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Abstract. Finding a low dimensional representation of hierarchical,
structured data described by a network remains a challenging problem
in the machine learning community. An emerging approach is embed-
ding networks into hyperbolic space because it can naturally represent
a network’s hierarchical structure. However, existing hyperbolic embed-
ding approaches cannot deal with attributed networks, in which nodes
are annotated with additional attributes. These attributes might pro-
vide additional proximity information to constrain the representations
of the nodes, which is important to learn high quality hyperbolic embed-
dings. To overcome this gap we propose HEAT (Hyperbolic Embedding
of Attributed Networks). HEAT first extracts training samples from the
original graph capturing both topological and attribute similarity and
then learns a hyperboloid embedding using full Riemannian Stochastic
Gradient Descent. We show that HEAT can outperform other network
embedding algorithms on several downstream tasks. As a general em-
bedding method, HEAT opens the door to hyperbolic manifold learning
on a wide range of attributed and unattributed networks.

Keywords: Network embedding · Hyperbolic embedding · Random
walk.

1 Introduction

The success of machine learning algorithms often depends upon data representa-
tion [1]. Unsupervised representation learning – learning alternative (low dimen-
sional) representations of data – has become common for processing information
on non-Euclidean domains, such as complex networks. Prediction over nodes and
edges requires careful feature engineering [2] and representation learning leads
to the extraction of features from a graph that are most useful for downstream
tasks, without careful design or a-priori knowledge.

An emerging representation learning approach for complex networks is hy-
perbolic embedding. This approach is based on compelling evidence that the un-
derlying metric space of many complex networks is hyperbolic [3]. A hyperbolic
space can be interpreted as a continuous representation of a discrete tree struc-
ture that captures the hierarchical organisation of elements within a complex
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system [3]. Furthermore, hyperbolic metric spaces have been shown to explain
other characteristic typical to complex networks, characteristics such as cluster-
ing [3] and the “small world” phenomenon [4]. Hyperbolic spaces therefore offer
a natural continuous representations of hierarchical complex networks [3].

However, existing hyperbolic embedding approaches cannot deal with at-
tributed networks, of which nodes (entities) are richly annotated with attributes
[5]. For example, a paper within a citation network may be annotated with the
presence of keywords, and the people in a social network might have additional
information such as interests, hobbies, and place of work. These attributes might
provide additional proximity information to constrain the representations of the
nodes. Therefore, incorporating node attributes can improve the quality of the
final embedding, with respect to many different downstream tasks [5].

This paper proposes the first hyperbolic embedding method for attributed
networks called HEAT. The intuition behind HEAT is to extract training sam-
ples from the original graph, which can capture both topological and attribute
similarities, and then learn a hyperbolic embedding based on these samples. To
extract training samples, a novel random walk algorithm with a teleport proce-
dure is developed. The purpose of this walk is to capture phantom links between
nodes that do not necessarily share a topological link, but have highly similar at-
tributes. To learn the embeddings from these extracted samples, HEAT employs
a novel learning objective that is optimized using full Riemannian stochastic
gradient descent in hyperbolic space.

Thorough experimentation shows that HEAT can achieve better performance
on several downstream tasks compared with several state-of-the-art embedding
algorithms. As a general framework, HEAT can embed both unattributed and
attributed networks with continuous and discrete attributes, which opens the
door to hyperbolic manifold learning for a wide range of complex networks.

1.1 Related Work

Recently, graph convolution has been generalised to hyperbolic space to allow for
non-Euclidean representation learning on attributed networks [6]. The algorithm
in [7] embeds networks to the Poincaré ball using retraction updates to optimize
an objective that aims to maximize the likelihood of observing true node pairs
versus arbitrary pairs of nodes in the network. Also, trees can be embedded in
hyperbolic space without distortion [8] and so, some works by embed general
graphs to trees and then compute an exact distortion-free embedding of the
resulting tree [9].

For attributed network embedding in Euclidean space, several algorithms
have been proposed. Text-assisted Deepwalk (TADW) [10] generalises Deep-
walk [11] to nodes with text attributes. By generalising convolution from reg-
ular pixel lattices to arbitrary graphs, it is possible embed and classify entire
graphs [12]. Furthermore, the popular Graph Convolutional Network (GCN)
extend this approach to simplify graph convolution in the semi-supervised set-
ting [13]. GraphSAGE introduces an inductive framework for online learning of
node embeddings capable of generalising to unseen nodes [5].
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2 Hyperboloid Model of Hyperbolic Geometry

Due to the fundamental difficulties in representing spaces of constant negative
curvature as subsets of Euclidean spaces, there are not one but many equiv-
alent models of hyperbolic spaces [14]. The models are equivalent because all
models of hyperbolic geometry can be freely mapped to each other by a dis-
tance preserving mapping called an isometry. Each model emphasizes different
aspects of hyperbolic geometry, but no model simultaneously represents all of
its properties.

For HEAT, the hyperboloid model is selected for the simple form of Rieman-
nian operations. The main advantage of this is that the simple forms allow for the
inexpensive computation of exact gradients and, therefore, HEAT is optimized
using full Riemannian Stochastic Gradient Descent (RSGD) [15], rather than
approximating gradient descent with retraction updates [7]. Ultimately, this has
the advantage of faster convergence [15]. Unlike disk models, that sit in an am-
bient Euclidean space of dimension n, the hyperboloid model of n-dimensional
hyperbolic geometry sits in n+1-dimensional Minkowski space-time. Minkowski
space-time is denoted Rn:1, and a point x ∈ Rn:1 has spacial coordinates xi for
i = 1, 2, ..., n and time co-ordinate xn+1.

HEAT requires the Minkowski bilinear form for both its learning objective
as well as for parameter optimization. The Minkowski bilinear form is defined as
〈u,v〉Rn:1 =

∑n
i=1 uivi − ψ2un+1vn+1 where ψ is the speed of information flow

in our system (here set to 1 for simplified calculations). This bilinear form is an
inner product and allows the computation of the Minkowski norm: ||u||Rn:1 :=√
〈u,u〉Rn:1 . Using the bilinear form, the hyperboloid is defined as Hn = {u ∈

Rn:1 | 〈u,u〉Rn:1 = −1,un+1 > 0}. The first condition defines a hyperbola of two
sheets, and the second one selects the top sheet.

In addition, the bilinear form is required to define the distance between
two points on the hyperboloid, which is incorporated as part of HEAT’s train-
ing objective function. The distance between two points u,v ∈ Hn is given
by the length of the geodesic between them DHn(u,v) = arccosh(γ) where
γ = −〈u,v〉Rn:1 [16].

To update parameters, HEAT performs full RSGD. This requires defining
the tangent space of a point u ∈ Hn, that is denoted TuHn. It is the collection
of all points in Rn:1 that are orthogonal to u, and is defined as TuHn = {x ∈
Rn:1 | 〈u,x〉Rn:1 = 0}. It can be shown that 〈x,x〉Rn:1 > 0 ∀x ∈ TuHn ∀u ∈ Hn,
and so the tangent space of every point the hyperboloid is positive-definite, and
so Hn is a Riemannian manifold [16].

3 Hyperbolic Embedding of Attributed Networks

3.1 Problem Definition

We consider a network of N nodes given by the set V with |V | = N . We use
E to denote the set of all interactions between the nodes in our network. E =
{(u, v)} ⊆ V ×V . We use the matrix W ∈ RN×N to encode the weights of these
interactions, where Wuv is the weight of the interaction between node u and
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node v. We have that Wuv 6= 0 ⇐⇒ (u, v) ∈ E. If the network is unweighted
then Wuv = 1 for all (u, v) ∈ E. Furthermore, the matrix X ∈ RN×d describes
the attributes of each node in the network. These attributes may be discrete or
continuous. Edge attributes could be handled by transforming them into node
attributes shared by both nodes connected by the edge. We consider the problem
of representing a graph given as G = (V,E,W,X) as set of low-dimensional
vectors in the n-dimensional hyperboloid {xv ∈ Hn | v ∈ V }, with n� N . The
described problem is unsupervised.

3.2 HEAT Overview

Our proposed HEAT consists of two main components:

1. A novel network sampling algorithm based on random walks to extract sam-
ples than can capture both topological and attribute similarity.

2. A novel learning algorithm that can learn hyperbolic embeddings from train-
ing samples using Riemannian stochastic gradient descent (RSGD) in hyper-
bolic space.

3.3 Sample the Network using Random Walks with Jump

We propose a novel random-walk procedure to obtain training samples that
capture both topological and attribute similarity. Random walks have been pro-
posed in the past as a robust sampling method of elements from structured data,
such as graphs, since they provide an efficient, flexible and parallelizable sam-
pling method [11]. For every node in the network, several ‘walks’ with a fixed
length l are performed [2]. We note that random walks traditionally take into
account only first-order topological similarity, that is: nodes are similar if they
are connected in the network. However, additional topological similarity can be
considered. For example, second-order similarity between nodes (that is: the sim-
ilarity of neighbourhoods) could be incorporated into the topological similarity
matrix using a weighted sum [17]. We leave this as future work.

We propose that, in addition to standard random walks which capture topo-
logical similarity, we use attribute similarity to ‘jump’ the random walker to the
nodes with similar attributes. This approach is inspired by PageRank [18], where
the random walk jumps from a node to any other node in the web graph is the
current location of the walk has no out-links, and is similar to RoSANE [19]. To
this end, we define the attribute similarity Y as cosine similarity of the attribute
vectors of the nodes. We assign a value of 0 similarity to any negative similarity
values. We select cosine similarity as it can readily handle high dimensional data
well without making a strong assumption about the data. We propose HEAT as
a general framework and, so, can change the cosine similarity to a more sophis-
ticated and problem-dependant measure of pairwise node attribute similarity.

To define the probability of moving from a node to another based on both
topological and attribute similarity, we then additionally define W̄ and Ȳ to
be the row-normalized versions of the weight matrix W and attribute similarity
matrix Y respectively. Each row in W̄ and Ȳ describes a discrete probability
distribution corresponding to the likelihood of jumping from one node to the
next according to either topological similarity or attribute similarity.
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To control the trade-off between topology and attributes, we define the hyper-
parameter 0 ≤ α ≤ 1. Formally, we use i to denote the ith node in the walk
(x0 = s), and for each step i = 1, 2, ..., l in the walk, we sample πi ∼ U(0, 1) and

determine the ith node as follows: if πi < α, then P (xi = v | xi−1 = u) = Ŷuv,

else P (xi = v | xi−1 = u) = Ŵuv.
We follow previous works, and consider nodes that appear within a maximum

distance of each other in the same walk to be “context pairs” [2,11]. We call this
maximum distance the “context-size” and it is a hyper-parameter that controls
the size of a local neighbourhood of a node. Previous works show that increasing
context size typically improves performance, at some computational cost [2]. All
of the source-context pairs are added into a set D.

3.4 Hyperboloid Embedding Learning

For the hyperboloid embedding learning procedure of HEAT, we aim to maximise
the probability of observing all of the pairs inD in the low-dimensional embedded
space. We define the probability of two nodes sharing a connection to be a
function of their distance in the embedding space. This is motivated by the
intuition of network embedding that nodes separated by a small distances share
a high degree of similarity and should, therefore share a high probability of
connection, and nodes very far apart in the embedding space should share a low
probability of connection. This principle forms the basis of an objective function
that is optimized by HEAT to learn node embeddings.

We make the common simplifying assumption that the distance between
a source node and neighbourhood is symmetric (ie: P ((u, v)) = P ((v, u)) for
all u, v ∈ V ) [2]. To this end, we define the symmetric function P̂ ((u, v)) :=
−D2

Hn(u,v) to be the unnormalized probability of observing a link between
source node u and context node v, where u and v are their respective hyperbolic
positions. We square the distance because this leads to stable gradients [9].
We normalise the probability using: P ((u, v)) := exp(P̂ ((u, v)))/Z(u), where
Z(u) :=

∑
v′∈V exp(P̂ ((u, v′))).

However, computing the gradient of the partition function Z(u) involves a
summation over all nodes v ∈ V , which for large networks, is prohibitively com-
putationally expensive [2]. Following previous works, we overcome this limitation
through negative sampling. We define the set of negative samples for u, as the
set of v for we we observe no relation with u: Neg(u) := {v ∈ V | (u, v) 6∈ D}.
We further define NegK(u, v) := {xi ∼Pn Neg(u) | i = 1, 2, ...,K} ∪ {v} to be a
random sample with replacement of size K from the set of negative samples of u,
according to a noise distribution Pn including v. Following [2], we set Pn = U

3
4 ,

the unigram distribution raised to the 3/4 power.
We aim to represent the obtained distribution of pairs in a low-dimensional

hyperbolic space. To this end, we formulate a loss function L that encourages
maximising the probability of observing all positive sample pairs P (v | u) for all
(u, v) ∈ D and minimising the probability of observing all other pairs. To this
end, we define the loss function L for an embedding Θ = {u ∈ Hn | u ∈ V } to be
the the mean of negative log-likelihood of observing all the source-context pairs
in D, against the negative sample noise:
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L(Θ) = − 1

|D|
∑

(u,v)∈D

log

[
exp

(
−D2

Hn(u,v)
)∑

v′∈NegK(u,v) exp (−D2
Hn(u,v′))

]
(1)

The numerator of eq. (1), exp
(
−D2

Hn(u,v)
)
, is concerned with the hyperbolic

distance between nodes u and v in the positive sample set D. Minimising L
involves minimising the distance between u and v in the embedding space. The
denominator is a sum over all v′ in a given sample of size m of the negative
samples for node u. Minimising L involves maximising this term, thereby pushing
u and v′ far apart in the embedding space. Overall, we observe that minimising
L involves maximising P ((u, v)) for all (u, v) ∈ D as required. This encourages
source-context pairs to be close together in the embedding space, and u to be
embedded far from the noise nodes v′ [7].

3.5 Optimization

Since we use hyperboloid model, unlike some previous works [7, 9] that use the
Poincaré ball model and approximate gradients with retraction updates, we are
able to use full Riemannian optimization and so our gradient computation is
exact and possesses a simple form [20]. We follow a three step procedure in to
compute gradients and then update hyperbolic coordinates [20].

To compute the gradient of L for vector u ∈ Hn with respect to the hy-
perboloid ∇Hn

u L, we first compute the gradient with respect to the Minkowski
ambient space Rn:1 as

∇Rn:1

u L =

(
∂L

∂u1

∣∣∣∣
u

, ...,
∂L

∂un

∣∣∣∣
u

,− ∂L

∂un+1

∣∣∣∣
u

)
(2)

Let ouv := −D2
Hn(u,v) and NegK(u) :=

⋃
{v|(u,v)∈D}

NegK(u, v). Then

∇Rn:1

u L =
1

|D|
Σ

v∈NegK(u)
(δvv′ − P ((u, v))) · ∇Rn:1

u ouv′ (3)

and

∇Rn:1

u ouv = 2 · arccosh (−〈u,v〉Rn:1)√
〈u,v〉2Rn:1 − 1

· v (4)

where δvv′ is the Kronecker delta function. We then use the vector projection
formula to compute the projection of the ambient gradient to its component in
the tangent space:

∇Hn
u L = ∇Rn:1

u L+ 〈u,∇Rn:1

u L〉Rn:1 · u (5)

Having computed the gradient component in the tangent space of u, we define
the exponential map to take a vector x ∈ TuHn to its corresponding point on
the hyperboloid:

Expu(x) = cosh(r) · u + sinh(r) · x
r

(6)

Where r = ||x||Rn:1 =
√
〈x,x〉Rn:1 denotes the Minkowski norm of x.

Altogether, we have that the three-step procedure for computing the new
position of u, with learning rate η is:

1. Calculate ambient gradient ∇Rn:1

u L (eqs. (3) and (4)),
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(a) (b) (c)

Fig. 1: Exponential map on Hn. (a) provides a representation of H1 a one di-
mensional manifold in two dimensional Minkowski space R1:1. One point on H1

is highlighted: u. The red arrow is an example ∇Rn:1

xu L vector. Finally, TuHn is

given by the dotted black line. (b) highlights the component of ∇Rn:1

xu L lying on

TuHn. Finally, (c) plots the mapping from −η∇Hn
u L back to the Hyperboloid

using the exponential map Expu.

Table 1: Network statistics. Key: N is the number of nodes, |E| is the number
of edges, d is the dimension of node features, y is the number of classes.

Network N |E| d y

Cora ML [21] 2995 8416 2879 7
Citeseer [21] 4230 5358 2701 6
Pubmed [21] 18230 79612 500 3
PPI (LCC) [5] 3480 54806 50 121

MIT [19] 6402 251230 2804 32

2. Project ∇Rn:1

u L to tangent ∇Hn
u L (eq. (5)),

3. Set u = Expu

(
−η∇Hn

u L
)

(eq. (6)).

Figure 1 provides an example of this procedure operating on H1.

3.6 Setting α

For practical applications, we suggest the following approach to set thew value
of the hyper-parameter α that controls the trade-off between topology and simi-
larity in the sampling process: Randomly sample a proportion of edges from the
network and remove them. Next, select an equal number of ‘non-edge’ node pairs
(u, v) ∈ V ×V \E. These two edge sets will form a validation set. Then perform
HEAT to generate hyperboloid embeddings for a range of values of α. Removed
edges can be ranked against the sampled non-edges and a global ranking mea-
sure, such as AUROC or AP could be used to select a value for α. This procedure
is performed in section 4.4, where we evaluate link prediction. As we show in
section 4.5, HEAT is robust to the setting of α for three common downstream
tasks.

4 Experimental Validation

4.1 Datasets

We evaluate HEAT on three citation networks [21], one PPI network [5], and
one social network for MIT university [19]. Features for all networks were scaled
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Table 2: Description of benchmark algorithms.

Algorithm Description

DEEPWALK [11] One of the most successful representation learning approaches based on
random walks. Considers only structural information.

ATTRPURE [19] Performs SVD on a devised attribute similarity matrix.
TADW [10] Uses matrix factorisation to jointly model attribute and structural infor-

mation.
AANE [22] A distributed alternative to TADW.
SAGEGCN [13] Graph convolutional network (GCN) originally designed for semi-

supervised learning but adapted in [5] for unsupervised learning.
N&K [7] Hyperbolic embedding approach based only on structural information.

to have a mean of 0 and a standard deviation of 1. Table 1 shows the statistics
of these five networks.

4.2 Benchmark Algorithms and Settings

Table 2 details all of the benchmark algorithms. For all benchmark methods we
adopt the original source code. We train all methods in an unsupervised manner.

4.3 Network Reconstruction & Link Prediction

Following common practice, we use network reconstruction to evaluate the ca-
pacity of the learned embeddings to reflect the original data [7]. After training
our model to convergence upon the complete information, we compute distances
in the embedding space between all pairs of nodes according to both models.

To evaluate the link prediction ability of the learned embeddings, we ran-
domly select 10% of the edges in the network and remove them [7]. We then
randomly select also an equal number of true non-edges in the network. An em-
bedding is learned for each incomplete network and pairs of nodes are ranked
by distance.

Table 3 provides a summary of the network reconstruction and link predic-
tion results. For reconstruction, we observe that HEAT has a high capacity for
learning network structure, even at low dimensions. Further, by incorporating
attributes, performance increased further on two out of the five networks stud-
ied. The link prediction results demonstrate that HEAT is capable of highly
competitive link prediction ability with and without attributes. We see that the
inclusion of attributes improves performance on three out of five networks and
suggest that this is because of the high level of homophily in citation networks.

4.4 Node Classification

To evaluate node classification, we learn an embedding, using complete topo-
logical and attribute information, in an unsupervised manner. We then use an
out-of-the-box Support Vector Classifier (SVC) to evaluate the separation of
classes in the embedding space For hyperbolic embeddings (HEAT and N&K),
we first project to the Klein model of hyperbolic space, which preserves straight
lines [14]. For the PPI network, each protein has multiple labels from the Gene
Ontology [5]. To evaluate our model in this multi-label case, we adopt a one-vs-all
setting, where we train a separate classifier for each class.
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Table 3: Summary of network reconstruction and link prediction results for em-
bedding dimension 10. We present AUROC and AP scores, mean average pre-
cision (mAP) and precisions at k (p@k) for k ∈ {1, 3, 5, 10} to 3 decimal places
and rank to 1 decimal place. Rank is the average position that a true edge ap-
pears in the list of false edges ranked by distance. For mAP, we rank distances
with respect to each node in the network and compute a separate precision score
for each node, then report the mean of these precisions. For p@k, report the
number of the k closest nodes that are true neighbours. All scores are averaged
over 30 random starting seeds. HEATα=0.2 considers node attributes, whereas
HEATα=0.0 does not. Bold text indicates the best score.

Reconstruction Link Prediction

Cora ML

Rank AUROC AP mAP p@1 p@3 p@5 p@10 Rank AUROC AP mAP

N&K 209.8 0.987 0.986 0.674 0.791 0.736 0.723 0.713 96.6 0.922 0.935 0.248
AANE 3945.7 0.758 0.775 0.145 0.182 0.192 0.206 0.238 315.3 0.743 0.761 0.098
TADW 539.9 0.967 0.959 0.401 0.458 0.425 0.438 0.444 72.8 0.941 0.933 0.180

ATTRPURE 4768.0 0.708 0.735 0.124 0.156 0.164 0.174 0.203 356.5 0.710 0.736 0.093
DEEPWALK 185.6 0.989 0.986 0.712 0.757 0.723 0.722 0.720 178.9 0.855 0.896 0.224
SAGEGCN 913.9 0.944 0.935 0.289 0.304 0.341 0.363 0.392 160.5 0.870 0.873 0.114

HEATα=0.00 40.9 0.998 0.997 0.853 0.874 0.869 0.858 0.850 131.8 0.893 0.928 0.276
HEATα=0.20 58.6 0.996 0.995 0.838 0.895 0.838 0.823 0.813 49.0 0.961 0.963 0.288

Citeseer

N&K 67.5 0.994 0.994 0.799 0.774 0.772 0.800 0.837 145.5 0.820 0.853 0.204
AANE 3741.9 0.650 0.645 0.097 0.088 0.112 0.132 0.196 284.8 0.646 0.643 0.086
TADW 297.1 0.972 0.964 0.376 0.314 0.352 0.399 0.469 55.9 0.931 0.917 0.149

ATTRPURE 3922.2 0.633 0.630 0.089 0.083 0.102 0.126 0.189 297.1 0.630 0.630 0.083
DEEPWALK 23.5 0.998 0.997 0.798 0.721 0.805 0.853 0.899 259.9 0.677 0.775 0.213
SAGEGCN 618.9 0.942 0.939 0.216 0.160 0.291 0.364 0.470 138.1 0.829 0.848 0.132

HEATα=0.00 9.6 0.999 0.999 0.830 0.740 0.898 0.932 0.967 16.5 0.981 0.979 0.791
HEATα=0.20 7.6 0.999 0.999 0.926 0.899 0.894 0.908 0.933 6.3 0.993 0.994 0.810

Pubmed

N&K 451.5 0.995 0.994 0.737 0.743 0.803 0.835 0.835 801.7 0.880 0.900 0.210
AANE 19746.8 0.777 0.784 0.104 0.106 0.187 0.219 0.253 1503.8 0.774 0.782 0.088
TADW 2155.6 0.976 0.973 0.514 0.502 0.550 0.600 0.617 465.5 0.930 0.923 0.157

ATTRPURE 25982.8 0.707 0.707 0.097 0.098 0.175 0.207 0.241 1954.5 0.706 0.706 0.082
DEEPWALK 565.1 0.994 0.993 0.816 0.794 0.808 0.845 0.856 1742.8 0.738 0.833 0.203
SAGEGCN 4118.9 0.954 0.945 0.261 0.215 0.341 0.405 0.467 635.5 0.905 0.901 0.114

HEATα=0.00 115.8 0.999 0.998 0.823 0.753 0.863 0.896 0.905 463.6 0.930 0.931 0.202
HEATα=0.20 161.8 0.998 0.998 0.908 0.913 0.876 0.892 0.893 322.8 0.952 0.954 0.256

PPI

N&K 6757.7 0.938 0.940 0.421 0.801 0.699 0.664 0.640 722.1 0.912 0.918 0.185
AANE 50719.7 0.537 0.588 0.089 0.470 0.251 0.201 0.168 3822.2 0.535 0.582 0.070
TADW 23408.8 0.786 0.767 0.142 0.502 0.298 0.258 0.242 2237.5 0.728 0.722 0.080

ATTRPURE 51304.6 0.511 0.512 0.038 0.164 0.084 0.065 0.051 3854.5 0.511 0.511 0.018
DEEPWALK 9962.9 0.909 0.903 0.388 0.721 0.582 0.543 0.523 1066.4 0.870 0.873 0.144
SAGEGCN 44688.5 0.592 0.607 0.095 0.455 0.218 0.169 0.137 3622.2 0.560 0.574 0.067

HEATα=0.00 4926.0 0.955 0.952 0.468 0.782 0.696 0.664 0.643 431.6 0.948 0.947 0.255
HEATα=0.20 5628.5 0.949 0.946 0.457 0.786 0.667 0.627 0.604 493.0 0.940 0.940 0.241

MIT

N&K 32506.7 0.927 0.930 0.565 1.000 0.884 0.855 0.827 2727.1 0.918 0.922 0.256
AANE 157174.0 0.647 0.639 0.189 1.000 0.528 0.414 0.321 11816.8 0.646 0.638 0.098
TADW 79981.9 0.820 0.814 0.397 1.000 0.760 0.700 0.639 6133.4 0.816 0.815 0.180

ATTRPURE 171241.0 0.615 0.617 0.184 0.993 0.543 0.428 0.323 12823.6 0.616 0.617 0.098
DEEPWALK 33037.6 0.926 0.919 0.578 1.000 0.857 0.819 0.782 2834.4 0.915 0.909 0.241
SAGEGCN 89637.4 0.798 0.797 0.380 1.000 0.670 0.599 0.545 7142.0 0.786 0.784 0.153

HEATα=0.00 24776.7 0.944 0.940 0.639 1.000 0.902 0.877 0.850 2246.9 0.933 0.930 0.279
HEATα=0.20 28621.0 0.936 0.934 0.633 1.000 0.901 0.870 0.839 2510.4 0.925 0.925 0.273
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Table 4: Summary of node classification results for embedding dimension 10. All
measures are micro-averaged. HEATα=0.2 considers node attributes, whereas
HEATα=0.0 does not. Bold indicates best performance. Mean Rank on All
Datasets is the average position of an algorithm in a ranked list of performance.

Cora ML PPI

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.761 0.827 0.704 0.953 0.387 0.695 0.268 0.704
AANE 0.706 0.814 0.624 0.944 0.395 0.688 0.277 0.705
TADW 0.837 0.869 0.808 0.983 0.393 0.688 0.275 0.705

ATTRPURE 0.675 0.782 0.594 0.937 0.398 0.688 0.281 0.705
DEEPWALK 0.855 0.886 0.827 0.977 0.387 0.694 0.269 0.704
SAGEGCN 0.679 0.758 0.616 0.933 0.388 0.694 0.269 0.704

HEATα=0.0 0.804 0.858 0.756 0.965 0.388 0.694 0.269 0.704
HEATα=0.2 0.849 0.884 0.817 0.980 0.388 0.694 0.269 0.704

Citeseer MIT

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.516 0.856 0.370 0.861 0.508 0.858 0.361 0.937
AANE 0.609 0.829 0.482 0.897 0.036 0.414 0.019 0.866
TADW 0.878 0.899 0.857 0.980 0.544 0.739 0.430 0.949

ATTRPURE 0.597 0.837 0.465 0.892 0.056 0.409 0.030 0.869
DEEPWALK 0.927 0.939 0.916 0.987 0.661 0.841 0.544 0.965
SAGEGCN 0.466 0.727 0.347 0.843 0.480 0.832 0.337 0.929

HEATα=0.0 0.594 0.857 0.455 0.879 0.634 0.849 0.507 0.959
HEATα=0.2 0.887 0.914 0.861 0.981 0.637 0.819 0.522 0.960

Pubmed Mean Rank on All Datasets

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.797 0.815 0.780 0.933 5.4 3 5.6 5.6
AANE 0.830 0.840 0.819 0.947 4.2 5.8 4.2 4.2
TADW 0.778 0.797 0.761 0.921 3.8 4.8 3.6 3.2

ATTRPURE 0.781 0.806 0.758 0.912 5.2 6.6 5.4 5.2
DEEPWALK 0.765 0.792 0.740 0.907 3.8 3.2 3.6 3.2
SAGEGCN 0.768 0.791 0.746 0.906 6.8 6.6 6.8 7.4

HEATα=0.0 0.807 0.823 0.791 0.933 4 3 4 4
HEATα=0.2 0.797 0.815 0.780 0.933 2.6 2.8 2.6 3

Table 4 proves a summary of the node classification results. While HEAT
never ranked first for any network, it consistently ranked highly on all networks
unlike all other benchmark algorithms – with HEATα=0.2 the best overall rank
averaged across all the datasets. Further, we observe that when considering node
attributes, i.e., α = 0.2, HEAT outperformed the other hyperbolic embedding
algorithm N&K on all networks. We also note that, even without node attributes,
HEAT obtained better results than N&K on all networks. Comparing with the
Euclidean benchmark algorithms, we observe competitive results – especially
when incorporating attributes.

4.5 Sensitivity of Control Parameters

We carried out preliminary experiments to evaluate HEAT’s robustness to the
setting of the control parameters. Our results indicated that the most sensitive
parameter is α, which controls the trade off between considering topology and
attributes. We run HEAT over a range of values α ∈ [0, 1] in steps of 0.05.



HEAT: Hyperbolic Embedding of Attributed Networks 11

(a) Network reconstruction (b) Link prediction (c) Node classification

Fig. 2: The effect of the setting of α (x-axis) on the AUROC scores (y-axis) on
three downstream machine learning tasks: (a) network reconstruction, (b) link
prediction, and (c) node classification.

Figure 2 plots AUROC scores for network reconstruction, link prediction and
node classification obtained from a 5 dimensional embedding. From the three
plots, we observe that the performance of HEAT on the three tasks on all of the
networks is robust to a wide range of values of α (especially α ∈ [0, 0.5]).

5 Conclusion

This paper presents HEAT to fill the gap of embedding attributed networks
in hyperbolic space. We have designed a random walk algorithm to obtain the
training samples that capture both network topological and attribute similarity.
We have also derived an algorithm that learns hyperboloid embeddings from the
training samples. Our results on five benchmark attributed networks show that,
by including attributes, HEAT can improve the quality of a learned hyperbolic
embedding in a number of downstream machine learning tasks. We find that,
in general, HEAT does not perform as well in the node classification task com-
pared with the Euclidean benchmark algorithms (table 4) than in the network
reconstruction and link prediction tasks (table 3): while it is the most consistent
across all datasets, it does not rank first on any particular dataset as it does for
reconstruction and link prediction. This could be attributed to the SVC learn-
ing sub-optimal decision boundaries, since it is using a Euclidean optimization
procedure. Logistic regression has been generalized to the Poincaré ball [23], and
this may provide superior results. However, we leave this as future work.

Overall, HEAT provides a general hyperbolic embedding method for both
unattributed and attributed networks, which opens the door to hyperbolic man-
ifold learning on a wide ranges of networks.
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