low 

energy conformations available to the side chain. 
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Compound 12 contains fluorine in the para-position which reduces electron density in the 

aromatic ring but otherwise is very similar to a hydrogen atom (i.e. an isosteric replacement). 

Although the fluorine atom has three lone pairs of electrons, it is a very poor hydrogen bond 

acceptor and therefore adds to the hydrophobicity of the molecule [14,15]. Metabolic stability 

is also increased by the inclusion of fluorine.  

 

Compounds 16, 17 and 18 have much larger hydrophobic substituents at the α-position of 

MDMA, and therefore increased lipophilicity. The naphthyl group (compounds 16 and 17) is 

highly rigid as all the carbon atoms are positioned in one plane, whereas the biphenyl group 

differs from compound 6 by the addition of a para-phenyl group and therefore both of the 

benzene rings are able to rotate around the axis of the bond between them. 

 

From results presented in Fig. 2a-b it can be noted that from the second generation of 

MDMA analogues modified at the α-carbon, compounds 16-18 were by far the most potent 

regards cytotoxicity towards L3055 cells; compounds 17 and 18 being the most efficacious 

and equipotent with a pIC50 = 5.18±0.03 and 5.22±0.08; representing a ~10-fold and ~100-

fold improvement over compound 6 and MDMA respectively. Similar rank potency of these 

analogues was observed when assessed for their capacity to inhibit 3H-thymidine 

incorporation into L3055 cells (data not shown). It should be noted that all compounds tested 

for concentration-dependent cytotoxicity generated steep response curves yielding relatively 

high Hill coefficients (Fig. 1-2) suggesting deviation from simple mass interaction [16]. 

 

Cytotoxic efficacy of selected α-substituted MDMA analogues towards B-cell lines of 

different malignant derivation 
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The constituent cells of B-cell lines from a diverse range of malignancies were treated with 

MDMA and six of the α-substituted MDMA analogues (selected according to their activity 

versus sensitive L3055 cells and applied at a concentration at or close to their maximal 

cytotoxic performance against this cell line) then analysed for remaining viability (Fig. 3a). 

Given the resistance often afforded to therapeutic regimens by dysregulated/overexpressed 

BCL2 in B-cell lymphoma, cells were simultaneously assessed for Bcl-2 protein content (vs 

calnexin standard) by Western blotting. The origin of cells spanned patients additional to 

those diagnosed with BL (L3055 series; KHM2B): precursor acute lymphoblastic leukemia 

(LILA), pro-lymphocytic leukemia (JVM2), mantle cell lymphoma (Rec-1; NCEB-1), primary 

mediastinal B-cell lymphoma (K1106), diffuse large B-cell lymphoma (K422; DoHH2), 

multiple myeloma (KMS11; H929). Immortalized B-cell lines generated from the peripheral 

blood of three donors by transformation with Epstein-Barr virus (EBV) were also included 

(HCD1; AT-AY; ViWo) – EBV being invariably linked to endemic BL, PTLD (post-transplant 

lymphoproliferative disease) and a high proportion of HIV-associated lymphoma.    

 

MDMA and its analogues were set at concentrations displaying maximal/near-maximal 

impact on L3055 cell viability to serve as a reference. At these concentrations each of the 

analogues tested displayed (albeit a varying degree of) cytotoxicity against the spectrum of 

malignancies included. The best compound (18) showed a consistently substantive impact 

against each of the subtypes. As reported previously [4], Bcl-2 content showed some degree 

of correlation with a cell‟s ability to resist killing from MDMA. With each of the analogues, 

however, there was scant correlation between Bcl-2 protein level and extent of cytotoxicity 

observed (Fig. 3a). To assess the influence of Bcl-2 directly, a detailed concentration-

dependent response was established for the cytotoxic efficacy of the analogues against 

L3055 cells transfected with empty vector versus cells expressing the BCL2 transgene. The 
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latter were only marginally more resistant (approximately a single log2 difference) to each of 

the analogues than cells negative for Bcl-2 expression (Fig. 3b). This was consistent for 

cells plated at relatively low or high starting density. 

 

Mode of cell death induced by selected first and second generation α-substituted 

MDMA analogues 

When assessing cell integrity in response to compound 6 at 500 µM and compound 18 at 

31.25 µM by dual PhiPhiLux (primarily detecting active caspase-3) and propidium iodide 

(plasma membrane permeability) staining, L3055 BL cells transfected with empty vector 

showed classic progression from early to late apoptosis over the course of the 6 hours 

monitored (Fig. 4a). While at the fixed concentration of the analogues used L3055-Bcl-2 

cells again showed a degree of resistance to their cytotoxic actions, nevertheless the death 

that occurred failed to register an „early apoptosis‟ stage at any time point as indicated by 

cells staining as PhiPhiLux+/PI-. While no PhiPhiLux positivity was developed with 

compound 6, compound 18 progressively moved a portion of cells to what is conventionally 

considered a „late apoptotic‟ stage: PhiPhiLux+/PI+. However, assessing engagement of the 

apoptotic machinery by alternative more direct methods gave no evidence for compound 18 

provoking this pathway in L3055-Bcl-2 cells. Thus the specific detection of active caspase-3 

by antibody revealed its appearance in response to compounds 6 and 18 in L3055-VC but 

not in L3055-Bcl-2 cells (Fig. 4b). Likewise, the cleavage of poly (ADP-ribose) polymerase 

(PARP) [17], as shown occurring in L3055-VC cells with the well characterized apoptosis-

inducing agent anti-IgM, was also seen on application of MDMA and here more potently with 

compounds 16, 17, and 18 whereas L3055-Bcl-2 cells revealed little if any PARP cleavage 

in response to any of the agents applied (Fig. 4c). JC-1 staining to indicate collapse of 
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mitochondrial potential [1] similarly supported the different routes to cell death by analogs 

depending on the expression of Bcl-2 in L3055 BL cells (data not shown).  

 

Mechanisms and pathways to lymphoma cell killing by selected α-substituted MDMA 

analogues 

Depending upon cell type and system studied, MDMA has been purported to provoke 

toxicity via a diverse array of not necessarily mutually exclusive pathways as reviewed for 

example in [18]. Here, the possible involvement of monoamine transporters in delivering 

MDMA and its analogues to engage intracellular pathways for lymphoma B-cell killing was 

first investigated. For this, L3055-VC cells were pre-treated with a range of monoamine 

transporter (MAT) inhibitors targeting: SERT (fluoxetine), SERT and NET (clomipramine and 

imipramine) or DAT (GBR12909); and also with cocaine, which blocks all three MATs. From 

results detailed in Fig. 5a it can be seen that none of the MAT inhibitors afforded protection 

against lymphoma cell toxicity induced by MDMA or two of its more potent analogues 

indicating that they are unlikely to be serving as conduits to the compounds‟ actions in this 

regard. 

 

Since MDMA has been widely reported to mediate toxicity via direct or indirect production of 

reactive oxygen species (ROS), L3055-WT and -VC cells were pre-treated with enzymes 

that either degrade superoxide (O2
•–) (superoxide dismutase, SOD) or H2O2 (catalase). 

However, neither SOD (data not detailed) nor catalase were seen to protect tumor B cells 

from the detrimental effect of the MDMA analogues studied, whereas catalase efficiently 

reversed cell killing provoked by H2O2 (Fig. 5b). Cells pre-treated with these enzymes but 

now conjugated to polyethylene glycol (PEG) to facilitate cell uptake [19,20] similarly failed 

to protect (Fig. 5c and data not detailed). 
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Finally, we examined the possibility that increased lipophilicity may be associated with the 

enhanced anti-lymphoma performance of the more potent analogues in this study. To 

explore this, we used the online program, ALOGPs 2.1, which accepts a structural formula to 

generate an estimate of lipophilicity where the output value is known as “average log P” [21]. 

In brief, the average log P value is the simple average of log P estimates determined using 

eight different models. A plot of average log P versus the pIC50 value of cytotoxic 

performance (including SEM values for both variables) was constructed and a curve was 

fitted by weighted linear regression as detailed in Fig. 6. When operating at pH values that 

favour ionisation of the compounds under consideration, as in this case (pH=7.4), log P 

values should be corrected using the pKa to account for the increase in aqueous solubility of 

the ionised form. However, uncorrected log P values were used here as the pKa values 

(dictated by the shared amino group), and therefore the correction factors, were expected to 

be very similar for all compounds, thus, not affecting the rank order obtained. Furthermore, 

the use of uncorrected log P predictions to estimate lipophilicity has been shown to be more 

reliable, as it avoids the introduction of a second source of error associated with the 

calculation of pKa [22]. Bearing these considerations in mind, a persuasive correlation 

emerges with r2 = 0.88 as seen in Fig. 6. 

 

Discussion 

Analogues of MDMA with modified α-substituents were iteratively designed and synthesised, 

and found to be up to 10-fold (first generation) and 100-fold (second generation) more 

potent than the parent amphetamine derivative at promoting lymphoma cell death: the goal 

and driver to this study. Impressively, forced over-expression or high constitutive levels of 

anti-apoptotic Bcl-2 failed to protect, to any significant degree, the anti-lymphoma actions of 
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the analogues; this despite their ability to promote apoptotic cell death in Bcl-2-deplete cells. 

Thus, in the face of high-level Bcl-2, death still occurred but in a caspase-3-, PARP-

independent fashion that was similarly independent from a collapse in mitochondrial 

membrane potential. It should be noted, however, that while analogues of MDMA efficiently 

generated active caspase-3 within 4-6 hours of exposure in the bulk of native L3055 BL 

cells, a majority of their Bcl-2-overexpressing counterparts were still alive at 6 hours. Thus, 

at least for BL, if translated to an in vivo therapeutic, these compounds show potential to 

reduce tumor burden through efficient apoptotic clearance without the attendant 

inflammatory side effects of necrotic death.     

 

Importantly, improved cytotoxic performance against lymphoma cells does not simply reflect 

a generally enhanced, non-specific toxicity profile of the compounds. A companion study 

shows that the most active compound versus lymphoma cells from Series 1 (compound 6) 

and two of the even more active ones from Series 2 (compounds 16 and 17) are in fact less 

toxic than MDMA to SH-SY5Y: a catecholaminergic neuroblastoma cell line that is used to 

model MDMA neurotoxicity. The same study also shows compound 6 having diminished 

psychoactivity when compared with MDMA in the prepulse inhibition of the acoustic startle 

reflex test in Wistar rats [11].  Furthermore, in the present study, while constituent cells of 

derived lines from all B-cell malignancies proved susceptible to one or more of the 

analogues tested, the relative level of sensitivity to a given compound could be quite 

different depending upon the cell line targeted indicating a degree of selectivity in the 

compounds‟ actions against lymphoma cell subtypes.      

 

The literature around MDMA and the mechanisms underlying its toxicity is large, varied and 

occasionally contradictory [23-31]: the cell system, cellular origin, animal species, drug 
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concentration and other elements all contributing confounding factors. Here we scrutinized 

several of the major candidate pathways proposed for MDMA for their potential contribution 

to the toxic action of the analogues versus B-lymphoma cells. The current study was 

predicated on the discovery that B lymphoma cells express both SERT and DAT, the 

transporters for serotonin and dopamine, respectively, and to which MDMA binds in the 

human with high affinity as it also does to NET, the norepinephrine transporter [32,30]. 

Against serotonergic JAR cells for example, MDMA‟s cytotoxicity is delivered via SERT: 

being inhibited by imipramine, a monoamine transporter blocker with highest affinity for 

SERT [33]. The capacity of serotonin to drive apoptosis in BL cells is reversed by SERT 

blockade with e.g. the selective serotonin reuptake inhibitor, fluoxetine [1]. However, 

adopting the approach of pharmacological transporter blockade in this work, neither MDMA 

nor two of its more potent redesigned analogues were seen to be delivering their toxic hit to 

lymphoma cells via any of the three monoamine transporters probed. Moreover, 

Montgomery and colleagues [34] examining the action of MDMA and several MDMA 

analogues on 5-HT and NA uptake in cells transfected with SERT or NET reported a Hill 

coefficient for inhibition by MBDB (our compound 3) of ~1 for both HEK-SERT and PC12-

NET compared to that generated from its anti-lymphoma action in this study of >3. Others 

have shown that MDMA is capable of promoting cell death independently of SERT 

expression or activity [35]. A second major mechanism for MDMA‟s cellular toxicity in other 

systems was similarly ruled out here for both the lead compound and the more (anti-

lymphoma) potent synthesized analogues: namely the, direct or indirect, production of 

reactive oxygen species. Inhibitors of extracellular ROS which have previously been shown 

to reverse the anti-lymphoma actions of dopamine [36] did not protect against MDMA and its 

analogues in this respect.  Similar failure of PEGylated SOD and catalase to inhibit death 
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delivered from the compounds under study equally argued against intracellular ROS 

formation contributing to the lymphoma cell killing observed.  

 

If not through ROS generation or from entering via monoamine transporters, how are MDMA 

and its redesigned analogues attacking the lymphoma cells? Screening against the sensitive 

L3055 cell line revealed no significant difference in the cells‟ response to compounds 

containing α-subsituents with either different steric (13-15, 16-17) or stereoelectronic (9-12) 

properties. Instead, the addition of further aromatic rings, thereby increasing the size of 

substituents at the α-carbon of MDMA, appeared a unifying factor to increasing potency: i.e. 

compound 6 in Series 1 with a single aromatic ring and compounds 18, 17 and 16 in Series 

2 with two aromatic rings being the most potent from each iteration. That said, the non-

aromatic cyclohexyl substituent confers equipotency to phenyl. Size of the α-subsituent and 

overall lipophilicity of the compound may therefore be primary determinants of potency. In 

an earlier study we noted from a seemingly otherwise disparate set of compounds capable 

of killing lymphoma cells the shared feature of being cationic amphiphiles [4]. This class of 

compounds has the capacity to disrupt cellular membranes, as do amphiphilic molecules 

generally. Greater lipophilicity also enhances entry into cells, thereby increasing the effective 

intracellular concentration, and entropically favours complex formation (the hydrophobic 

effect) and thus, potentially, affinity of drug for intracellular receptors/targets. Numerous 

studies indicate a selectivity of lipophilic compounds for impacting rapidly proliferating 

cancer cells over normal cells [37,38] and others show, amongst related series of 

compounds, a clear correlation between anti-proliferative activity/cytotoxicity and degree of 

lipophilicity [39-41]. When this relationship was examined for the newly synthesized 

analogues of MDMA, a strong correlation was indeed observed with anti-lymphoma potency 

closely tracking calculated lipophilicity, at least for those compounds with aromatic α-
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substituents. We are currently exploring precisely how this physiochemical property of the 

compounds translates mechanistically to improved lymphoma killing in order to assist further 

rational design of MDMA analogues as anti-neoplastics. 

 

Irrespective of relative anti-lymphoma potency all compounds including MDMA generated 

steep inhibition curves with Hill coefficients >3 indicating a high degree of cooperativity in 

their action. Similar behaviour has been observed from SSRIs and tricyclic antidepressants 

(Serafeim Blood 2003; Meredith FASEB J 2005) and at least with the former class of 

compound we know that cell death is preceded by the stimulation of Ca2+ entry. Preliminary 

data (unpublished) indicate similarly altered Ca2+ flux in L3055 BL cells on exposure to 

MDMA and analogues studied here. As an alternative to cooperative binding at a defined 

molecular target, a possibility under consideration is that the lipophilic compounds undergo 

aggregate formation dependent upon a critical association concentration – perhaps 

established in situ within the lipid bilayer of the cell membrane [42] – and that it is these 

higher order complexes that cause cell death conceivably analogous to – or directly 

behaving as – ionophores [43]. 

 

In conclusion, a series of iterations positioned on a modified α-substituent of MDMA resulted 

in a number of lead compounds with respect to prospective novel therapeutics for non-

Hodgkin lymphomas. Insight into the mechanism of their actions and the pathways by which 

they promote cell death opens a door to further rational modifications that hold the promise 

of accelerating translation of a redesigned MDMA to the clinic for this important cancer 

indication. 
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Figure captions 

Fig 1 Cytotoxic efficacy of MDMA and Series 1 (first generation) MDMA analogues versus 

L3055 Burkitt’s lymphoma cells. (a) Chemical structure of MDMA with α-carbon (α-C) 

indicated; (b) MDMA analogues with the first iteration of α-C substituents constituting Series 

1 compounds 1-6 as shown, together with calculated pIC50  SEM and Hill coefficients  

SEM from response curves as generated in (c) with number of separate experiments 

performed with each compound given as „n‟; (c) typical concentration-response curves 

showing cytotoxic performance of MDMA and Series 1 analogues against the L3055 BL cell 

line. Cells were cultured at 5x105/ml with MDMA or indicated analogue at concentrations 

shown for 48h prior to measuring cytotoxicity by PI uptake using flow cytometry. Results are 

represented as the mean of three independent experiments  SEM in terms of the 

percentage of cells remaining viable with respect to vehicle (no drug) control 

 

Fig 2 Cytotoxic efficacy of Series 2 (second generation) analogues versus L3055 Burkitt’s 

lymphoma cells. (a) and (b) as for (b) and (c) respectively in Fig.1 but here with Series 2 

compounds 7-18; MDMA again included for comparison 

 

Fig 3 Cytotoxic performance of MDMA and selected analogues against B-cell lines of 

different malignant derivation and relationship to Bcl-2 expression. (a) Cells from lines as 

shown plated at 5x105/ml and cultured for 24h with compounds indicated prior to assessing 

(absolute) % viability of population as in Fig.1c. Concentration of drug applied as follows: 

MDMA, 2000 µM; compound 6, 500 µM; compound 12, 250 µM; compound 15, 125 µM; 

compound 16, 31.25 µM; compound 17, 31.25 µM; compound 18, 31.25 µM. Below is 

shown representative western blot analysis of Bcl-2 protein levels amongst the lines 

together with calnexin blotting control. Next are shown regression plots with R values 



 25 

generated from remaining % viability in response to compound versus relative Bcl-2 content 

amongst the lines tested; (b) concentration response curves to compounds of L3055 cells 

carrying empty vector (L3055-VC) or a Bcl-2 transgene (L3055-Bcl2). Cells were plated at 

two different starting densities, 105 cells/ml and 5x105 cells/ml as indicated, and incubated 

with compound for 24h prior to assessing viability/cytotoxicity as in Fig.1c. Results represent 

the mean of three independent experiments ± SEM given as % viability relative to vehicle 

control 

 

Fig 4 Mode of cell death in L3055-VC and L3055/Bcl2 cells in response to MDMA analogues 

6 and 18. (a) Cells from L3055 variant lines indicated were cultured with compound 6 (500 

μM) or compound 18 (31.25 μM) for 6h before dual staining with PhiPhiLux (PPL) and PI 

(upper graph; dot plots) revealing four subpopulations of cells: PIlo/PPLlo = viable (bottom left 

quadrant), PIlo/PPLhi = early apoptotic (bottom right), PIhi/PPLhi = late apoptotic (top right), 

and PIhi/PPLhi = necrotic (top left). The lower set of graphs illustrate similar analyses arising 

from exposing cells to the compounds over 1-6h with the data represented as the % of cells 

arising in each quadrant at the different times of harvest: viable marked in white, early 

apoptotic marked light grey, late apoptotic marked dark grey, necrotic marked black. Data 

are the mean of three independent experiments (n=3) ± SEM with the values shown obtained 

after subtracting vehicle control; (b) L3055-VC and L3055-Bcl2 cells at 5x105/ml treated for 

2h with compound 6 at 500μM and compound 18 at 31.25 μM (black line) or vehicle control 

(shaded) then stained with antibody to active caspase-3 with intensity of staining analysed by 

FACS. A representative example of two independent experiments is shown. (c) Western blot 

analysis of PARP cleavage in L3055-VC and L3055-Bcl2 cells plated at 106/ml and treated 

for 6h with MDMA at 2000 µM or compounds 16, 17 or 18 at 31.25 µM; upper 117kDa band 

= intact PARP, lower 97kDa band = cleaved PARP; anti-IgM (25 µg/ml) is a positive control 
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treatment known to signal PARP cleavage in L3055-VC cells via cell surface BCR. This 

experiment was performed twice with a representative example shown  

 

Fig 5 Investigation of potential pathways through which MDMA analogues elicit cytotoxicity 

in L3055 cells. (a) Impact of monoamine transporter (MAT) inhibitors. L3055 cells at 105/ml 

were pre-incubated with MAT inhibitors for 1h before adding MDMA or compounds 15 and 

16 at 125 µM and 31.25 µM respectively then culturing for 20h prior to assessing cell 

viability as in Fig.1c; (b) Influence of scavenging extracellular ROS with catalase. L3055 

cells at 105/ml were pre-treated with catalase at concentrations shown for 1h before adding 

H2O2 or compounds indicated (compound 6, 500 µM; compound 12, 250 µM; compound 15, 

125 µM; compounds 16, 17 and 18, 31.25 µM) and then culturing for 20h prior to assessing 

viability as above; (c) Influence of scavenging intracellular ROS with PEG-catalase. L3055-

VC cells at 105/ml were pre-treated with PEG-catalase for 1.5h before adding H2O2, MDMA, 

or compound 6 at concentrations indicated and then culturing for 24h prior to assessing 

viability.  

 

Fig 6 Calculated liphophilicities of MDMA and analogues versus cytotoxic performance. 

Relationship between average log P ± SEM and pIC50 ± SEM for MDMA (), alkyl -

substituted analogues 1-5 (), monocyclic aromatic -substituted analogues 6-15 () and 

polycyclic aromatic -substituted analogues 16-18 (). The curve was fitted to all data 

points shown using weighted linear regression that gave an r2 value of 0.88 
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