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The Evolution of Travelling Waves in a KPP Reaction-Diffusion

Model with cut-off Reaction Rate. II. Evolution of Travelling

Waves.

A. D. O. Tisbury, D. J. Needham and A. Tzella∗

School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.

September 4, 2020

Abstract

In Part II of this series of papers, we consider an initial-boundary value problem for
the Kolmogorov–Petrovskii–Piscounov (KPP) type equation with a discontinuous cut-off
in the reaction function at concentration u = uc. For fixed cut-off value uc ∈ (0, 1), we
apply the method of matched asymptotic coordinate expansions to obtain the complete
large-time asymptotic form of the solution which exhibits the formation of a permanent
form travelling wave structure. In particular, this approach allows the correction to the
wave speed and the rate of convergence of the solution onto the permanent form travelling
wave to be determined via a detailed analysis of the asymptotic structures in small-time
and, subsequently, in large-space. The asymptotic results are confirmed against numerical
results obtained for the particular case of a cut-off Fisher reaction function.

Keywords: reaction-diffusion equations, permanent form travelling waves, asymptotic expan-
sions, singular perturbations

1 Introduction

Travelling waves arise as the long-time solution to many reaction-diffusion models and are rele-
vant to a broad range of applications in chemistry, biology, ecology, epidemiology and genetics
[9, 17]. The most celebrated model where such waves emerge is the KPP or Fisher-KPP model
named after the pioneering work by Fisher [11] and Kolmogorov, Petrovskii, Piscounov [13]. In
one spatial coordinate (x) this model describes the temporal (t) evolution of the concentration
of a chemical or biological substance u(x, t) as

ut = uxx + f(u), (x, t) ∈ R× R+, (1a)

subject to an initial condition

u(x, 0) = u0(x), x ∈ R (1b)

∗Address for correspondence: Prof. D. J. Needham and Dr A. Tzella, School of Mathematics, University of
Birmingham; email: a.tzella@bham.ac.uk
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and boundary conditions

u(x, t)→
{

1, as x→ −∞
0, as x→∞,

(1c)

with the limits being uniform for time t ∈ [0, T ] and any T > 0. Here, u0 : R → R is
taken to be piecewise continuous, non-negative and non-increasing with limx→∞ u0(x) = 0 and
limx→−∞ u0(x) = 1. The function f : R→ R is a normalised KPP-type reaction function which
satisfies f ∈ C1(R) with

f(0) = f(1) = 0, f ′(0) = 1, f ′(1) < 0 (2a)

and
0 < f(u) ≤ u for all u ∈ (0, 1), f(u) < 0 for all u ∈ (1,∞). (2b)

A prototypical example of such a KPP reaction function is the Fisher reaction function [11]
given by

f(u) = u(1− u). (3)

The initial-boundary value problem (1) has a classical and global solution u : R×[0,∞)→ R. In
addition, on using the classical maximum principle and comparison theorem (see, for example,
[1] and [9]), 0 < u(x, t) < 1 and ux(x, t) < 0 for all (x, t) ∈ R×R+. The conditions (2) on f imply
also that the initial-boundary value problem (1) admits a one-parameter family of permanent
form travelling wave (PTW) solutions u(x, t) = Uv(x−vt) that are strictly monotone decreasing,
with Uv ≥ 0, Uv : R : R such that Uv > 0 with limy→−∞ Uv(y) = 1 and limy→∞ Uv(y) = 0. The
parameterisation is through the propagation speed v, with a unique (up to translation) PTW
for each v where v satisfies v ≥ vm = 2.

A central question is whether a PTW evolves in the solution to (1) at large times and if
so what is its speed of propagation. It is well established [2, 10, 13] that for Heaviside initial
conditions:

u0 =

{
1, for x < 0

0, for x ≥ 0,
(4)

the solution to (1) converges onto the PTW solution with minimum propagation speed v =
vm = 2 in the sense that there exists a function sm(t) such that as t→∞, sm(t)/t→ 2 and

u(z + sm(t), t)→ U2(z), (5)

uniformly for z ∈ R. A more detailed asymptotic description was provided by McKean [15, 16]
and Bramson [4, 5] who, using a probabilistic approach, obtained that the rate of convergence
of the solution to the initial-boundary value problem (1) to the PTW is algebraically small in
t as t→∞, specifically O(ṡm(t)− 2), where

ṡm(t) = 2− 3

2
t−1 + o(t−1) as t→∞ (6)

with the dot denoting differentiation with respect to t. More recently, the same result has
been established using a range of alternative approaches, based on a point patching procedure
[6, 8], the theory of matched asymptotic expansions [3, 14] and rigorous bounds [12]. All of
these approaches involve the solution to a linearized version of (1) that describes the behaviour
at the leading edge of the front and is obtained by replacing f(u) with f ′(0)u. The common
observation is that, with the appropriate boundary conditions, the linear version of (1) mainly
determines the large-t structure of the solution to (1).
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A linearized approach is not available to apply in the case of the cut-off KPP model that
Brunet and Derrida [6] proposed and considered and was the focus of a companion paper [18]
(hereafter referred to as Part I). In this model, the cut-off value uc ∈ (0, 1) is introduced by
replacing f(u) in the initial-boundary value problem (1) with fc(u) where

fc(u) =

{
f(u), u ∈ (uc,∞)

0, u ∈ (−∞, uc]
(7)

and f(u) continues to satisfy the KPP conditions (2). The discontinuity in fc(u) at u =
uc suggests that the corresponding initial-boundary value problem is expressed as a moving
boundary problem with the location of the moving boundary given by s(t) where s(t) satisfies
u(s(t), t) = uc for t > 0 (see Part I). For Heaviside initial conditions (4), this boundary separates
the domain DL where u > uc from the domain DR where u < uc. A simple coordinate
transformation (x, t)→ (y, t) with y = x− s(t) fixes the boundary at the origin and transforms
the domains DL and DR into QL = R− × R+ and QR = R+ × R+ and the moving boundary
problem becomes the following equivalent initial-boundary value problem that we refer to as
QIVP (with a detailed derivation given in Part I):

ut − ṡ(t)uy = uyy + fc(u), (y, t) ∈ QL ∪QR, (8a)

u ≥ uc in Q̄L, u ≤ uc in Q̄R, (8b)

u(y, 0) =

{
1, y < 0

0, y ≥ 0
(8c)

u(y, t)→
{

1, as y → −∞
0, as y →∞

(8d)

uniformly for t ∈ [0, T ] for all T > 0. At the boundary,

u(0, t) = uc, t ∈ (0,∞), (8e)

uy(0
+, t) = uy(0

−, t), t ∈ (0,∞). (8f)

s(0+) = 0. (8g)

In Part I we stated regularity conditions (see equation (18)) for the solution u(y, t) and s(t) to
be classical for all t > 0, and on using the classical maximum principle and comparison theorem
(see, for example, [1] and [9]), obtained that 0 < u(y, t) < uc for all (y, t) ∈ QR, uc < u(y, t) < 1

for all (y, t) ∈ QL, and uy(y, t) < 0 for all t > 0 and y ∈ R with [uyy(y, t)]
y=0+

y=0− = f+
c for all t ∈ R+

with f+
c = fc(u

+
c ). We then established that in the presence of a cut-off, the initial-boundary

value problem (8) admits exactly one PTW solution (up to translation) u(y, t) = UT (y) that
is strictly monotone decreasing and positive, with limy→−∞ UT (y) = 1 and limy→∞ UT (y) = 0
where the speed v = v∗(uc) is, for fixed uc ∈ (0, 1), uniquely defined. An explicit expression
of v∗(uc) is in general not known, it is however straightforward to establish that v∗(uc) is a
continuous, monotone decreasing function of uc ∈ (0, 1), with v∗(uc) → 2− as uc → 0+ and
v∗(uc) → 0+ as uc → 1− [18]. Brunet and Derrida [6] predicted that the difference between
v∗(uc) and vm = 2 is strongly influenced at small values of uc, being only logarithmically small
in uc as uc → 0+. This behaviour was rigorously verified by Dumortier, Popovic and Kaper
[7], with higher order corrections obtained in Part I. This behaviour is in contrast with the
behaviour of v∗(uc) obtained as uc → 1− in which case it vanishes algebraically in (1− uc) (see
Part I).

We may now once again enquire as to whether or not a PTW solution evolves in the solu-
tion to (8) for arbitrary cut-off uc ∈ (0, 1) at large time, and, if this is the case, what is the

3



y
-20 -15 -10 -5 0 5 10 15 20

u
(y
,t
)

0

0.5

1

(a) uc = 0.1

y
-20 -15 -10 -5 0 5 10 15 20

u
(y
,t
)

0

0.5

1

(b) uc = 0.5

y
-20 -15 -10 -5 0 5 10 15 20

u
(y
,t
)

0

0.5

1

(c) uc = 0.9

Figure 1: A graph of the solution u(y, t) to QIVP as it evolves over time. Results are obtained
numerically for (a) uc = 0.1, (b) uc = 0.5 and (c) uc = 0.9 for t = 0, 0.1, 1, 10 and t = 30
with the arrow pointing in the direction of increasing t. Panel (c) includes additional graphs of
solutions obtained at t = 100, 200, 300, 350 and t = 400.
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Figure 2: A graph of the solution s(t) to QIVP obtained numerically for uc = 0.1 (top), uc = 0.5
(middle) and uc = 0.9 (bottom).

rate of convergence onto the PTW solution. In this paper we observe that a PTW of speed
limt→∞ ṡ(t) = v∗(uc) emerges in the solution of (8) for t → ∞ via numerical simulations ob-
tained for the specific case of fc with f given by (3). We then adapt the approach introduced in
[14], where uc = 0, to obtain the detailed description of the large-t structure of the solution to
(8). In particular, we use the theory of matched asymptotic coordinate expansions to establish
that for each value of uc ∈ (0, 1), the solution to (8) converges to the PTW solution with propa-
gation speed v = v∗(uc) at a rate that is linearly exponentially small in t as t→∞, specifically
O(ṡ(t)− v∗(uc)), where

ṡ(t) = v∗(uc) +O

(
tγ exp

(
−1

4
v∗(uc)2t

))
, as t→∞, (9)

(with γ = −1/2 or −3/2 depending on the structure of f(u), specifically f ′(UT ), which deter-
mines the solution to (172) on which the choice in the value of γ depends) so that convergence
slows down as uc increases. Thus, introducing an arbitrary cut-off into the reaction function
changes the rate of convergence of the large-time solution onto the PTW from algebraic to
exponential. The paper is organised as follows: in section 2, we present numerical results for
the specific case of the cut-off Fisher reaction function with f given by (3). Sections 3 and 4
are respectively devoted to the small-t (y ∈ R) and large-|y| (t ≥ O(1)) structure of the solution
to QIVP. These are used in section 5 to develop the complete asymptotic structure to QIVP
as t → ∞, uniformly in y ∈ R. At the end of sections 3 and 5, we illustrate the theory for the
specific case of the cut-off Fisher reaction function (for which γ = −3/2). The paper ends with
the concluding section 6.

2 Numerical solution to QIVP

In this section we consider a numerical solution to QIVP to indicate whether the solution
converges onto a PTW solution at large times. We present results for the particular case of the
cut-off Fisher reaction function, namely,

fc(u) =

{
u(1− u), u ∈ (uc,∞),

0, u ∈ (−∞, uc],
(10)
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Figure 3: A graph of ṡ(t) to QIVP (solid lines) obtained numerically for cut-off value uc = 0.1
(top), 0.5 (middle) and 0.9 (bottom) plotted for a (a) small and (b) large range of values of t.

for fixed cut-off value uc ∈ (0, 1). We adopt an explicit finite difference scheme, detailed
in Appendix A. We choose this scheme over an implicit scheme despite the severe numerical
stability restrictions on the time step. This is because an explicit scheme is very straightforward
to use: at each time step, the associated numerical calculation requires the solution of a linear
algebraic system (rather than a nonlinear algebraic system that would be required for an implicit
scheme).

We examine the behaviour of u(y, t), s(t) and ṡ(t), obtained numerically for illustrative
values of uc ∈ (0, 1). Figures 1–3 respectively focus on the structure of u(y, t), s(t) and ṡ(t)
obtained for uc = 0.1, 0.5 and 0.9. These confirm all of the qualitative properties obtained
in Part I (see equation (20)) and described in section 1. Figure 1 indicates that a PTW
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Figure 4: Same as Figure 3 but this time uc = 0.45 (top) and uc = 0.55 (bottom).

develops in the large-time structure of the solution to QIVP, that is, as t→∞. Moreover, the
rate of convergence of the solution to the PTW depends on the value of uc (compare panel (a)
with panel (c)). Figures 2 and 3 show that this PTW will have propagation speed given by
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Figure 5: A graph of limt→∞ ṡ(t) = v∞(uc) obtained from the numerical solution to QIVP for
selected values of uc ∈ (0, 1).

limt→∞ ṡ(t) = v∞(uc) and in this case, this limit has

v∞(uc) '





1.248, for uc = 0.1,

0.558, for uc = 0.5,

0.100, for uc = 0.9.

(11)

Figure 3 also illustrates that ṡ(t) appears to have a (integrable) singularity at t = 0+ when
uc 6= 0.5. This is further supported in Figure 4 which shows the behaviour of ṡ(t) when uc = 0.45
and uc = 0.55. For uc = 0.5, Figure 3 suggests that ṡ(t) is regular in this limit, tending to 0
from above. Figures 3 and 4 show that the sign of ṡ(t) as t → 0+ depends upon uc, with ṡ(t)
initially positive when 0 < uc < 0.5 and initially negative when 0.5 < uc < 1. Moreover, when
0 < uc . 0.2, then ṡ(t) is monotonic decreasing for all t > 0; when 0.2 . uc < 0.5, then ṡ(t)
decreases to a minimum value, before increasing to v∞(uc); and when 0.5 < uc < 1, then ṡ(t)
is monotonic increasing for all t > 0. Finally, the correction to ṡ(t) as t → ∞ appears to be
exponentially small in t. These features are persistent for all considered values of uc ∈ (0, 1).

We conclude that the numerical solution of QIVP involves the formation of a PTW as t→∞,
which has propagation speed v∞(uc) for all values of uc ∈ (0, 1). A graph of numerically
calculated values v∞(uc) for uc ∈ (0, 1) is given in Figure 5, which indicates that v∞(uc) is
monotone decreasing with uc ∈ (0, 1). The numerical cost increases drastically as uc → 0+ and
uc → 1−. Nevertheless, we expect that v∞(uc) → 2− as uc → 0+, whilst, v∞(uc) → 0+ as
uc → 1−. Finally, it is instructive to compare the travelling wave speed obtained in the large-
time limit of the numerical solution to QIVP, namely v∞(uc), with a permanent form travelling
wave propagation speed, v∗(uc), obtained numerically in Part I. As anticipated, we find that,
with a significant degree of accuracy (at least up to two decimal places), v∞(uc) ≈ v∗(uc).

3 Asymptotic solution to QIVP as t→ 0+

We now develop the asymptotic structure to QIVP as t → 0+ via the method of matched
asymptotic coordinate expansions. We anticipate that the structure of the solution to QIVP as
t → 0+ will have two asymptotic regions in y < 0, and two asymptotic regions in y > 0. An
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examination of the leading order balances in equation (8a), together with the initial condition
(8c) and the connection conditions (8e), (8f) determine the asymptotic structure as:

region IL : y = O(t
1
2 ) < 0 with u = O(1) as t→ 0+, (12a)

region IR : y = O(t
1
2 ) > 0 with u = O(1) as t→ 0+, (12b)

region IIL : y = O(1) < 0 with u = 1 + o(1) as t→ 0+, (12c)

region IIR : y = O(1) > 0 with u = o(1) as t→ 0+. (12d)

The situation is illustrated in Figure 6 (for any variable λ, we will henceforth write λ = O(1) > 0
as λ = O(1)+, and correspondingly, λ = O(1) < 0 as λ = O(1)−). It follows from the small-time
asymptotic structure (12) of QIVP that we anticipate an asymptotic expansion for s(t) of the
form

s(t) = s0t
α + s1t

β + o(tβ) as t→ 0+, (13)

where the constants s0, s1, α and β(> α) are to be found. The initial condition (8g), together
with a leading order balance in equation (8a) determines

α =
1

2
. (14)

3.1 Regions IL and IR

We begin in region IL, following (12a), where we introduce the coordinate η = yt−
1
2 = O(1)−

as t→ 0+ and where u = u(η, t) satisfies, from (8a),

ut −
1

t

η

2
uη −

ṡ(t)

t
1
2

uη =
1

t
uηη + f(u), η < 0. (15)

We expand u(η, t) in the form,

u(η, t) = uL0(η) + φL(t)uL1(η) + o(φL(t)) as t→ 0+, (16)

with η = O(1)− and φL(t) = o(1) as t→ 0+ to be determined. On substituting expansions (13)
and (16) into equation (15), we obtain at leading order as t→ 0+,

u′′L0 +
1

2
(η + s0)u′L0 = 0, η < 0, (17a)

which must be solved subject to the boundary condition (8e) at η = 0, together with the
matching condition with region IIL as η → −∞. Using (12c) and (16), these conditions require,

uL0(0) = uc, (17b)

uL0(η)→ 1 as η → −∞. (17c)

Due to the coupling condition (8f) across y = 0, it is necessary now to consider region IR, in
which, via (12b), η = O(1)+ and u = O(1) as t→ 0+ and where u = u(η, t) satisfies, from (8a),

ut −
1

t

η

2
uη −

ṡ(t)

t
1
2

uη =
1

t
uηη, η > 0. (18)

We expand u(η, t) in the form,

u(η, t) = uR0(η) + φR(t)uR1(η) + o(φR(t)) as t→ 0+, (19)

8
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Figure 6: A sketch of the structure of the solution to QIVP as t→ 0+.

with η = O(1)+ as t → 0+. Here φR = o(1) as t → 0+, and is to be determined. Now,
substituting expansions (13) and (19) into equation (18), we obtain at leading order as t→ 0+,

u′′R0 +
1

2
(η + s0)u′R0 = 0, η > 0, (20a)

which must be solved subject to the boundary condition (8e) at η = 0, together with the
matching condition with region IIR as η →∞, which requires,

uR0(0) = uc, (20b)

uR0(η)→ 0 as η →∞. (20c)

Finally, the boundary value problems (17) and (20) must be solved subject to the coupling
condition (8f) across η = 0, which requires

u′L0(0) = u′R0(0). (21)

The solutions to (17) and (20) respectively, are readily obtained as

uL0(η) =
uc
(
1 + erf(η+s0

2 )
)
− erf(η+s0

2 ) + erf( s02 )(
1 + erf( s02 )

) , η ≤ 0, (22a)

uR0(η) = uc

(
1− erf(η+s0

2 )
)

(
1− erf( s02 )

) , η ≥ 0. (22b)

Finally, an application of condition (21) to (22) determines

s0 = 2 erf−1(1− 2uc), (23)

and thus, the leading order terms in region IL and region IR, respectively, are given by

uL0(η) =
1

2

[
1− erf

(η
2

+ erf−1(1− 2uc)
)]
, η ≤ 0, (24a)

uR0(η) =
1

2

[
1− erf

(η
2

+ erf−1(1− 2uc)
)]
, η ≥ 0. (24b)

We now proceed to the correction terms in expansions (13), (16) and (19). A balancing of
terms requires φL(t) = φR(t) = O(t) as t → 0+ and β = 3

2 . Thus, we set φL(t) = φR(t) = t,
without loss of generality. On substitution from expansions (13), (16) and (19) into equations

9



(15) and (18), we obtain the coupled problem for uL1(η)(η < 0), uR1(η)(η > 0) and s1, namely,

u′′L1 +
1

2
(η + s0)u′L1 − uL1 = −3

2
s1u
′
L0 − f(uL0(η)), η < 0, (25a)

u′′R1 +
1

2
(η + s0)u′R1 − uR1 = −3

2
s1u
′
R0, η > 0, (25b)

subject to the coupling conditions

uL1(0) = uR1(0) = 0, (25c)

u′L1(0) = u′R1(0), (25d)

and the matching conditions to region IIL and to region IIR, respectively, which are readily
obtained as,

uL1(η)→ 0 as η → −∞, (25e)

uR1(η)→ 0 as η →∞. (25f)

In considering the coupled problem (25), we first observe that 1 + 1
2(η+ s0)2 is a solution to the

homogeneous Part of both (25a) and (25b). With this observation, together with the method
of variation of parameters, we can write the general solutions to (25a) and (25b) as,

uL1(η) = d1û(η) + d2ū(η)− s1

2
√
π

exp

(
−
(
η + s0

2

)2
)

+ up2(η), η ≤ 0, (26a)

uR1(η) = d̄1û(η) + d̄2ū(η)− s1

2
√
π

exp

(
−
(
η + s0

2

)2
)
, η ≥ 0, (26b)

where d1, d2, d̄1 and d̄2 are arbitrary constants to be determined and the function up2(η) is given
by

up2(η) =
û(η)

2

∫ 0

η
I1(λ)dλ− ū(η)

2

∫ 0

η
I2(λ)dλ, η ≤ 0, (27)

with functions

û(η) =
√
π

(
1 +

(η + s0)2

2

)
erf

(
η + s0

2

)
+ (η + s0) exp

(
−
(
η + s0

2

)2
)
, (28a)

ū(η) = 1 +
(η + s0)2

2
, (28b)

I1(η) = exp

((
η + s0

2

)2)
ū(η)f(uL0(η)), (28c)

I2(η) = exp

((
η + s0

2

)2)
û(η)f(uL0(η)). (28d)

Next, an application of condition (25c) requires

d2 =

(
s1√
π
− 2d1s0

)
e−

s0
2

4

(s0
2 + 2)

− d1

√
π erf

(s0

2

)
, (29)

d̄2 =

(
s1√
π
− 2d̄1s0

)
e−

s0
2

4

(s0
2 + 2)

− d̄1

√
π erf

(s0

2

)
, (30)
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whilst, applying the matching conditions (25e) and (25f) requires

d2 =
√
π

(
d1 +

1

2
d̂1

)
, (31)

d̄2 = −√πd̄1, (32)

with the constant d̂1 given by

d̂1 =

∫ 0

−∞

(√
πI1(λ) + I2(λ)

)
dλ. (33)

As u′p2(0) = 0, an application of the coupling condition (25d) determines d1 = d̄1 (and thus
d2 = d̄2) which finally requires that

s1 =
1

4

(√
π(s0

2 + 2)
(

1− erf
(s0

2

))
e
s0

2

4 − 2s0

)
d̂1, (34)

after which (using(23)), d1, d̄1, d2, d̄2 follow from (29), (30), (31) and (32).
Thus, we have determined that the two-term expansions for u(η, t) in region IL and region

IR are given by

u(η, t) =
1

2

[
1− erf

(
η + s0

2

)]

+ t

(
d1û(η) + d2ū(η)− s1

2
√
π

exp

[
−
(
η + s0

2

)2 ]
+ up2(η)

)
+ o(t), (35)

as t→ 0+ with η = O(1)−, and

u(η, t) =
1

2

[
1− erf

(
η + s0

2

)]
+ t

(
d1û(η) + d2ū(η)− s1

2
√
π

exp

[
−
(
η + s0

2

)2 ])
+ o(t),

(36)

as t→ 0+, with η = O(1)+, whilst the two-term expansion for s(t) is given by

s(t) = s0t
1
2 + s1t

3
2 + o(t

3
2 ), (37)

as t → 0+. Here the constants d1, d2, s0 and s1 are given by (31), (29), (23) and (34),
respectively, and the functions û(η), ū(η), I1(λ), I2(λ) and up2(η) are given by (28) and (27),
respectively. It is worth noting that we have obtained the two term small-time expansions for
s(t) without needing to know the precise asymptotic structure of the solution in regions IIL
and IIR. The matching conditions with regions IL and IR, respectively, were sufficient. The
asymptotic expansion in regions IIL and IIR are now obtained to complete the small-time
asymptotic structure.

3.2 Region IIL

First, from (35) and (36), we observe that for (−η)� 1,

u(η, t) ∼ 1− 1√
π

1

|η + s0|
exp

(
−
(
η + s0

2

)2)
(1−O((η + s0)−2)), (38)
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as t→ 0+, and for η � 1,

u(η, t) ∼ 1√
π

1

(η + s0)
exp

(
−
(
η + s0

2

)2)
(1−O((η + s0)−2)), (39)

as t→ 0+. Now, as η → −∞ we move out of region IL and into region IIL, in which, via (12c),
y = O(1)− and u(y, t) = 1 + o(1) as t → 0+. The structure of the expansion in region IL, for
(−η)� 1, (given by (38)) suggests that in region IIL we write

u(y, t) = 1− e−
H(y,t)
t , (40)

and expand in the form,

H(y, t) = H0(y) + t
1
2H1(y) + t ln tH2(y) + tH3(y) + o(t), (41)

as t → 0+ with y = O(1)− and H0(y) > 0 (the t ln t term arises from the algebraic prefactor
of the exponential term in (38)). We substitute expansions (40) and (41) into equation (8a) to
obtain (on solving at each order of t in turn)

u(y, t) = 1− exp

(
− y2

4t
− 1

t
1
2

(
s0

2
y +D1(−y)

1
2

)
−D2 ln t

−
(

(1− 2D2)

2
ln(−y) +

s0D1

2

1

(−y)
1
2

+
D1

2

4

1

y
+D3

)
+ o(1)

)
,

(42)

as t→ 0+, with y = O(1)−, and where D1, D2 and D3 are arbitrary constants to be determined.
It remains to match expansion (42) in region IIL (as y → 0−) with expansion (38) in region IL
(as η → −∞). On applying Van Dyke’s matching principle [19], we readily obtain that

D1 = 0, D2 = −1

2
, D3 =

1

2
lnπ +

s0
2

4
. (43)

Thus, the expansion in region IIL is given by

u(y, t) = 1− exp

(
− y2

4t
− ys0

2t
1
2

+
1

2
ln t−

(
ln(−y) +

1

2
lnπ +

s0
2

4

)
+ o(1)

)
, (44)

as t → 0+, with y = O(1)−. Furthermore, we conclude from (44) that this expansion remains
uniform for (−y)� 1 as t→ 0+.

3.3 Region IIR

Next, as η →∞, we move out of region IR and into region IIR, in which, via (12d), y = O(1)+

and u(y, t) = o(1) as t→ 0+. The structure of the expansion in region IR, for η � 1, (given by
(39)) suggests that in region IIR we write

u(y, t) = e−
H̄(y,t)
t , (45)

and expand in the form,

H̄(y, t) = H̄0(y) + t
1
2 H̄1(y) + t ln tH̄2(y) + tH̄3(y) + o(t), (46)
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as t→ 0+ with y = O(1)+ and H̄0(y) > 0 (the t ln t term arises from the algebraic prefactor of
the exponential term in (39)). Substitution of (45) and (46) into equation (8a) gives (on solving
at each order of t in turn)

u(y, t) = exp

(
−
(
y2

4t

)
− 1

t
1
2

(
s0

2
y + D̄1y

1
2

)
− D̄2 ln t

−
((

1− 2D̄2

)

2
ln y +

s0D̄1

2

1

y
1
2

+
D̄2

1

4

1

y
+ D̄3

)
+ o(1)

)
,

(47)

as t→ 0+, with y = O(1)+, and where D̄1, D̄2 and D̄3 are arbitrary constants to be determined.
It remains to match expansion (47) in region IIR (as y → 0+) with expansion (39) in region IR
(as η →∞). On applying Van Dyke’s matching principle [19], we readily obtain that

D̄1 = 0, D̄2 = −1

2
, D̄3 =

1

2
lnπ +

s0
2

4
. (48)

Thus, the expansion in region IIR is given by

u(y, t) = exp

(
− y2

4t
− ys0

2t
1
2

+
1

2
ln t−

(
ln y +

1

2
lnπ +

s0
2

4

)
+ o(1)

)
, (49)

as t → 0+ and y = O(1)+. Furthermore, we conclude from (44) that this expansion remains
uniform for y � 1 as t→ 0+.

The asymptotic structure of the solution to QIVP as t → 0+ is now complete with the
expansions (44), (35), (36) and (49) in regions IIL, IL, IR and IIR. We next use this information
to enable us to develop the asymptotic structure of the solution to QIVP as |y| → ∞ with
t = O(1). However, before proceeding to this, it is of interest to examine the form of ṡ(t) in the
small-time limit for all uc ∈ (0, 1). It follows from expression (37) that

ṡ(t) ∼ 1

2
s0t
− 1

2 +
3

2
s1t

1
2 as t→ 0+, (50)

with s0 and s1 given by equations (23) and (34) respectively. In particular, we observe from
(23) that s0 is monotonic decreasing in uc with

s0 →∞ as uc → 0+, s0 = 0 when uc =
1

2
and s0 → −∞ as uc → 1−. (51)

Thus, the leading term in (50) reveals that ṡ(t) has an integrable singularity as t→ 0+, with

ṡ(t)→ +∞ as t→ 0+, (52)

when 0 < uc < 1/2, whilst,
ṡ(t)→ −∞ as t→ 0+, (53)

when 1/2 < uc < 1. When uc = 1/2, a transition occurs with ṡ(t) not singular and

ṡ(t)→ 0 as t→ 0+. (54)
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3.4 The case of a cut-off Fisher reaction

We observe that (52), (53) and (54) agree with the numerical solutions for QIVP obtained for
the cut-off Fisher reaction function in section 2, as illustrated in Figures 3 and 4. Moreover, it
is straightforward to establish (via (33) and (34)) that for uc = 1/2, s1 = s∗1 > 0. Therefore
ṡ(t) → 0+ as t → 0+. In addition, it is interesting to note from expression (50) that when uc
is close to 1/2 a local minimum point in the graph of ṡ(t) against t bifurcates singularly from
t = 0 as uc decreases through uc = 1/2. In particular, the local minimum point when uc < 1/2

is located when t = tm ∼ 1
3s0/s1 > 0. As uc → 1

2

−
, 1

3s0/s1 ∼ 2
3

√
π(1− 2uc)/s

∗
1 +O((1− 2uc)

2)
where s∗1 ' 0.28 is approximated numerically using (33) and (34). The location of the minimum
point increases as uc decreases, until uc ≈ 0.2 when tm is no longer small and in fact the local
minimum point ceases to exist at this sufficiently low value of uc. This is also in agreement
with the numerical solution of section 2 and in particular Figures 3 and 4. A comparison of ṡ(t)
and u(y, t) as computed from (35), (36), (44) and (49) with the full numerical solution to QIVP
obtained for the cut-off Fisher reaction function is readily made (but for brevity is not presented
here). This demonstrates the full agreement with the small-time asymptotic structure of the
solution obtained in this section and the numerical solution obtained in section 2 for t small.

4 Asymptotic solution to QIVP as |y| → ∞ with t = O(1)

We now develop the structure of the solution to QIVP as |y| → ∞ with t = O(1).

4.1 Region IIIL

We begin in region IIIL, where y → −∞ with t = O(1). The structure of the expansion in
region IIL, for (−y)� 1, (given by (44)) suggests that in region IIIL we write

u(y, t) = 1− e−y2Φ(y,t), (55)

and expand in the form,

Φ(y, t) = Φ0(t) +
1

y
Φ1(t) +

ln(−y)

y2
Φ2(t) +

1

y2
Φ3(t) + o

(
y−2
)
, (56)

as y → −∞ with t = O(1) and Φ0(t) > 0. On substitution from expansions (55) and (56) into
equation (8a) we obtain a system of equations at successive orders which we solve in turn to
give

Φ0(t) =
1

(4t+ C0)
, Φ1(t) =

(2s(t) + C1)

(4t+ C0)
, Φ2(t) = C2, (57a)

Φ̇3(t) = ṡ(t)

(
2s(t) + C1

4t+ C0

)
+

(2 + 4C2)

(4t+ C0)
−
(

2s(t) + C1

4t+ C0

)2

− f ′(1), (57b)

where C0, C1, C2 and the constant associated with integrating equation (57b), C3, are constants
to be determined. Note that Φ1(t) and Φ3(t) both depend on the function s(t) which remains
undetermined when t = O(1). We now match the expansion in region IIIL, given by substituting
expressions (56) and (57) into (55) (as t→ 0+), with expansion (44) in region IIL (as y → −∞).
On applying Van Dyke’s matching principle [19] we find

C0 = 0, C1 = 0, C2 = −1, C3 =
1

2
lnπ. (58)
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Thus, the expansion in region IIIL is given by

u(y, t) = 1− exp

(
− y2

4t
− y s(t)

2t
− ln(−y)−

(
s(t)2

4t
− 1

2
ln t− f ′(1)t+

1

2
lnπ

)
+ o(1)

)
, (59)

as y → −∞ with t = O(1). Furthermore, we note that the uniformity of expansion (59) as
y → −∞ when t� 1 is dependent on the order of s(t) as t� 1. This will be discussed further
in section 5 when we investigate the asymptotic solution to QIVP as t→∞.

4.2 Region IIIR

We next consider the corresponding region IIIR where we determine the structure of the solution
to QIVP as y → ∞ with t = O(1). The structure of the expansion in region IIR, for y � 1,
(given by (44)) suggests that in region IIIR we write

u(y, t) = e−y
2Φ̄(y,t), (60)

and expand in the form,

Φ̄(y, t) = Φ̄0(t) +
1

y
Φ̄1(t) +

ln y

y2
Φ̄2(t) +

1

y2
Φ̄3(t) + o

(
y−2
)
, (61)

as y → ∞ with t = O(1) and Φ̄0(t) > 0. On substitution from expansions (60) and (61) into
equation (8a) we obtain a system of equations at successive orders of y which we solve in turn
to give

Φ̄0(t) =
1

(4t+ C̄0)
, Φ̄1(t) =

(2s(t) + C̄1)

(4t+ C̄0)
, Φ̄2(t) = C̄2, (62a)

˙̄Φ3(t) = ṡ(t)

(
2s(t) + C̄1

4t+ C̄0

)
+

(2 + 4C̄2)

(4t+ C̄0)
−
(

2s(t) + C̄1

4t+ C̄0

)2

, (62b)

where C̄0, C̄1, C̄2 and the constant associated with integrating equation (62b), C̄3, are constants
to be determined. We now match the expansion in region IIIR, given by substituting expressions
(62) and (61) into (60) (as t→ 0+), with expansion (49) in region IIR (as y →∞). On applying
Van Dyke’s matching principle [19] we find

C̄0 = 0, C̄1 = 0, C̄2 = −1, C̄3 =
1

2
lnπ. (63)

Thus, the expansion in region IIIR is given by

u(y, t) = exp

(
− y2

4t
− y s(t)

2t
− ln y −

(
s(t)2

4t
− 1

2
ln t+

1

2
lnπ

)
+ o(1)

)
, (64)

as y → ∞ with t = O(1). As before, the uniformity of expansion (64) as y → ∞ when t � 1
is dependent on the order of s(t) as t � 1. Finally, we are now in a position to consider the
structure of the solution to QIVP as t→∞.
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5 Asymptotic solution to QIVP as t→∞
We now develop the structure of the solution to QIVP as t → ∞. Guided by the numerical
results in section 2, we anticipate that

s(t) =
3∑

i=0

ciφi(t) + o(φ3(t)) as t→∞, (65)

where φ0(t) = t, φ1(t), φ2(t) = 1 and φ3(t) are a gauge sequence as t → ∞, and the constants
c0, c1, c2, c3 are to be determined, with c0 > 0. We begin by developing the structure of
the solution to QIVP as t → ∞ at leading order, uniform for y ∈ R. We anticipate that the
structure of the solution to QIVP as t→∞ will have two principal asymptotic regions in y < 0,
and two principal asymptotic regions in y > 0. An examination of the leading order balances in
the exponent of expansions (59) and (64) when t� 1 (using (65)), together with the connection
conditions (8e) and (8f) determine the principal asymptotic structure as:

region IVL : y = O(t)− with u = 1 + o(1) as t→∞, (66a)

region IVR : y = O(t)+ with u = o(1) as t→∞, (66b)

region VL : y = O(1)− with u = O(1) as t→∞, (66c)

region VR : y = O(1)+ with u = O(1) as t→∞. (66d)

5.1 Regions IVL, VL, IVR and VR

The expansion (59) in region IIIL will remain uniform for t � 1 provided that (−y) � t,
but fails when y = O(t)− as t → ∞. Hence, we begin in region IVL, in which, via (66a), we
introduce the scaled coordinate w = y

t = O(1)− as t → ∞. The structure of the expansion in
region IIIL, for t� 1, (given by (59)) suggests that in region IVL, we write

u(w, t) = 1− exp
(
− t (G0(w) + o(1))

)
, (67)

as t → ∞ with w = O(1)− and G0(w) > 0. On substitution of expansions (65) and (67) into
equation (8a) we obtain the following boundary value problem, namely,

(
G′0
)2 − (w + c0)G′0 +G0 = −f ′(1), w < 0, (68a)

G0(w) > 0, w < 0, (68b)

G0(w) ∼
(
w + c0

2

)2

− f ′(1) as w → −∞, (68c)

G0(w) = O(w) as w → 0−. (68d)

Here condition (68c) represents the matching condition between expansion (67) in region IVL

when (−w) � 1, and expansion (59) in region IIIL as t → ∞ with (−y) � t whilst condition
(68d) represents the matching condition between expansion (67) in region IVL when w =
O(t−1)−, and region VL when y = O(t)− via (66c). Equation (68a) has a family of linear
solutions

G0(w) = a1(w + c0 − a1)− f ′(1) ∀w < 0, (69)

for any a1 ∈ R, and an envelope solution

G0(w) =

(
w + c0

2

)2

− f ′(1) ∀w < 0. (70)
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Figure 7: (a) A sketch of the leading order term G0(w) in the exponential expansion of the
large-time solution to QIVP when y = O(t)−. (b) A sketch of the leading order term Ḡ0(w) in
the exponential expansion of the large-time solution to QIVP when y = O(t)+.

It is also possible for a combination of (69) and (70) to represent ‘envelope-linear’ solutions
to equation (68a), which also remain continuous and differentiable. Applying the matching
conditions (68c) and (68d) determines that for each c0 > 0, the solution to the boundary value
problem (68) is given by the ‘envelope-linear’ solution

G0(w) =





(
w+c0

2

)2 − f ′(1), w < −
√
c2

0 − 4f ′(1),(
c0−
√
c20−4f ′(1)

2

)
w, −

√
c2

0 − 4f ′(1) ≤ w < 0.
(71)

A sketch of G0(w), for a fixed c0 > 0, is given in Figure 7(a). For completeness we note
that although G0(w) and G′0(w) are continuous, G′′0(w) is discontinuous at the point w =
−
√
c2

0 − 4f ′(1). Therefore, a thin transition region must exist about the point w = −
√
c2

0 − 4f ′(1)
where the second derivative in equation (8a) is retained at leading order to smooth out this
discontinuity. Moreover, region IVL will then be replaced by three regions, namely, region IVa

L,

with −∞ < w < −
√
c2

0 − 4f ′(1) − o(1)+, region TL, a thin transition region about the point
w = −

√
c2

0 − 4f ′(1) and region IVb
L, with −

√
c2

0 − 4f ′(1) + o(1)+ < w < 0. As we are only
interested in the leading order structure in each expansion for now, we will return to consider
these regions in more detail in §5.3.

Now, as w → 0− we move out of region IVL and into region VL, in which, via (66c),
u = O(1) with y = O(1)− as t→∞. In this region we therefore expand as

u(y, t) = ûL0(y) +O(ψL(t)) as t→∞, (72)

with y = O(1)−, ûL0(y) > 0 ([18], equation (22b)) and where ψL(t) = o(1) as t → ∞. On
substitution from expansions (65) and (72) into equation (8a), we obtain at leading order as
t→∞,

û′′L0 + c0û
′
L0 + f(ûL0) = 0, (73a)

which must be solved subject to the boundary condition (8e) at y = 0, together with the
matching condition with region IVL as y → −∞. Using (72) and (71), these conditions require,

ûL0(0−) = uc, (73b)

ûL0(y)→ 1 as y → −∞. (73c)
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Due to the coupling condition (8f) across y = 0, it is necessary now to formulate the leading
order problem in the corresponding regions when y > 0 as t→∞.

The expansion (64) in region IIIR will remain uniform for t � 1 provided that y � t, but
fails when y = O(t)+ as t → ∞. Hence, we now consider region IVR, in which, via (66b), we
introduce the scaled coordinate w = y

t = O(1)+ as t → ∞. The structure of the expansion in
region IIIR, for t� 1, (given by (64)) suggests that in region IVR, we write

u(w, t) = exp
(
− t
(
Ḡ0(w) + o(1)

) )
, (74)

as t → ∞ with w = O(1)+ and Ḡ0(w) > 0. On substitution of expansion (74) into equation
(8a) we obtain the following boundary value problem, namely,

(
Ḡ′0
)2 − (w + c0)Ḡ′0 + Ḡ0 = 0, w > 0, (75a)

Ḡ0(w) > 0, w > 0, (75b)

Ḡ0(w) ∼
(
w + c0

2

)2

as w →∞, (75c)

Ḡ0(w) = O(w) as w → 0+. (75d)

Here condition (75c) represents the matching condition between expansion (74) in region IVR

when w � 1, and expansion (64) in region IIIR as t → ∞ when y � t whilst condition (75d)
represents the matching condition between expansion (74) in region IVR when w = O(t−1)+,
and region VR when y = O(t)+ via (66d). For each c0 > 0, the boundary value problem (75)
has the unique solution

Ḡ0(w) =

{(
w+c0

2

)2
, w > c0,

c0w, 0 < w ≤ c0.
(76)

A sketch of Ḡ0(w) for a fixed c0 > 0 is given in Figure 7(b). For completeness we note that
although Ḡ0(w) and Ḡ′0(w) are continuous, Ḡ′′0(w) is discontinuous at the point w = c0. Hence,
a thin transition region about the point w = c0 is required in which the second derivative in
equation (8a) is retained at leading order to smooth out the discontinuity. This requires that
region IVR is replaced by three regions, namely, region IVa

R, with c0 + o(1) < w < ∞, region
TR, a thin transition region about the point w = c0 and region IVb

R, with 0 < w < c0 − o(1).
As before, we will consider these regions in more detail in §5.2.

Now, as w → 0+ we move out of region IVR and into region VR, in which, via (66d),
u = O(1) and y = O(1)+ as t→∞. In this region we must therefore expand as

u(y, t) = ûR0(y) +O(ψR(t)) as t→∞, (77)

with y = O(1)+, ûR0(y) > 0 ([18], equation (22b)) and ψR(t) = o(1) as t→∞. On substitution
from expansions (65) and (77) into equation (8a), we obtain at leading order as t→∞,

û′′R0 + c0û
′
R0 = 0, (78a)

which must be solved subject to the boundary condition (8e) at y = 0, together with the
matching condition with region IVR as y →∞. Using (72) and (71), these conditions require,

ûR0(0+) = uc, (78b)

ûR0(y)→ 0 as y →∞. (78c)
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Finally, the boundary value problems (73) and (78) must be solved subject to the coupling
condition (8f) across y = 0, which requires

û′L0(0−) = û′R0(0+). (79)

The coupled nonlinear boundary value problem, given by (73), (78) and (79), across regions
VL and VR is precisely the nonlinear boundary value problem satisfied by the PTW structure
considered in Part I with v replaced by c0. Thus, we immediately conclude that

ûR0(y) = UT (y), y ≥ 0, (80a)

ûL0(y) = UT (y), y < 0, (80b)

and that c0 is now determined as,
c0 = v∗(uc), (80c)

where UT : R → R is the PTW solution to QIVP at cut-off uc ∈ (0, 1), which has propagation
speed v∗(uc). For convenience, we recall from Theorem 1.1 of Part I that

UT (y) = uce
−v∗(uc)y ∀y ∈ [0,∞), (81a)

and

UT (y) ∼ 1−A−∞eλ+(v∗(uc))y as y → −∞, (81b)

where λ+(v∗(uc)) = 1
2

(
−v∗(uc) +

√
v∗(uc)2 − 4f ′(1)

)
, and A−∞ is a global constant depending

upon uc. This completes the asymptotic structure of the solution to QIVP as t→∞ at leading
order.

5.2 Regions IVa
R, TR, IVb

R and VR

To develop the solution to QIVP to higher order we must first return to region TR, the localised
transition region in which w = v∗(uc) + o(1) as t→∞. It follows from the leading order term
in the expansion in region IVR (given by (76), (78) and (80c)) that to examine region TR we

must introduce the scaled coordinate ζ = (w − v∗(uc))t
1
2 and expand u(ζ, t) in the form

u(ζ, t) =
(
F̄0(ζ) + o(1)

)
exp

(
− tv∗(uc)2 − t 1

2 ζv∗(uc)
)
, (82)

as t → ∞ with ζ = O(1) and F̄0(ζ) > 0. On substitution of expansions (82) and (65) into
equation (8a) we obtain

tφ̇1(t)
(
v∗(uc)c1F̄0

)
+

(
−1

2
ζF̄ ′0 − F̄ ′′0

)
+ o(1) = 0, −∞ < ζ <∞. (83)

The only non-trivial dominant balance requires that we set, without loss of generality

φ1(t) = ln t. (84)

Thus, the leading order equation in region TR is given by

F̄ ′′0 +
1

2
ζF̄ ′0 − γF̄0 = 0, −∞ < ζ <∞, (85)
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with γ = v∗(uc)c1. To obtain the full boundary value problem for F̄0(ζ) we require matching
conditions as ζ → −∞ with region IVb

R and as ζ → ∞ with region IVa
R. Therefore, we next

return to region IVb
R. The structure of the expansion in region VR, for y � 1, (given by (77),

(80a) and (81a)) dictates that in region IVb
R we expand in the form

u(w, t) = exp

(
−t
(
v∗(uc)w −

1

t
Ĝ(w) + o

(
1

t

)))
, (86)

as t→∞ with O(t−1) < w < v∗(uc)−O(t−
1
2 ). We substitute expansion (86) into equation (8a)

to obtain, on solving at each order in turn,

u(w, t) = exp

(
− tv∗(uc)w + v∗(uc)c1 ln

(
v∗(uc)− w

)
+ d̄+ o (1)

)
, (87)

as t → ∞ with O(t−1) < w < v∗(uc) − O(t−
1
2 ) and where the constants c1 and d̄ are to be

determined. On matching expansion (87) in region IVb
R (as w → v∗(uc)−) with expansion (82)

in region TR (as ζ → −∞), via Van Dyke’s matching principle [19], we readily obtain that

c1 = 0, (88)

after which we must have
F̄0(ζ) = ed̄ + o(1) as ζ → −∞. (89)

To determine d̄ we next match expansion (87) (with (88)) in region IVb
R (as w → 0+) with

expansion (81a) in region VR (as y → ∞). On applying Van Dyke’s matching principle [19],
we require that

d̄ = lnuc. (90)

Thus, via (87), (88) and (90), the expansion in region IVb
R is given by

u(w, t) = exp

(
− tv∗(uc)w + lnuc + o(1)

)
, (91)

as t→∞ with O(t−1) < w < v∗(uc)−O(t−
1
2 ). In addition (89) becomes

F̄0(ζ) = uc + o(1) as ζ → −∞. (92)

We next consider region IVa
R. The structure of the expansion in region IIIR, as t → ∞ with

y � t, (given by (64)) and the form of s(t) as t → ∞ (given by (65) with c1 now determined
by (88)), suggests that in region IVa

R we write

u(w, t) = e−tḠ(w,t), (93)

and expand in the form,

Ḡ(w, t) =

(
w + v∗(uc)

2

)2

+
ln t

t
Ḡ1(w) +

1

t
Ḡ2(w) + o(t−1), (94)

as t→∞ with w > v∗(uc) +O(t−
1
2 ). On substitution from (93) and (94) into equation (8a) we

obtain a series of boundary value problems which we solve at each order of t in turn to obtain

u(w, t) = exp

(
− t
(
w + v∗(uc)

2

)2

− 1

2
ln t− Ḡ2(w) + o(1)

)
, (95)
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as t → ∞ with w > v∗(uc) + O(t−
1
2 ) and where the function Ḡ2(w) is indeterminate, being

globally dependent on the evolution at earlier stages when t = O(1) and y = O(1). However,
to match with expansion IIIR (as t→∞ with y � t), we require

Ḡ2(w) ∼ c2

(
w + v∗(uc)

2

)
+ lnw +

1

2
lnπ as w →∞. (96)

In addition the structure of the expansion in region TR, as given by (82), requires, for matching
to be possible, that,

Ḡ2(w) ∼ ᾱ1 ln
(
w − v∗(uc)

)
+ ᾱ2 as w → v∗(uc)+, (97)

for some constants ᾱ1, ᾱ2 to be determined. We now match in detail the expansion in region
IVa

R, given by (95) and (97) (as w → v∗(uc)+), with expansion (82) in region TR (as ζ →∞).
On applying Van Dyke’s matching principle [19] we find that

ᾱ1 = 1, (98)

after which,

F̄0(ζ) = σ̄ζ−1e−
ζ2

4 (1 + o(1)) as ζ →∞, (99)

where σ̄ = e−ᾱ2 . Hence, on collecting (85), (88), (92) and (99) we obtain the boundary value
problem in region TR for F̄0(ζ) as,

F̄ ′′0 +
1

2
ζF̄ ′0 = 0, −∞ < ζ <∞, (100a)

F̄0(ζ) > 0, −∞ < ζ <∞, (100b)

F̄0(ζ) = σ̄ζ−1e−
ζ2

4 (1 + o(1)) as ζ →∞, (100c)

F̄0(ζ) = uc + o(1) as ζ → −∞. (100d)

This boundary value problem has a solution only when

σ̄ =
uc√
π
, (101)

with the solution being unique, and given by,

F̄0(ζ) =
1

2
uc erfc

(
ζ

2

)
∀ −∞ < ζ <∞. (102)

It follows from (101) that

ᾱ2 = − ln
uc√
π
. (103)

It is now instructive to summarize the structure in regions IVa
R,TR and IVb

R. The expansion
in region IVa

R is given by (95) together with the asymptotic conditions

Ḡ2(w) ∼





ln
(
w − v∗(uc)

)
− ln uc√

π
, as w → v∗(uc)+,

c2

(
w+v∗(uc)

2

)
+ lnw + 1

2 lnπ, as w →∞,
(104)

whilst in region TR

u(ζ, t) =

(
1

2
uc erfc

(
ζ

2

)
+ o(1)

)
exp

(
− tv∗(uc)2 − t 1

2 ζv∗(uc)
)
, (105)
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Figure 8: A schematic representation of the location and thickness of the asymptotic regions in
the solution to QIVP as t → ∞. Here the the leading order terms in the exponential form of
the solution G0(w) and Ḡ0(w) are given by (71) and (76), respectively. Additionally, there are
thin transition regions at w = −

√
v∗(uc)2 − 4f ′(1) and at w = v∗(uc). Note that regions IIIL

and IIIR are far field regions for |w| � 1 as t→∞.

as t→∞ with ζ = O(1), and in region IVb
R

u(w, t) = exp

(
− tv∗(uc)w + lnuc + o(1)

)
, (106)

as t→∞ with O(t−1) < w < v∗(uc)−O(t−
1
2 ). A schematic representation of the location and

thickness of the asymptotic regions as t→∞ is given in Figure 8.
We next consider the structure of the expansion in region TR in more detail. Via (105), we

observe that for (−ζ)� 1,

u(ζ, t) ∼ exp

(
−tv∗(uc)2 − t 1

2 v∗(uc)ζ + ln

(
uc

(
1 +

1√
π

1

ζ
e−

ζ2

4

)))
, (107)

as t → ∞, which demands that in region IVb
R, to continue the expansion in (106), we must

write

u(w, t) = uce
−twv∗(uc) + t−

1
2 Ḡ(w, t) exp

(
− t(w + v∗(uc))2

4

)
, (108)

as t→∞ with O(t−1) < w < v∗(uc)− O(t−
1
2 ) and Ḡ(w, t) = O(1) as t→∞. On substituting

from expansion (108) into equation (8a), and simplifying, we obtain

Ḡt −
1

2
t−1Ḡ− t−2Ḡww = O

(
t

1
2 φ̇3(t) exp

(
−t
(
wv∗(uc)−

(w + v∗(uc))2

4

)))
, (109)

as t→∞ with O(t−1) < w < v∗(uc)−O(t−
1
2 ). We will later verify that the right-hand side of

equation (109) is exponentially small as t → ∞ in this region. Hence, to obtain a structured
balance in (109), we must expand Ḡ(w, t) in the form

Ḡ(w, t) = Ḡ0(w) + t−1Ḡ1(w) + o
(
t−1
)
, (110)

as t → ∞ with O(t−1) < w < v∗(uc) − O(t−
1
2 ) and on substitution into (109) we obtain at

leading order
Ḡ′′0 + Ḡ1 = 0, (111)
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with O(t−1) < w < v∗(uc)−O(t−
1
2 ). We conclude that Ḡ0(w) is indeterminate and represents a

further globally determined function. Therefore, the expansion in region IVb
R is, from equations

(108) and (110),

u(w, t) = uce
−twv∗(uc) + t−

1
2 Ḡ0(w)(1 +O(t−1)) exp

(
− t(w + v∗(uc))2

4

)
, (112)

as t → ∞ with O(t−1) < w < v∗(uc) − O(t−
1
2 ). We now match the expansion (112) in region

IVb
R (as w → v∗(uc)−), with expansion (107) in region TR (as ζ → −∞), in detail. On applying

Van Dyke’s matching principle [19] we require

Ḡ0(w) = − uc√
π

(w − v∗(uc))−1 + o(w − v∗(uc))−1 as w → v∗(uc)−. (113)

We next return to region VR. First, a balance between expansion (72) in region VL and
expansion (77) in region VR, across the connection at y = 0, requires

ψL(t) = ψR(t) = ψ(t), (114)

where ψ(t) = o(1) as t→∞. Now, the induced correction term in expansion (77) in region VR

from region IVb
R when 0 < w � 1, must have, via (112),

ψ(t) = O

(
tγe−

v∗(uc)2t
4

)
, (115)

as t→∞, with constant γ to be determined. Thus, without loss of generality we set

ψ(t) = tγe−
v∗(uc)2t

4 . (116)

Hence, in region VR we develop expansion (77) in the form

u(y, t) = UT (y) + tγe−
v∗(uc)2t

4 u1(y)(1 + o(1)), (117)

as t→∞ with y = O(1)+. On substitution of expansion (117) into equation (8a), and cancelling
at leading order, we obtain

−1

4
v∗(uc)2u1 − v∗(uc)u′1 − u′′1 + o(1) = c3U

′
T (y)t−γφ̇3(t)e

v∗(uc)2t
4 , (118)

as t → ∞ with y = O(1)+. The non-trivial balance in (118) requires that we set, without loss
of generality

φ̇3(t) = tγe−
v∗(uc)2t

4 , (119)

and we note that this now confirms that the right-hand side of (109) is exponentially small as
t→∞. The corresponding problem for u1(y) is then

u′′1 + v∗(uc)u′1 +
1

4
v∗(uc)2u1 = −c3U

′
T (y), y > 0, (120a)

u1(0+) = 0, (120b)

where the condition (120b) is required for the boundary condition (8e) to be satisfied. The
problem for u1(y), given by (120), must be solved subject to the matching condition with region
IVb

R. Before formulating this matching condition, we consider the corresponding structure in
regions IVa

L,TL, IV
b
L and VL. Thus, we now move to region IVa

L.
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5.3 Regions IVa
L, TL, IVb

L and VL

The structure of the expansion in region IIIL as t → ∞ with (−y) � t (given by (59)), the
structure of s(t) as t → ∞ (given by (65) with c0 and c1 given by (80c) and (88) respectively)
and the leading order behaviour in regions IVa

L and IVb
L (given by (67) and (71)), suggests

that in region IVa
L we write

u(w, t) = 1− e−tG(w,t), (121)

and expand in the form,

G(w, t) =

(
w + v∗(uc)

2

)2

− f ′(1) +
ln t

t
G1(w) +

1

t
G2(w) + o(t−1), (122)

as t → ∞ with w < −
√
v∗(uc)2 − 4f ′(1) − O(t−

1
2 ). On substitution of (121) and expansion

(122) into equation (8a) we obtain a sequence of boundary value problems which we solve at
each order to obtain

u(w, t) = 1− exp

(
− t
((

w + v∗(uc)
2

)2

− f ′(1)

)
− 1

2
ln t−G2(w) + o(1)

)
, (123)

as t→∞ with w < −
√
v∗(uc)2 − 4f ′(1)−O(t−

1
2 ), and where the function G2(w) is indetermi-

nate, being globally dependent on the evolution at earlier stages when t = O(1) and y = O(1).
However, to match with expansion IIIL (as t→∞ with (−y)� t), we require

G2(w) ∼ c2

(
w + v∗(uc)

2

)
+ ln(−w) +

1

2
lnπ as w → −∞. (124)

We next examine region TL. It follows from the structure of the expansion in region IVa
L, as

w → (−
√
v∗(uc)2 − 4f ′(1))− (given by (123)), that in region TL we must introduce the scaled

coordinate ζ =
(
w +

√
v∗(uc)2 − 4f ′(1)

)
t

1
2 and expand u(ζ, t) in the form

u(ζ, t) =1− (F0(ζ) + o(1)) exp

(
− t
((

v∗(uc)−
√
v∗(uc)2 − 4f ′(1)

2

)2

− f ′(1)

)
− t 1

2 ζ

(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

))
, (125)

as t → ∞ with ζ = O(1). On substitution of expansion (125) into equation (8a) we obtain at
leading order

F ′′0 +
1

2
ζF ′0 = 0, −∞ < ζ <∞. (126)

To obtain the full boundary value problem for F0(ζ) we require matching conditions as ζ → ±∞.
To that end, the structure of the expansion in region TL, as given by (125), requires, for
matching to be possible, with expansions (123) and (124) in region IVa

L, that

G2(w) ∼ α1 ln
∣∣∣w +

√
v∗(uc)2 − 4f ′(1)

∣∣∣+ α2, (127)

as w → (−
√
v∗(uc)2 − 4f ′(1))− for some constants α1, α2 to be determined. We now match in

detail the expansion in region IVa
L, given by (123) and (127), as w → (−

√
v∗(uc)2 − 4f ′(1))−,

with expansion (125) in region TL, as ζ → −∞. On applying Van Dyke’s matching principle
[19] it immediately follows that

α1 = 1, (128)
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after which we must have

F0(ζ) = σζ−1e−
ζ2

4 (1 + o(1)) as ζ → −∞, (129)

where σ = e−α2 . We next consider the matching condition as ζ → ∞. The structure of the
expansion in region VL, for (−y)� 1, (given by (72), (80b) and (81b)) dictates that in region
IVb

L we must expand in the form

u(w, t) = 1− exp

(
−t
(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
w + G̃(w) + o (1)

)
, (130)

as t → ∞ with −
√
v∗(uc)2 − 4f ′(1) + O(t−

1
2 ) < w < O(t−1)−. We substitute expansion (130)

into equation (8a) to obtain, on solving at each order in turn,

u(w, t) = 1− exp

(
−t
(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
w + d+ o (1)

)
, (131)

as t → ∞ with −
√
v∗(uc)2 − 4f ′(1) + O(t−

1
2 ) < w < O(t−1)− and where the constant d is to

be determined. On matching expansion (131) in region IVb
L (as w → 0−) with expansion (81b)

in region VL (as y → −∞), via Van Dyke’s matching principle [19], we readily obtain that

d = lnA−∞. (132)

Thus, via (131) and (132), the expansion in region IVb
L is given by

u(w, t) = 1− exp

(
−t
(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
w + lnA−∞ + o (1)

)
, (133)

as t→∞ with −
√
v∗(uc)2 − 4f ′(1) +O(t−

1
2 ) < w < O(t−1)−. On matching expansion (133) in

region IVb
L (as w → (−

√
v∗(uc)2 − 4f ′(1))−) with expansion (125) in region TL (as ζ → ∞),

we obtain the condition
F0(ζ) = A−∞ + o(1) as ζ →∞. (134)

Hence, on collecting (126), (129) and (134) we obtain the boundary value problem in region TL

for F0(ζ) as,

F ′′0 +
1

2
ζF ′0 = 0, −∞ < ζ <∞, (135a)

F0(ζ) > 0, −∞ < ζ <∞, (135b)

F0(ζ) = σζ−1e−
ζ2

4 (1 + o(1)) as ζ → −∞, (135c)

F0(ζ) = A−∞ + o(1) as ζ →∞. (135d)

This boundary value problem has a solution only when

σ =
A−∞√
π
, (136)

with the solution being unique, and given by,

F0(ζ) =
1

2
A−∞

(
1 + erf

(
ζ

2

))
∀ −∞ < ζ <∞. (137)
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Figure 9: Sketches of the exponent in the large-time solution to QIVP. Sketches of the leading
order term G0(w) when w < 0 (brown), in expansions (123) and (141), in regions IVa

L and IVb
L,

respectively; sketches of the leading order term Ḡ0(w) when w > 0 (blue), in expansions (95)
and (106) in regions IVa

R and IVb
R, respectively; and sketches of the exponential corrections

(red) in regions IVb
L (a < w < 0) and IVb

R (0 < w < v∗(uc)), respectively. Here we have used
the notation a = −

√
v∗(uc)2 − f ′(1) and b = −2

√
−f ′(1).

It follows from (136) that

α2 = − ln
A−∞√
π
. (138)

It is again instructive to summarize the structure in regions IVa
L,TL and IVb

L. The expan-
sion in region IVa

L is given by (123) together with the asymptotic conditions

G2(w) ∼





ln|w +
√
v∗(uc)2 − 4f ′(1)| − ln A−∞√

π
, as w →

(
−
√
v∗(uc)2 − 4f ′(1)

)−
,(

w+v∗(uc)
2

)
+ ln|w|+ 1

2 lnπ, as w → −∞,
(139)

whilst in region TL,

u(ζ, t) =1−
(

1

2
A−∞

(
1 + erf

(
ζ

2

))
+ o(1)

)

× exp

(
−t
((

v∗(uc)−
√
v∗(uc)2 − 4f ′(1)

2

)2

− f ′(1)

)

−t 1
2 ζ

(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

))
, (140)

as t→∞ with ζ = O(1), and in region IVb
L

u(w, t) = 1− exp

(
− t
(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
+ lnA−∞ + o(1)

)
, (141)

as t → ∞ with −
√
v∗(uc)2 − 4f ′(1) + O(t−

1
2 ) < w < O(t−1)−. A schematic representation of

the location and thickness of the asymptotic regions as t→∞ is given in Figure 8.
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We next consider the structure of the expansion in region TL in closer detail. Via (140), we
observe that for ζ � 1,

u(ζ, t) ∼ 1− exp


−t



(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)2

− f ′(1)




−t 1
2 ζ

(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
+ ln

(
A−∞

(
1− 1√

π

1

ζ
e−

ζ2

4

)))
,

(142)

as t → ∞, which demands that in region IVb
L, to continue the expansion in (141), we must

write

u(w, t) = 1−A−∞ exp

[
− t
(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
w

]
+ t−β̂G(w, t)e−tH(w), (143)

as t → ∞ with −
√
v∗(uc)2 − 4f ′(1) + O(t−

1
2 ) < w < O(t−1)− and G(w, t) = O(1) as t → ∞.

Here β̂ is a constant to be determined and

H(w) >
1

2

(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

)
w, (144)

for all −
√
v∗(uc)2 − 4f ′(1) < w < 0. On substituting from expansion (143) with (144) into

equation (8a) we obtain

G
(
H2
w − (w + v∗(uc)Hw +H + f ′(1)

)
+O(t−1)

= O

(
tγ+β̂ exp

(
−t
((

v∗(uc)−
√
v∗(uc)2 − 4f ′(1)

2

)
w +

1

4
v∗(uc)2 −H(w)

)))
, (145)

as t→∞ with −
√
v∗(uc)2 − 4f ′(1) +O(t−

1
2 ) < w < O(t−1)−. To obtain a non-trivial balance

at leading order as t→∞ we suppose that the function H(w) is such that the right-hand side of
equation (145) is exponentially small as t→∞, and we will later verify this as consistent. Thus,
at leading order, we obtain the following boundary value problem in region IVb

L for H(w),

H2
w − (w + v∗(uc))Hw +H = −f ′(1), (146a)

0 < H(w)− 1

2

(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

)
w <

1

4
v∗(uc)2, (146b)

with −
√
v∗(uc)2 − 4f ′(1) < w < 0 and which must be solved subject to

H(w)→ 1

4
v∗(uc)2 as w → 0−, (146c)

H(w) ∼ 1

4
(w + v∗(uc))2 − f ′(1), as w → (−

√
v∗(uc)2 − 4f ′(1))+. (146d)

Here the lower bound of inequality (146b) follows from (144) whilst the upper bound ensures the
right-hand side of equation (145) is exponentially small as t→∞. Condition (146c) is required
so that the correction term in expansion (143) is of the appropriate order to enable matching of
(143) in region IVb

L (as w → 0−) with expansion (72), (80b), (81b), (114) and (116), in region
VL (as y → −∞). Condition (146d) represents the matching condition between the expansion
in region IVb

L as w → (−
√
v∗(uc)2 − 4f ′(1))+ (given by (143)) and the expansion in region
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TL as ζ → ∞ (given by (142)). Recalling that for each uc ∈ (0, 1) then v∗(uc) ∈ (0, 2), the
boundary value problem (146) has the unique solution

H(w) =

{
HL1(w), −

√
v∗(uc)2 − 4f ′(1) < w < −2

√
−f ′(1),

HL2(w), −2
√
−f ′(1) ≤ w < 0,

(147a)

with

HL1(w) =
1

4
(w + v∗(uc))2 − f ′(1) and HL2(w) =

1

4
v∗(uc)2 +

(
1

2
v∗(uc)−

√
−f ′(1)

)
w,

(147b)
and where we also determine, via asymptotic matching, that β̂ = 1

2 for −
√
v∗(uc)2 − 4f ′(1) +

O(t−
1
2 ) < w < −2

√
−f ′(1)−O(t−

1
2 ). A sketch of the exponents in expansions (95) and (106),

(123) and (141) in regions IVa
R, IV

b
R, IVa

L and IVb
L, respectively, is given in Figure 9. We note

that although H(w) and H ′(w) are continuous for all −
√
v∗(uc)2 − 4f ′(1) < w < 0, the second

derivative H ′′(w) is discontinuous at the point w = −2
√
−f ′(1). Hence, a thin transition region

about the point w = −2
√
−f ′(1) is required in which the second derivative in equation (8a) is

retained at leading order to smooth out the discontinuity. However, this region is passive, and
for brevity will not be considered here. It remains to determine G(w, t) in region IVb

L. To that
end, since G(w, t) = O(1) as t→∞ with w = O(1)−, we must expand G(w, t) in the form

G(w, t) = G0(w) + t−λG1(w) + o
(
t−λ
)
, (148)

as t→∞ with −
√
v∗(uc)2 − 4f ′(1)+O(t−

1
2 ) < w < O(t−1) and substitute from expansion (143)

(with (147) and (148)) into equation (8a). When −
√
v∗(uc)2 − 4f ′(1) < w < −2

√
−f ′(1) we

find λ = 1 and at leading order G0(w) remains indeterminate when −
√
v∗(uc)2 − 4f ′(1) <

w < −2
√
−f ′(1) and represents a further globally determined function. However, when

−2
√
−f ′(1) < w < 0, we require that λ = 1 and at leading order we obtain

(
w + 2

√
−f ′(1)

)
G′0 = −β̂G0, (149)

which gives, on integration,

G0(w) =

(
2
√
−f ′(1)

)β̂
AL

(
w + 2

√
−f ′(1)

)β̂ , (150)

with −2
√
−f ′(1) < w < 0, where AL 6= 0 is a globally determined constant. Therefore, the

expansion in region IVb
L is developed to,

u(w, t) = 1−A−∞ exp

(
− t
(
v∗(uc)−

√
v∗(uc)2 − 4f ′(1)

2

)
w

)
+ û(w, t), (151)

as t→∞. Here

û(w, t) = t−β1
(
G0(w) + o(1)

)
exp

(
−t
(

1

4
(w + v∗(uc))

2 − f ′(1)

))
, (152)

when −
√
v∗(uc)2 − 4f ′(1) +O(t−

1
2 ) < w < −2

√
−f ′(1)−O(t−

1
2 ), with

G0(w) ∼ A−∞√
π

(
w +

√
v∗(uc)2 − 4f ′(1)

)−1
, (153)
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as w → (−
√
v∗(uc)2 − 4f ′(1))+ and

β1 =
1

2
, (154)

on matching with region TL. However,

û(w, t) =

(
2
√
−f ′(1)

)β2

AL
(
w + 2

√
−f ′(1)

)β2
t−β2

(
1 + o(1)

)

× exp

(
−t
(

1

4
v∗(uc)2 +

(
1

2
v∗(uc)−

√
−f ′(1)

)
w

))
, (155)

when −2
√
−f ′(1) + O(t−

1
2 ) < w < O(t−1)−, and with β2 undetermined at this stage. It is

important to recall that the change in structure of û(w, t) across w = −2
√
−f ′(1) is accom-

modated in a transition region when w = −2
√
−f ′(1)±O(t−

1
2 ). This region is passive and its

details may be omitted here.
We can now return to region VL. It follows from (72) with (80b), (81b), (114) and (116),

that in region VL we must develop expansion (72) in the form

u(y, t) = UT (y) + tγ exp

(
−1

4
v∗(uc)2t

)
u1(y)(1 + o(1)), (156)

as t→∞ with y = O(1)−. On substituting from expansions (65) and (156) into equation (8a),
and cancelling at leading order, we obtain

u′′1 + v∗(uc)u′1 +

(
1

4
v∗(uc)2 + f ′(UT (y))

)
u1 = −c3U

′
T (y), y < 0, (157a)

u1(0−) = 0, (157b)

where the condition (157b) is required for the boundary condition (8e) to be satisfied. It remains
to match expansion (156) in region VL (as y → −∞) with expansion (151) in region IVb

L (as
w → 0−). On applying Van Dyke’s matching principle [19], we readily obtain this matching
condition as

u1(y) ∼ AL exp

((√
−f ′(1)− 1

2
v∗(uc)

)
y

)
as y → −∞, (157c)

with β2 now determined as
β2 = −γ. (158)

On collecting (120) and (157), in addition to the derivative continuity condition (8f) at
y = 0, we obtain the following boundary value problem for u1(y),

u′′1 + v∗(uc)u′1 +
1

4
v∗(uc)2u1 = −c3U

′
T (y), y > 0, (159a)

u′′1 + v∗(uc)u′1 +

(
1

4
v∗(uc)2 + f ′(UT (y))

)
u1 = −c3U

′
T (y), y < 0, (159b)

u1(y) ∼ AL exp

((√
−f ′(1)− 1

2
v∗(uc)

)
y

)
as y → −∞, (159c)

u1(0−) = u1(0+) = 0, (159d)

u′1(0−) = u′1(0+), (159e)

which must be solved subject, in addition, to the matching condition on u1(y) as y →∞ with
expansion (112) in region IVb

R. We begin in y < 0, with the inhomogeneous linear equation
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(159b). Since UT (y) satisfies the equation U ′′T (y) + v∗(uc)U ′T (y) + fc(UT (y)) = 0, a particular
integral for (159b) is readily deduced to be proportional to U ′T (y), and so the general solution
to (159b) may be written as

u1(y) = E0φ+(y) + E1φ−(y)− 4
c3

v∗(uc)2
U ′T (y), y ≤ 0, (160)

with φ+(y), φ−(y) : (−∞, 0] → R basis functions for the homogeneous part of equation (159b)
chosen so that

φ+(y) ∼ exp

((√
−f ′(1)− 1

2
v∗(uc)

)
y

)
, (161a)

φ−(y) ∼ exp

(
−
(√
−f ′(1) +

1

2
v∗(uc)

)
y

)
, (161b)

as y → −∞, whilst E0 and E1 are arbitrary constants to be determined. It follows from (81b),
(161) and an application of condition (159c) that we must have

E0 = AL, E1 = 0. (162)

Moreover, on applying condition (159d) (where we have evaluated U ′T (0) via (81a)) we obtain

c3 = −ALv
∗(uc)φ+(0)

4uc
. (163)

Thus, on collecting expressions (160), (162) and (163) we have

u1(y) = ALφ+(y) +
ALφ+(0)

v∗(uc)uc
U ′T (y), y < 0. (164)

We next consider u1(y) with y > 0. The general solution to the inhomogeneous linear equation
(159a) (using equations (81a) and (163)) is readily found to be

u1(y) = (E3 + E4y) e−
1
2
v∗(uc)y −ALφ+(0)e−v

∗(uc)y, y ≥ 0, (165)

with arbitrary constants E3 and E4 determined, via application of the coupling conditions
(159d) and (159e), as

E3 = ALφ+(0), (166)

E4 = AL

(
φ′+(0) + φ+(0)

(
1

2
v∗(uc)−

f+
c

v∗(uc)uc

))
, (167)

with AL 6= 0. Finally, we match the expansion in region VR (as y →∞) with the expansion in
region IVb

R (as w → 0+). Now, when E4 = 0, we obtain the matching condition

Ḡ0(w) ∼ ALφ+(0) as w → 0+, (168)

and

γ = −1

2
(= −β2). (169)

However, when E4 6= 0, we obtain the matching condition

Ḡ0(w) ∼ E4w as w → 0+, (170)

and

γ = −3

2
(= −β2). (171)

Also, it follows from expression (163) (since AL 6= 0) that c3 = 0 if and only if φ+(0) = 0.
Therefore, we have the following cases, namely;
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Case (I) φ+(0) 6= 0. In this case
c3 6= 0,

and

E4 = 0 with γ = −1

2
(= −β2) or E4 6= 0 with γ = −3

2
(= −β2).

Case (II) φ+(0) = 0. In this case φ′+(0) 6= 0 and

c3 = 0,

whilst E4 6= 0, and so

γ = −3

2
(= −β2).

We next consider the basis function φ+ : (−∞, 0] → R. For fixed uc ∈ (0, 1) the initial value
problem for φ+ : (−∞, 0]→ R is given by

φ′′+ + v∗(uc)φ′+ +

(
1

4
v∗(uc)2 + f ′(UT (y))

)
φ+ = 0, y < 0, (172a)

φ+(y) ∼ exp

((√
−f ′(1)− 1

2
v∗(uc)

)
y

)
as y → −∞. (172b)

We reduce the problem (172) to normal form by setting φ+(y) = ψ+(y) exp
(
−1

2v
∗(uc)y

)
with

ψ+ : (−∞, 0]→ R now satisfying the initial value problem

ψ′′+ + f ′(UT (y))ψ+ = 0, y < 0, (173a)

ψ+(y) ∼ exp
(√
−f ′(1)y

)
as y → −∞. (173b)

This can now be solved numerically to find ψ+(0) and ψ′+(0) which we then use to obtain φ+(0)
and φ′+(0), after which the occurrence of case (I) or case (II) is determined.

The asymptotic structure of the solution to QIVP as t → ∞ is now complete with the
expansions in regions IVa

L, TL, IVb
L, VL, VR, IVb

R, TR and IVa
R providing a uniform approx-

imation to the solution of QIVP as t→∞. On collecting expressions (65), (80c), (84), (88) and
(119) we have obtained, in particular, that

ṡ(t) = v∗(uc) + c3t
γ exp

(
− 1

4
v∗(uc)2t

)
+ o

(
tγ exp

(
− 1

4
v∗(uc)2t

))
as t→∞, (174)

where the constants c3 and γ depend upon whether case (I) or case (II) is pertaining for the
given KPP reaction function and the cut-off value uc ∈ (0, 1). Hence, via the method of
matched asymptotic coordinate expansions, we have been able to obtain the correction term to
the asymptotic propagation speed v∗(uc) of the developing PTW structure in the solution to
QIVP as t → ∞. In addition, with u : R × [0,∞) → R being the solution to QIVP, it follows
from expansions (95), (104), (105), (112), (117), (123), (139), (140), (151), (156) in regions
IVa

L, IVb
L, IVa

R, IVb
R, TL, TR, VL and VR that,

u(y, t) = UT (y) + E(y, t), (175)

as t → ∞ for y ∈ R, with E(y, t) linearly exponentially small in t as t → ∞, uniformly for
y ∈ R. In particular, on any closed bounded interval I,

E(y, t) = O
(
tγe−

1
4
v∗2(uc)t

)
, (176)
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as t → ∞ uniformly for y ∈ I. A significant point to note here, is that, for KPP reaction
functions satisfying (2), in the absence of cut-off, the corresponding correction terms in (174),
(175) and (176) are only algebraically small in t as t → ∞, being of O(t−1) (see, for example,
Leach and Needham [14]).

To illustrate these results we consider a simple example of KPP reaction function f : R→ R
which satisfies (2), and has

f(u) = λ(1− u), u ≥ 1

2

(
1 +

λ

(1 + λ)

)
, (177)

with λ > 0 fixed. With the cut-off value

uc ∈
[

1

2

(
1 +

λ

(1 + λ)

)
, 1

)
, (178)

then, in this example, fc : R→ R is given by

fc(u) =

{
0, u ∈ (−∞, uc],
λ(1− u), u ∈ (uc,∞),

(179)

and
f ′(1) = −λ, f+

c = λ(1− uc). (180)

For this example, we can readily obtain the PTW explicitly as UT : R→ R given by

UT (y) =





1− (1− uc) exp

((√
v∗(uc)2+4λ−v∗(uc)

2

)
y

)
, y ≤ 0,

uce
−v∗(uc)y, y > 0,

(181)

with propagation speed

v∗(uc) =
√
λ

(1− uc)√
uc

. (182)

Now, via (172), the basis function φ+ : (−∞, 0]→ R satisfies

φ′′+ + v∗(uc)φ′+ +

(
1

4
v∗(uc)2 − λ

)
φ+ = 0, y < 0, (183a)

φ+(y) ∼ exp

((√
λ− 1

2
v∗(uc)

)
y

)
as y → −∞, (183b)

which has solution

φ+(y) = exp

((√
λ− 1

2
v∗(uc)

)
y

)
, y ≤ 0. (184)

Thus we obtain via (184)

φ+(0) = 1, φ′+(0) =
√
λ− 1

2
v∗(uc), (185)

and so,
E4 = AL

√
λ (1−√uc) 6= 0. (186)

Thus, the particular reaction function (179) falls into case (I) which has

ṡ(t) = v∗(uc) + c3t
− 3

2 exp

(
− 1

4
v∗(uc)2t

)
+ o

(
t−

3
2 exp

(
− 1

4
v∗(uc)2t

))
as t→∞, (187)

with c3 6= 0, and v∗(uc) given by (182). Similarly, in this example, both (175) and (176) have
γ = −3/2.
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Figure 10: A graph of (a) φ+(0) and (b) E4/AL = φ′+(0) + φ+(0)(v∗(uc)/2 − (1 − uc)/v∗(uc))
corresponding to the cut-off Fisher reaction function (10). These are obtained by solving (188)
numerically for a range of values of uc ∈ (0, 1) and are used to determine the precise form of
the correction to ṡ(t) as t→∞, given by equation (174).

5.4 The case of a cut-off Fisher reaction

To conclude this section we focus on the particular case of the cut-off Fisher reaction function
(10) for fixed cut-off uc ∈ (0, 1). For this example, via (173), ψ+ : (−∞, 0]→ R satisfies

ψ′′+ + (1− 2UT (y))ψ+ = 0, y < 0, (188a)

ψ+(y) ∼ ey as y → −∞. (188b)

We obtain numerical approximations of ψ+(0) and ψ′+(0) from were we deduce φ+(0) and
φ′+(0). This is readily achieved by solving (188) together with the nonlinear boundary value
problem determining UT (y) (see equation (11) in Part I of this series) numerically over an
interval y ∈ [−M, 0] for M ∈ R+ using the Matlab initial value solver ode45, taking v = v∗(uc).
The values of v∗(uc) and M are determined numerically as detailed in Part I of this series of
papers. As ‘initial condition’ we employ (UT , U

′
T , ψ+, ψ

′
+) = (1 − ε,−λ+(v∗(uc))ε, e−M , e−M ),

where ε = 10−10 and prescribe an absolute and relative ODE tolerance of 10−13.
Figure 10 examines the behaviour of φ+(0) and E4/AL = φ′+(0) + φ+(0)(1/2v∗(uc) − (1 −

uc)/v
∗(uc)) for a range of values of uc. It suggests that φ+(0) and E4 are both non-zero and

therefore the particular reaction function (10) falls into case (I) with c3 6= 0, γ = −3/2 and
where ṡ(t) has the asymptotic expression

ṡ(t) ∼ v∗(uc)−
ALv

∗(uc)φ+(0)

4uc
t−

3
2 exp

(
− 1

4
v∗(uc)2t

)
as t→∞. (189)

We observe that the asymptotic expression (189) qualitatively agrees with the numerical solu-
tions for QIVP obtained for the cut-off Fisher reaction function in section 2: Figures 3 and 4
suggest that the correction to ṡ(t) is exponentially small in t as t → ∞ while Figure 1 makes
clear that the exponential decay rate decreases with the increasing value of uc. However, a
quantitative test of the validity of (189) is challenging because we do not have sufficient preci-
sion to allow the numerical solver to resolve exponentially small terms in the numerical solution;
as such we are unable to accurately compare (189) directly with numerical solutions to estimate
the global constant AL.
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6 Conclusions

In this series of papers we have considered an evolution problem for a reaction-diffusion process
when the reaction function is of standard KPP-type, but experiences a cut-off in the reaction
rate below the normalised cut-off concentration uc ∈ (0, 1). We have formulated this evolution
problem in terms of the moving boundary initial-boundary value problem QIVP. In the compan-
ion paper we considered PTW solutions UT (y) = u(y, t) to QIVP. In this paper we concentrated
on examining whether a PTW evolves in the large-time solution to QIVP and when this is found
to be the case, determining the rate of convergence of the solution to the PTW. Key to this study
is y = x−s(t) = 0 which represents the location of the moving boundary where u = uc. We used
the method of matched asymptotic coordinate expansions to develop the detailed asymptotic
structure of the solution to QIVP in the small-time (t = o(1)), intermediate-time (t = O(1))
and large-time (t → ∞) regimes for arbitrary cut-off uc ∈ (0, 1). We first determined that
the asymptotic structure of u(y, t) in the small-time regime has two regions in y < 0, and two
regions in y > 0 and is given by expansions (44), (35), (36) and (49). The two-term asymptotic
expression (37) for the function s(t) can be derived from the inner left and inner right regions,
where y = o(1)− and y = o(1)+, in addition to the leading order boundary conditions. This
reveals that as t→ 0+, ṡ(t) has an integrable singularity which depends on the cut-off uc. Here
ṡ(t)→ +∞ when uc ∈ (0, 1

2), whilst, ṡ(t)→ −∞ when uc ∈ (1
2 , 1) with a transition case where

ṡ(t) → 0 when uc = 1
2 . We then employed the asymptotic structure of u(y, t) in the outer left

and right regions, where y = O(1)− and y = O(1)+, for t = o(1) to determine the asymptotic
structures of u(y, t) when |y| → ∞ for t = O(1). The latter is key to deriving the asymptotic
structure of u(y, t) as t→∞ which consists of two principal regions in y < 0 and two principal
regions in y > 0 and given by the asymptotic expressions (95), (104), (105), (112), (117), (123),
(139), (140), (151), (156), with the asymptotic structure of s(t) as t → ∞ being determined
simultaneously and given by the asymptotic expression (174). This systematic approach allows
to establish that the solution to QIVP converges to the PTW solution as t→∞ at a rate that
is linearly exponentially small in t with the exact form dependent on the particular underlying
KPP-type reaction function f(u) and the cut-off value uc ∈ (0, 1). Thus, introducing an arbi-
trary cut-off into the reaction significantly modifies the rate of convergence of the large-time
solution onto the PTW (from an algebraic to an exponential rate). Consequently, the presence
of a cut-off significantly shortens the time for the solution to QIVP to converge to the PTW. We
anticipate that the approach developed in this paper will be readily adaptable to corresponding
problems, when the KPP-type cut-off reaction function is replaced by a broader class of cut-off
reaction functions.
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A Numerical scheme

We approximate u(y, t) and s(t) by piecewise linear functions ud(yi, tj) and sd(tj), defined on
evenly spaced space and time grids given by {yi = −M + i∆y}I+Ii=0 and {tj = j∆t}Jj=0 with
yI = 0 and tJ = T . We use explicit finite differences to approximate (8a) by

U j+1
i − U ji = µ

(
U ji+1 − 2U ji + U ji−1

)
+ ν

(
Sj+1 − Sj

) (
U ji+1 − U

j
i−1

)
+ ∆tfc(U

j
i ), (190)
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for i = 2, . . . , I − 1, I + 1, . . . , I + I − 1, j = 1, . . . J , µ = ∆t/∆y2 and ν = 1/(2∆y), where
U ji = ud(yi, tj) and Sji = sd(tj) respectively approximate u(yi, tj) and s(tj). We then use (8d),
(8e) and (8f) to set

U j0 = 1, U j2I = 0, U jI = uc, U jI+1 + U jI−1 = 2uc, for j = 1, . . . J. (191)

We solve the resulting sparse linear algebraic system of equations for the unknowns U ji and Sj

with i = 2, . . . , I − 1, I + 1, . . . , I + I − 1 and j = 1, . . . , J in an evolutionary manner starting
from

{U0
i }I−1

i=1 = 1, {U0
i }I+Ii=I = 0, S0 = 0, (192)

corresponding to the initial conditions (8c) and (8g). We choose ∆y = 5 × 10−3 and ∆t =
0.4∆y2 to ensure the stability of the explicit method. We take I and I sufficiently large to
ensure that any error arising from truncating the right-hand and left-hand boundary does not
affect the solution in the interior. In practice, we have found that choosing I and I so that
eλ+(v∗(uc))y0 , e−v

∗(uc)yI+I . 5 × 10−5 (corresponding to the asymptotic behaviour of the PTW
as described by equation (81)) provides reasonable accuracy. Comparison with results obtained
for a spatial resolution of ∆y = 10−3 resulted in a less than 0.5% difference in ud(yi, tj) and
sd(tj).
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