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A Defensive Marginal Particle Filtering Method for Data Assimilation\ast 

Linjie Wen\dagger , Jiangqi Wu\dagger , Linjun Lu\ddagger , and Jinglai Li\S 

Abstract. Particle filtering (PF) is an often used method to estimate the states of dynamical systems. A major
limitation of the standard PF method is that the dimensionality of the state space increases as the
time proceeds and eventually may cause degeneracy of the algorithm. A possible approach to alleviate
the degeneracy issue is to compute the marginal posterior distribution at each time step, which leads
to the so-called marginal PF method. A key issue in the marginal PF method is to construct a good
sampling distribution in the marginal space. When the posterior distribution is close to Gaussian, the
ensemble Kalman filter (EnKF) method can usually provide a good sampling distribution; however
the EnKF approximation may fail completely when the posterior is strongly non-Gaussian. In this
work we propose for modest dimensional filtering problems a defensive marginal PF algorithm which
constructs a sampling distribution in the marginal space by combining the standard PF and the
EnKF approximation using a multiple importance sampling (MIS) scheme. An important feature
of the proposed algorithm is that it can automatically adjust the relative weight of the PF and the
EnKF components in the MIS scheme in each step, according to how non-Gaussian the posterior is.
With numerical examples we demonstrate that the proposed method can perform well regardless of
whether the posteriors can be well approximated by Gaussian.

Key words. ensemble Kalman filter, marginal particle filter, data assimilation, multiple importance sampling,
particle filter, defensive importance sampling
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1. Introduction. Assimilation of data into mathematical models is an essential task in
many fields of science and engineering, ranging from meteorology [13] to robotics [33]. Simply
speaking, data assimilation is a method to estimate the optimal prediction based on both the
output of the mathematical model, which is only an approximation of the real-world system,
and the observations that are subject to measurement noise [20]. The Kalman filter type of
methods, which are based on linear control theory and optimization are a popular tool for
data assimilation problems. Unfortunately, it is usually challenging to apply such methods to
nonlinear systems, as they often require some linearization or approximation processes, e.g.,
the extended Kalman filter [17] or the ensemble Kalman filter [11]. Sometimes these methods
can even fail [19, 30] when strong nonlinearity is present.
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On the other hand, the sequential Monte Carlo (SMC) method (see, e.g., [8]), also known
as particle filtering (PF), can deal with problems with strongly nonlinear models, without
any linearization or approximation. The basic idea of PF is the following. Suppose that
the mathematical model is a nonlinear stochastic dynamical system (more details about the
mathematical model are provided in section 2.1 with the specific formulation of the model given
by (2.1)), and our goal is to estimate the hidden states \{ ut\} Tt=0 of the system from noisy partial
observations \{ yt\} Tt=0 of the system. This can be done with the so-called Bayes filter (also
known as the optimal filter), where the posterior probability density function of the hidden
states is estimated by the Bayes' rule recursively [9]. As the posterior distribution usually does
not admit an analytical form, the PF method approximates the posterior distribution with
Monte Carlo sampling (hence its name SMC). That is, PF employs a number of independent
random realizations called particles, sampled directly from the state space, to represent the
posterior probability, namely, at each time t, the method first generates particles and then
updates the weight of each particle according to the observations yt. For further discussions
on the PF method and its applications, we refer to [?, 2, 10, 4] and the references therein.

The PF method in its very basic form can be understood as drawing weighted samples
according to the joint distribution \pi (u0:T | y0:T ) using the importance sampling (IS) technique.
When T is large, the method thus performs IS simulations in a high-dimensional state space,
which may result in degeneracy of the particles (the IS weights becoming zero for all but one
particle) [10]. On the other hand, in practice one is often only interested in the marginal dis-
tribution \pi (ut| y0:t), which implies that it is unnecessary to sample the high-dimensional joint
distribution \pi (u0:T | y0:T ). Instead, one can perform IS only in the marginal space of \pi (ut| y0:t),
and based on this idea, a method called marginal particle filter (MPF) was proposed in [18] to
alleviate the degeneracy issue. The method later has found applications in the estimation of
filter derivative [29] and robot localization [25]. A key in the MPF method is to construct an
IS or proposal distribution that can approximate well the marginal posterior \pi (ut| y0:t) at each
time step. One very natural idea is to construct the proposal distribution using the ensemble
Kalman filter (EnKF). The basic idea behind EnKF is to assume the posterior distribution
at each step follows a Gaussian distribution with the mean and covariance estimated from
samples, and then update the samples according to the Kalman filter formulation. We em-
phasize here that, the difference between a direct use of EnKF and using it as an proposal in a
PF/SMC scheme is that the SMC scheme can correct for the bias in the EnKF particles (due
to the Gaussian approximation) by assigning an IS weight to each particle. The idea of using
the EnKF approximation as a proposal distribution in PF is not new: for example, it has been
used in [28] to construct an independent sequential IS distribution in the PF framework, and
later its use in the MPF scheme is discussed in [26]. A limitation of the EnKF-based proposal
distribution is that (just like the EnKF method itself) it may result in extremely poor esti-
mates or even fail completely (see the example in section 4.1) when the posterior is strongly
non-Gaussian; unfortunately it is almost impossible to know whether the posteriors are close
to Gaussian in advance. The main contribution of the work is to propose defensive scheme to
prevent such a failure of the estimation: it can automatically adjust between a proposal based
on the EnKF approximation and a standard PF proposal and, as a result, the proposed algo-
rithm may perform well regardless of whether the posteriors are close to Gaussian. Specifically
our defensive scheme combines the EnKF-based proposal and the standard PF proposal using
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the multiple IS method (also known as the deterministic mixture). In fact, combining several
different IS distributions using multiple IS [34] to prevent the risk of failure of a single IS
distribution is a very popular safeguard measure in the IS literature, e.g., [15, 27, 7], and the
use of MPF here makes it possible to implement the method in the filtering problems. A key
issue in the multiple IS method is to determine the weight of each component (in the present
setting the two components are EnKF and PF, respectively). Ideally at each time step we
want the method to choose the EnKF approximation if the posterior distribution is close to
Gaussian and the standard PF otherwise. To achieve this goal, we provide an algorithm that
can automatically determine the relative weight between the EnKF and the PF components
by minimizing the variance of the resulting IS weight. We emphasize that such an ability
to automatically adjust the weights of the EnKF and the PF components is a main feature
that sets the proposed algorithm apart from many existing schemes combining EnKF and PF,
notably [6, 12, 21, 28, 32]. Finally it is important to note that the proposed defensive MPF
scheme does not depend on the EnKF approximation, and it can be used with any proposal
distribution constructed in the marginal space.

The rest of the paper is arranged as follows. In section 2, we first introduce the basic setup
of the filtering problem of dynamical models and then discuss the standard PF and EnKF
methods for solving these types of problems. In section 3, we present in detail our defensive
MPF method. Numerical examples are provided in section 4 to compare the performance
of the proposed method and the existing ones, and finally section 5 offers some concluding
remarks.

2. The PF and the EnKF methods. We give a brief overview of the formulation of the
PF and the EnKF methods in this section.

2.1. The problem setup. We consider the filtering problem in a generic form:

ut \sim ft(\cdot | ut - 1), u0 \sim \pi 0(u0),(2.1a)

yt = Htut + \bfiteta t,(2.1b)

where ut \in \BbbR nu denotes the state vector at time t, yt \in \BbbR nv are the observed data at time t,
ft(\cdot | ut - 1) is the distribution of ut conditional on ut - 1, Ht, an nv\times nu matrix, is the observation
operator at time t, and \bfiteta t is the observation noise. In this work, we shall assume that the
observation noise \bfiteta t is Gaussian and the noise at different time steps is independent of each
other. In a filtering problem, the observation yt arrives sequentially in time and the goal is
to estimate the true state ut, based on the prediction by (2.1a) and the measurement (2.1b).
Finally we emphasize here that the dynamic model (2.1a) is Markovian, in that any future
ut+1 is independent of the past given the present ut, and the observation yt+1 is independent
of y0:t conditional on ut:

(2.2) \pi (ut+1| u0:t,y0:t) = \pi (ut+1| ut) and \pi (yt+1| u0:t+1,y0:t) = \pi (yt+1| ut+1),

which will be used in the derivation of the PF method. Note here that throughout this paper
we use \pi as a generic notation of probabilistic distribution, the actual meaning of which is
specified by its arguments.



4 LINJIE WEN, JIANGQI WU, LINJUN LU, AND JINGLAI LI

2.2. The PF. In general, we can formulate the filtering problem in a Bayesian inference
framework, i.e., we try to infer state parameters u0:T from data y0:T for some positive integer
T , and ideally we can compute the posterior distribution using the Bayes' formula

\pi (u0:T | y0:T ) =
\pi (y0:T | u0:T )\pi (u0:T )

\pi (y0:T )
.

The PF (or SMC) method allows one to generate (weighted) samples, called particles, from the
posterior distribution \pi (u0:T | y0:T ), which can be used to evaluate any quantities of interest
associated with the posterior \pi (u0:T | y0:T ).

We now give a brief overview of the PF method, and it is easier to start with a standard
Monte Carle (MC) estimation. Suppose that there is a real-valued function h(\cdot ) : RT\times nu \rightarrow R
and we are interested in the expectation

I = \BbbE u0:T | y0:T [h(u0:T )] =

\int 
h(u0:T )\pi (u0:T | y0:T )du0:T

which can be estimated with an MC estimator

\^I =
1

M

M\sum 
m=1

h(um
0:T ),

where \{ um
0:T \} Mm=1 are samples drawn from \pi (u0:T | y0:T ). It should be clear that the MC

estimator \^I is an unbiased estimator of I. In many practical problems, drawing samples from
the target distribution \pi (u0:T | y0:T ) can be a challenging task and, in this case, we can use the
technique of IS. The IS method introduces an importance distribution q(u0:T ) and rewrites

I =

\int 
h(u0:T )\pi (u0:T | y0:T )du0:T =

\int 
h(u0:T )w(u0:T )q(u0:T )du0:T

with w(u0:T ) = \pi (u0:T | y0:T )/q(u0:T ) the IS weight. It yields directly an IS estimator of I:

\^IIS =
1

M

M\sum 
m=1

h(um
0:T )w(u

m
0:T ),

where the samples\{ um
0:T \} Mm=1 are drawn from the importance distribution qt(u0:T ), and it can

also be verified that the IS estimator is also an unbiased one for I. The IS requires one to gen-
erate samples from q(u0:T ) and to draw the joint sample u0:T from a joint distribution q(u0:T ).
Using the Markovian property in (2.2), we can write the posterior distribution \pi (u0:T | y0:T )
in the form of

(2.3) \pi (u0:T | y0:T ) =
1

ZT
\pi (y0| u0)\pi (u0)

T\prod 
t=1

\pi (yt| ut)\pi (ut| ut - 1),

where ZT = \pi (y0:T ) is the normalization constant. Similarly, we can also assume that the
importance distribution q(u0:T ) is given in such a sequential form:

q(u0:T ) = q0(u0)

T\prod 
t=1

qt(ut| ut - 1),
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and the resulting IS weight function is

(2.4) w0(u0) =
\pi (y0| u0)\pi (u0)

q0(u0)

and

(2.5) wT (u0:T ) =
1

ZT
w0(u0)

T\prod 
t=1

\alpha t(u0:t)

for t > 0, where \alpha t is the incremental weight function:

(2.6) \alpha t(u0:t) =
\pi (yt| ut)\pi (ut| ut - 1)

qt(ut| ut - 1)
.

We note that, in the formulation above, we do not have knowledge of the normalization
constant ZT . In the implementation, however, we can simply set the normalization constant
to be 1, and renormalize the computed weights. Namely, suppose that we draw a set of
samples \{ um

0:T \} Mm=1 from the IS distribution q(u0:T ), and we compute the weights \{ wm
T \} Mm=1

of the samples using (2.4)--(2.6) (and taking ZT = 1), and then renormalize the weights as

(2.7) Wm
T =

wm
T\sum M

m\prime =1w
m\prime 
T

.

The PF algorithm performs the procedure described above in a recursive manner:

Algorithm 2.1 The PF algorithm.

1. At t = 0, sample \{ um
0 \} Mm=0 \sim q0(u0) and compute \{ wm

0 = w0(u
m
0 )\} Mm=1 using (2.4);

renormalize the weights: Wm
0 = 1\sum M

m\prime =1 w
m\prime 
0

wm
0 .

2. At t > 1:
3. prediction step: for each m = 1, . . . ,M , draw um

t \sim qt(ut| um
t - 1);

4. updating step: for each m = 1, . . . ,M , compute the incremental function \alpha m
t

from (2.6); update the weights wm
t = \alpha m

t wm
t - 1, and renormalize them as Wm

t =
1\sum M

m\prime =1 w
m\prime 
t

wm
t for each m = 1, . . . ,M .

In the standard PF method, one simply takes q0(u0) = \pi (u0) and

qt(ut| ut - 1) = \pi (ut| ut - 1),

and as a result, w0 = \pi (y0| u0), and the incremental weight function becomes

(2.8) \alpha t(u0:t) = \pi (yt| ut).

In the PF algorithm, the variance of the importance weight wt(u0:t) will increase over time,
and thus as the time t increases, the IS weights will become negligibly small for all but one
sample, an issue known as particle degeneracy. To address the issue, a resampling step is
often performed to obtain a set of equally weighted particles, the procedure of which can be
found in, for example, [8, 10].
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2.3. The EnKF. We now discuss the EnKF method which computes a Gaussian approxi-
mation of the posterior distribution \pi (ut| y0:t). For simplicity we assume that the observation
operator Ht is linear and the observation noise \bfiteta t is Gaussian. Now suppose that at time t, the
observation noise is \bfiteta t \sim N(0, Rt) and the prior \pi (ut| y0:t - 1) can be approximated by a Gauss-
ian distribution with mean \~\bfitmu t and covariance \~\Sigma t. It follows that the posterior distribution
\pi (ut| y0:t) is also Gaussian and its mean and covariance can be obtained analytically:

(2.9) \bfitmu t = \~\bfitmu t +Kt(yt  - Ht \~\bfitmu t), \Sigma t = (I  - KtHt)\~\Sigma t,

where I is the identity matrix and

(2.10) Kt = \~\Sigma tH
T
t (Ht

\~\Sigma tH
T
t +Rt)

 - 1

is the so-called Kalman gain matrix. Moreover, when the prior \pi (ut| y0:t - 1) is exactly Gauss-
ian, this formulation becomes the standard Kalman filter.

In the EnKF method, one avoids computing the mean and the covariance directly in each
step. Instead, both the prior and the posterior distributions are represented with a set of
samples, known as an ensemble. Specifically, let \{ \~um

t \} Mm=1 be a set of samples drawn from the
prior distribution \pi (ut| y0:t - 1), and we shall compute a Gaussian approximation of \pi (ut| y0:t - 1)
from the samples. Namely, we estimate the mean and the covariance of \pi (ut| y0:t - 1) from the
samples:

(2.11) \~\bfitmu t =
1

M

M\sum 
m=1

\~um
t , \~\Sigma t =

1

M  - 1

M\sum 
m=1

(\~um
t  - \~\bfitmu t)(\~u

m
t  - \~\bfitmu t)

T ,

and, as is mentioned earlier, the prior distribution \pi (ut| y0:t - 1) can be approximated by
N(\~\mu t, \~\Sigma t). It is not hard to see that the posterior distribution is also Gaussian with mean \bfitmu t

and covariance \Sigma t given by (2.9). Moreover it can be verified that the samples

(2.12) um
t = \~um

t +Kt(yt  - (Ht\~u
m
t + \bfiteta m

t )), \bfiteta m
t \sim N(0, Rt),

follow the distribution N(\bfitmu t,\Sigma t), provided that \~um
t \sim N( \~\bfitmu t, \~\Sigma t) for all m = 1, . . . ,M . That

is, \{ um
t - 1\} Mm=1 is the (posterior) ensemble at step t. Given the ensemble \{ um

t - 1\} Mm=1 at time
t - 1, the EnKF algorithm performs the following two steps at time t:

\bullet prediction step: for each m = 1, . . . ,M , draw \~um
t = ft(\~ut| um

t - 1) + \bfitepsilon mt ;
\bullet updating step: for each m = 1, . . . ,M , compute um

t = \~um
t +Kt(yt  - Ht\~u

m
t  - \eta mt ).

Finally we should note that, as the dynamical model is generally nonlinear, the EnKF method
can only provide an approximation of the true posterior distribution, no matter how large the
sample size is, which is major limitation of the method.

3. The defensive MPF algorithm.

3.1. The MPF. As is discussed in section 2.2, the standard PF method aims to perform
IS for the joint posterior distribution \pi (u0:t| y0:t), where the dimensionality of the state space
grows as t increases. On the other hand, in many practical filtering problems, one is often
only interested in the marginal posterior distribution at each step, \pi (ut| y0:t), rather than the
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whole joint distribution. This then yields a simple idea: if we perform IS in the marginal
space, the dimensionality of the problem is thus fixed and much smaller than that of the joint
parameter space. For any time t, suppose that there is a function defined on the marginal
space, ht : R

nu \rightarrow R, and we are interested in the posterior expectation of ht(ut):

I =

\int 
ht(ut)\pi (ut| y0:t)dut.

We shall construct an IS distribution qt(ut| y0:t) and estimate I as

(3.1) \^IIS =
1

M

M\sum 
m=1

ht(u
m
t )wt(u

m
t ),

where um
t are drawn from qt(ut) and wt(u

m
t ) = \pi (ut| y0:t)/qt(ut). The key issue here is cer-

tainly to find a good IS distribution qt(ut), and ideally this IS distribution should approximate
the marginal posterior \pi (ut| y0:t). We first note that a special choice of the IS distribution is

(3.2) qt(ut) = \pi (ut| y0:t - 1),

and it should be clear that the associated weight becomes wt(ut) = \pi (yt| ut) and the algorithm
is essentially equivalent to the standard PF method. In [18], a kernel-based IS distribution is
suggested:

(3.3) \pi (ut| y0:t - 1) =

\int 
\pi (ut| ut - 1)\pi (ut - 1| y0:t - 1)du0:t - 1,

that is, this integral is approximated by

(3.4) \pi (ut| y0:t - 1) \approx 
M\sum 

m=1

wm
t - 1\pi (ut| um

t - 1),

where \{ um
t - 1\} Mm=1 are the samples generated in the previous step and wm

t - 1 is the associated
weight of each sample um

t - 1, and each \pi (ut| y0:t - 1) is obtained using a weighted Kernel density
estimation (KDE) method. As a result the method requires one to perform a weighted KDE
procedure at each time step, which can be computationally intensive even with some fast KDE
algorithms (e.g., the dual-tree methods). We discuss an alternative approach to constructing
the IS distribution in the next section.

3.2. The EnKF-based IS distribution. When the marginal posterior is close to Gaussian,
the EnKF method can compute a good IS distribution in a very efficient manner. Loosely
speaking, at a given time, we first compute an ensemble of the marginal posterior distribution
using the EnKF scheme, estimate the associated Gaussian approximation from the ensemble,
and use it as the IS distribution in the MPF. Specifically, letting \{ um

t \} Mm=1 be the posterior
ensemble at time t obtained with the EnKF formulation, we use the following procedure to
compute the IS distribution:
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Algorithm 3.1 Estimating the IS distribution from the ensemble.

1. estimate the mean and covariance from the posterior ensemble \{ um
t \} Mm=1:

(3.5) \mu \mathrm{E}\mathrm{n} =
1

M

M\sum 
m=1

um
t , \Sigma \mathrm{E}\mathrm{n} =

1

M  - 1

M\sum 
m=1

(um
t  - \mu \mathrm{E}\mathrm{n})(u

m
t  - \mu \mathrm{E}\mathrm{n})

T ;

let q\prime \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}(u) = N(\mu \mathrm{E}\mathrm{n},\Sigma \mathrm{E}\mathrm{n});
2. draw M samples u1

t , . . . ,u
M
t from q\prime \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}, and compute the weight of each sample, and

renormalize it:

wm
t =

\pi (um
t | y0:t)

q\prime \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}(u
m
t )

, Wm
t =

wm
t\sum M

m\prime =1w
m\prime 
t

;

3. estimate the mean and covariance of the weighted ensemble \{ (um
t ,Wm

t )\} :
(3.6)

\bfitmu \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d} =
M\sum 

m=1

Wm
t um

t , \Sigma \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d} =
M\sum 

m=1

Wm
t (um

t  - \bfitmu \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d})(u
m
t  - \bfitmu \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d})

T ;

let q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} = N(\bfitmu \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d},\Sigma \mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}).

It is worth noting that the EnKF ensemble does not exactly follow the posterior distri-
bution, and thus we choose not to directly use q\prime \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} in Algorithm 3.1, i.e., the Gaussian
approximation estimated from the EnKF ensemble, as the IS distribution. Instead, we intro-
duce additional steps (steps 2 and 3 in Algorithm 3.1), in which we first generate a weighted
ensemble according to the true posterior, and then update the Gaussian approximation ac-
cording to this weighted ensemble. By doing so we ensure that the Gaussian approximation
is constructed with respect to the true posterior ensemble.

3.3. The defensive MPF. As has been discussed earlier, when strong nonlinearity is
present, the true posterior can no longer be approximated by a Gaussian distribution. In this
case the IS distribution obtained with the EnKF method may deviate significantly from the
true marginal posterior, leading to erroneous estimates of the states. To address the issue,
we use the idea of multiple IS (MIS), also known as the deterministic mixture [27]. That is,
to prevent the failure of the IS distribution computed with the EnKF method, one uses a
mixture of the Gaussian approximation computed by EnKF and a safe distribution, which in
our case is the standard PF distribution, yielding

(3.7) qt(ut| a) = aq\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}(ut) + (1 - a)q\mathrm{P}\mathrm{F}(ut),

where q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} is the Gaussian distribution computed with the EnKF procedure described above,
q\mathrm{P}\mathrm{F} is the distribution given by (3.2), which, as discussed earlier, is equivalent to the standard
PF, and a \in [0, 1] is the weight of the EnKF component, which will be referred to as the
weight parameter hereafter. This mixture distribution 3.7 is the defensive IS scheme proposed
in [15]. If this mixture IS distribution is used in (3.1) to estimate I, the estimation variance
of the mixture is bounded by [15]

\sigma 2
\mathrm{D}\mathrm{I}\mathrm{S} \leq 1

1 - a
\sigma 2
\mathrm{P}\mathrm{F} +

1 - a

a
I2
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with \sigma 2
\mathrm{P}\mathrm{F} being the estimation variance of q\mathrm{P}\mathrm{F}, regardless of how large the estimation variance

of q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} is. The MIS scheme is very similar to the mixture IS distribution in (3.7), except that
it generates a fixed number of samples from each component, namely, aM samples from q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}

and (1 - a)M from q\mathrm{P}\mathrm{F} and, hence, the name deterministic mixture. It has been shown that
the use of MIS often yields more accurate and robust estimates than the standard mixture IS
distribution [15, 27], and so here we adopt the MIS method as our defensive scheme.

An important issue here is how to compute the IS weight of each sample in the MIS
scheme. In [34], the authors recommend the so-called balance heuristic weight:

(3.8) wt(ut) =
\pi (ut| y0:t)

aq\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} + (1 - a)q\mathrm{P}\mathrm{F}
=

1
a

w\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}
+ (1 - a)

w\mathrm{P}\mathrm{F}

,

where

(3.9) w\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} =
\pi (yt| ut)\pi (ut| y0:t - 1)

\pi (yt| y0:t - 1)q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F}(ut)
, w\mathrm{P}\mathrm{F} = \pi (yt| ut)/\pi (yt| y0:t - 1).

Computing w\mathrm{P}\mathrm{F} is rather straightforward, but computing w\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} involves the evaluation of
the integral in (3.3). In practice, we can use the weighted ensemble \{ (um

t - 1, w
m
t - 1)\} Mm=1 follows

the distribution \pi (ut - 1| y0:t - 1)) to approximate (3.4).
We note that, as evaluating (3.4) requires summing over M particles, computing all the

weights is of M2 complexity, which can be highly intensive when the number of particles
is large. However, by using the fast multipole method [14] one can reduce the computa-
tional cost to M logM (see [18] for more discussions). Another important matter in the
proposed method is to determine the value of the weight parameter a, which is discussed
in section 3.4. We hereby provide the complete defensive MPF (DMPF) algorithm in Algo-
rithm 3.2.

Algorithm 3.2 The DMPF algorithm.

At t = 0:
Prediction: sample \{ \~um

0 \} Mm=1 from \pi 0(\cdot );
Updating: um0 = \~um0 +K0(y0  - H0\~u

m
0  - \eta mt ) for m = 1, . . . ,M ;

Compute q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} using Algorithm 3.1 and particles \{ \^um
0 \} Mm=1;

Draw M particles from q0 from (3.7) for t = 0, and compute the weights using (3.9), yielding
\{ (um

0 , wm)\} Mm=1;
for t=1,. . . ,T do

Prediction: for each m = 1, . . . ,M , draw \~um
t = ft(\~ut| umt - 1) + \bfitepsilon mt ;

Updating: um
t = \~um

t +Kt(yt  - Ht\~u
m
t ) for m = 1, . . . ,M ;

Compute q\mathrm{E}\mathrm{n}\mathrm{K}\mathrm{F} using Algorithm 3.1 and particles \{ \^um
t \} Mm=1;

Estimate the weight parameter a by solving the optimization problem (3.12);
Draw M particles from qt given by (3.7), and compute the weights using (3.9), yielding
\{ (um

t , wm)\} Mm=1;

end
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3.4. Optimizing the weight parameter. It is highly important to choose an appropriate
value for the weight parameter a in the DMPF algorithm. In previous works on MIS, a fixed
a is often used and, in particular, it is suggested in [15] that the parameter should be chosen
between 0.1 - 0.5. In this section, we provide a method that can automatically determine the
value of a at each time step. The method can assign more weight to the EnKF component if
the posterior is close to Gaussian and to the PF component otherwise.

As is well known in the PF literature, the optimal IS distribution should yield equal IS
weights, i.e., wt(ut) = 1 for all ut, which is usually not possible in practice. Nevertheless,
this gives us the idea that the variance of the weight function associated with distribution
qt(ut| a) should be as small as possible, and so we can determine the value of a by minimizing
the variance of wt(ut, a) (here we use the notation wt(ut, a) to emphasize the dependence of
wt on a):

min
a\in [0,1]

Varqt(\bfu t| a)[wt(ut, a)] = min
a\in [0,1]

\BbbE qt(\bfu t| a)[(wt(ut, a) - 1)2](3.10)

= min
a\in [0,1]

\int 
(wt(ut, a) - 1)2qt(ut| a)dut.(3.11)

Optimizing the variance directly is usually not feasible, and so a natural idea is to optimize
its sample-average approximation:

min
a\in [0,1]

1

M

M\sum 
m=1

(wt(u
m
t , a) - 1)2,

where \{ um
t \} Mm=1 are drawn from distribution qt(ut| a). However, it is actually undesirable

to use this sample average approximation, in that, whenever a is updated, we will have to
generate new samples and compute the associated weights, which, as is discussed earlier, is
of M2 complexity. To address the issue, we choose a default value of a, say a0 (in this work
we choose a0 = 0.5), and apply an IS simulation with distribution qt(ut| a0) to estimate the
variance, namely,

(3.12) min
a\in [0,1]

1

M

M\sum 
m=1

(wt(u
m
t , a) - 1)2wt(u

m
t , a0),

where samples are drawn from qt(ut| a0). Solving the optimization program (3.12) does not
affect the computational efficiency of the algorithm much and the reason is twofold. First this
optimization problem is rather easy to solve as it is only a one-dimensional problem, specially
as our method does not require high accuracy in the solution here. Second by design, solving
this optimization problem does not require additional evaluations of the dynamical model ft
which is usually the most computationally intensive part of the problem, or the weights that
are of M2 computational complexity.

4. Numerical examples. In this section we provide three numerical examples to compare
the performance of the proposed DMPF method, with EnKF, PF, as well as two existing
methods that combine EnKF and PF: the weighted EnKF (WEnKF) method in [28] and the
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ensemble Kalman particle filter (EnKPF) in [12]. Here we provide a brief introduction to the
two methods. The WEnKF method uses the EnKF to construct a proposal distribution in the
PF framework, yielding weighted samples [28]. The EnKPF uses the progressive correction
idea and introduces an ``intermediate"" posterior distribution at each time step; it then up-
dates from the prior to the intermediate distribution using EnKF and from the intermediate
distribution to the complete posterior using PF [12]. We note here that the EnKPF method
is particularly similar to that proposed in the present work, as it also provides a continu-
ous transition indexed by a \in [0, 1] (\gamma in [12]) between EnKF and PF, which is determined
automatically.

4.1. Bernoulli model. Our first example is the Bernoulli equation,

(4.1) \.x - x =  - x3, x(t0) = x0,

which admits an analytical solution,

(4.2) x(t) = M(x0,\Delta t) = x0 \times (x20 + (1 - x20)e
 - 2\Delta t) - 1/2,

where \Delta t = t - t0. Here for simplicity we use the analytical solution to construct the discrete-
time model:

(4.3)
x0 \sim N(\mu 0, \sigma 0),
xk = M(xk - 1,\Delta t) + \xi k,
yk = xk + \eta k,

where \xi k and \eta k are the model and observation noise, respectively. In this example we set
x0 \sim N( - 0.1, 0.22), \Delta t = 0.3, and the total number of steps to be 40. Moreover, we assume
that both \xi k and \eta k follow zero-mean Gaussian distributions with standard deviation 0.01 and
0.8. This is an often used example with strongly non-Gaussian posteriors [1, 32].

We generate a true state and the associated data points from the model (4.3), which are
shown in Figure 1. We first draw 5\times 105 particles using the standard PF method to represent
the true posteriors. We then perform the five aforementioned methods to estimate the states,
each with 104 particles. In EnKPF, the constrained diversity \tau used to determine the weights
(see [12] for details) is taken to be [0.9, 1]. We compare the posterior means and variances
computed by all the methods in Figure 2. One can see from the plots that the DMPF method
yields results in good agreement with the truth, while those of the EnKF significantly depart
as the time proceeds. The results of the EnKPF method are better than EnKF, but still
deviate evidently from those of PF and DMPF. The poor performance of the EnKF method
in this example can be understood by examining the posterior distributions: in Figure 3, we
plot the posterior distributions computed by all methods at steps 5 and 10, respectively, where
the distributions of the PF and DMPF methods are obtained by performing a KDE with the
particles. As one can see here, while at k = 5 the EnKF approximation remains rather close to
the true posterior distribution, it significantly deviates from the the true posterior at k = 10
because of the cumulation of the non-Gaussianity as time increases. We also implement the
WEnKF, the results of which are highly unstable and so are not plotted in these figures.

Moreover, recall that in both DMPF and EnKPF a scalar parameter a \in [0, 1] is used
to describe the relative strength of the EnKF and the PF components in the algorithm, and
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Figure 1. The true state (dashed lines) and the simulated observations (dots) of the Bernoulli model.
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Figure 2. Left: the posterior means computed by the different methods. Right: the posterior variances
computed by the different methods.

in both algorithms, the parameter is automatically determined. We plot the parameter a
estimated in both methods at each time step in Figure 4. It can be seen from the figure
that, in most of the steps, the weight parameter a is close to 0 in both methods, suggesting
that both methods detect that the EnKF approximation is not a good approximation to the
posterior in most steps and and are able to choose suitable values for a accordingly. It should
also be noted here that the EnKF method usually employs a rather small number of particles,
e.g., several hundreds, and here we intentionally uses a rather large number of particles to
demonstrate that the large bias in the EnKF approximation cannot be reduced by increasing
the number of samples. In summary, this example demonstrates that, in the presence of
strong non-Gaussianity, the Gaussian approximation computed by the EnKF method may fail
completely, while our DMPF method can nevertheless produce accurate posterior estimates.
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Figure 3. Left: the posterior distributions at k = 5. Right: the posterior distributions at k = 10. In both
plots, the solid lines are the true posteriors and the dashed ones are the EnKF approximations.
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Figure 4. The weight parameter a computed at each time step in DMPF and EnKPF in the Bernoulli model.

4.2. Lorenz 63 system. Our second example is the classical Lorenz 63 system [24], an
often used benchmark problem for testing data assimilation algorithms. Specifically the system
is described by,

(4.4)

\left\{   
\.x = \sigma (y  - x),
\.y = x(\rho  - z) - y,
\.z = xy  - \beta z.

For simplicity, we consider a discrete-time version of the system with additive noise:

(4.5)

\left\{   
xt+1 = xt + \sigma (yt  - xt)\Delta t+ \xi xt ,
yt+1 = yt + (xt(\rho  - zt) - yt)\Delta t+ \xi yt ,
xt+1 = zt + (xtyt  - \beta zt)\Delta t+ \xi zt ,
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where \Delta t is the discrete-time step size. Here we assume that the model noise \xi xt , \xi 
y
t , and

\xi zt are all independent and identically distributed (i.i.d.) zero-mean Gaussian with standard
deviation \sigma \xi . Moreover at each time t the observed data are taken to be xdt = xt + \eta xt ,
ydt = yt + \eta yt , and zdt = zt + \eta zt , where the observation noise \eta xt , \eta 

y
t , and \eta zt are once again

assumed to be i.i.d. zero-mean Gaussian with standard deviation \sigma \eta .
In our numerical tests we take the parameters to be \sigma = 10, \rho = 28, \beta = 8/3, \Delta t = 0.03,

and 150 steps, and the initial condition to be

[x0, y0, z0] = [1.51,  - 1.53, 25.46].

The noise standard deviations are \sigma \epsilon = 0.5 and \sigma \eta = 1. In this example we also use a simulated
true state and generate noisy data from it, where both of them are shown in Figure 5. We
use this example to quantitatively compare the performance of these methods. We repeat the
simulations 1000 times for all methods with 104 particles each time, and so we can examine
the statistical behavior of the methods. Also, as a comparison reference, we also perform a
PF with 5 \times 105 particles to represent the true posteriors. In Figure 6, we show the weight
parameter a computed in one of the DMPF and EnKPF simulations, and one can see from
the figure that, unlike the first example, the parameter a calculated in DMPF is close to 1 in
most of steps, indicating that the posteriors in those steps can be well approximated by the
EnKF approximation.

To quantitatively compare the performance of the methods, we compute the root mean
squared error (RMSE) for posterior mean and variance, namely, in the jth simulation, we
estimate the posterior mean (\^xj , \^yj , \^zj), and the posterior variance (Vx

j ,V
y
j ,V

z
j ), and the

RMSE is then calculated as,

RMSE\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} =
1

1000

1000\sum 
j=1

\bigl[ 
(\^xj  - \^x)2 + (\^yj  - \^y)2 + (\^zj  - \^z)2

\bigr] 1
2 ,

RMSE\mathrm{v}\mathrm{a}\mathrm{r} =
1

1000

1000\sum 
j=1

\Bigl[ 
(Vx

j  - V\bfx )2 + (Vy
j  - Vy)2 + (Vz

j  - Vz)2
\Bigr] 1

2
,

where (\^x, \^y, \^z), and (Vx,Vy,Vz) are the true values of the posterior mean and variance (com-
puted with 5 \times 105 PF particles). It should be clear that the RMSE is a measure of the
estimation error: smaller RMSE usually indicates lower estimation error. In Figure 7, we plot
the RMSE of the posterior mean (left) and variance (left) for all methods, and in Table 1
we show the RMSE averaged over all time steps. Some conclusions can be drawn from the
figures and the table. First the EnKF performs significantly better than PF, and this can
be understood as that the posteriors in this problem can be well approximated by the EnKF
(Gaussian) approximation, and the PF method does not take advantage of that. On the other
hand, the DMPF and the EnKPF methods perform similarly to the EnKF, suggesting that
both methods can detect the fact that EnKF approximates the posteriors well and adjust the
algorithm accordingly to take advantage of it.

4.3. Localization of a car-like robot. Finally we consider a real-world problem, in which
the position of a remotely controlled car-like robot is inferred from the on-board GPS data.
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Figure 6. Parameter a in the DMPF and the EnKPF methods for the Lorenz 63 model.

The kinematic model of the car-like robot is described by the following nonlinear system [18]:

(4.6)

\.x = v cos(\theta ),
\.y = v sin(\theta ),
\.\theta = v

L tan(\phi ),
\.\phi = \omega ,
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Figure 7. The RMSE of the posterior mean (left) and of the posterior variance (right) for the Lorenz 63
model.

Table 1
RMSE averaged over all time steps in the Lorenz 63 model.

- \bfm \bfe \bfa \bfn \bfv \bfa \bfr \bfi \bfa \bfn \bfc \bfe 

\bfP \bfF 0.028 0.019
\bfE \bfn \bfK \bfF 0.017 0.010
\bfD \bfM \bfP \bfF 0.018 0.012
\bfE \bfn \bfK \bfP \bfF 0.020 0.012
\bfW \bfE \bfn \bfK \bfF 0.047 0.031

where (x, y) are the position coordinates of the vehicle, L is its length, \theta is the steering
orientation angle, \phi is the front-wheel orientation angle, and v and \omega are the linear and
angular velocities, respectively. The schematic illustration of the model is shown in Figure 8.
In this problem, we assume the linear and the angular velocities v and \omega are controlled as
follows:

(4.7)
v = 0.7| sin(t)| + 0.1,
\omega = 0.08 cos(t).

The discrete-time version of the model is described by:

(4.8)

\left[    
xt+1

yt+1

\theta t+1

\phi t+1

\right]    = M

\left(    t,

\left[    
xt
yt
\theta t
\phi t

\right]    
\right)    +

\left[    
\epsilon x
\epsilon y
\epsilon \theta 
\epsilon \phi 

\right]    ,
where M represents the standard fourth-order Runge--Kutta solution of (4.6) with \Delta t = 0.05.
In (4.8), \epsilon x, \epsilon y, \epsilon \theta , and \epsilon \phi are the errors in the state process. In particular, all these errors are
taken to be zero-mean Gaussian with standard deviation 0.3. On the other hand, the GPS
makes measurements of the pose (x, y, \theta ) of the vehicle, and specifically these measurements
are taken to be

\^x = x+ \eta x, \^y = y + \eta y, \^\theta = \theta + \eta \theta ,
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Figure 8. The schematic illustration of the car-like robot model.

where \eta x, \eta y, and \eta \theta are the observation noise following N(0, 0.32). We shall estimate x,
y, \theta , and \omega from these measurements for a time period T = 5 that is discretized into 100
steps. The true states of the system are randomly generated and the measurement data are
simulated from the generated true states using the prescribed model; both the true states and
the associated measurements are plotted in Figure 9. We emphasize here that no observations
are made on the front-wheel angle \phi and so only the true states of it are plotted in Figure 9.
The constrained diversity \tau in EnKPF is taken to be [0.25, 0.5].

We implement all five methods to estimate the states of the four parameters in this prob-
lem, each with 104 particles. Once again we repeat the simulations of each method 1000 times
and calculate the RMSE of the posterior mean and variance. In the calculation of RMSE
the true posterior mean and variance are obtained by using the standard PF with 5 \times 105

particles. We show the results in several figures. First, in Figure 10 (left) we show the weight
parameter a computed in one trial for both DMPF and EnKPF. We observe rather mixed
results in DMPF: the weight a is estimated to be around 1 in about 40 steps and significantly
less than 1 in the rest. To further understand the behavior of the DMPF method, we consider
the time step at t = 72, where a is estimated to be 0, which indicates that the algorithm
detects strong non-Gaussianity in the step. We show the scatter plots of the particles (the
particles are resampled so they all have the same weights) at this step, and one can see from
the plots that the posterior samples are distributed very differently from Gaussian.

We then plot the RMSE of the mean and the variance in Figure 11 for all methods, and we
summarize the RMSE averaged over all time steps in Table 2. The figure shows that the EnKF
works well for time steps before t = 70, and its results become significantly inaccurate shortly
after that, which makes its average RMSE over all time steps the worst among all methods.
From Table 2, we can see that DMPF and EnKPF have the best performance among the
five methods, where the EnKPF yields lower variance RMSE. It should be noted here that
a limitation of the EnKPF is that, its performance depends critically on the constrained
diversity \tau , which has to be specified by the user. On the other hand, the DMPF method
does not have such free parameters that need to be tuned.
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Figure 9. The true state (dashed lines) and the simulated observations (dots) of the car-like robot model.
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Figure 11. The RMSE of the posterior mean (left) and of the posterior variance (right) for the car-like
robot model.

Table 2
RMSE averaged over all time steps in the car-like robot model.

- \bfm \bfe \bfa \bfn \bfv \bfa \bfr \bfi \bfa \bfn \bfc \bfe 

\bfP \bfF 0.069 0.017
\bfE \bfn \bfK \bfF 0.15 0.052
\bfD \bfM \bfP \bfF 0.061 0.019
\bfE \bfn \bfK \bfP \bfF 0.059 0.013
\bfW \bfE \bfn \bfK \bfF 0.066 0.017

5. Conclusions. In summary, we have presented a marginal particle filtering method that
samples the posterior distribution in the marginal state space. In particular, we propose a
defensive scheme to construct a proposal distribution in the marginal space by combining the
standard PF and the EnKF-based proposals, which ensures that the algorithm performs well
even when the posterior is strongly non-Gaussian. The proposed method can automatically
adjust the relative weight of the PF and the EnKF components. We provide three examples to
demonstrate the performance of the proposed method: in the first example we show that the
DMPF method performs well when the standard EnKF fails due to the strong non-Gaussianity
of the posterior distribution; the second example demonstrates that the DMPF method can
significantly outperform PF when the posterior is close to Gaussian; finally it was illustrated
by the third example that the defensive scheme used in our method can provide better results
than simply using the EnKF as the IS distribution when a significant fraction of the time
steps cannot be well approximated by Gaussian. The three examples demonstrate that the
DMPF method has a good performance regardless of whether or not the posteriors are close
to Gaussian. We believe that the method can be useful in a wide range of practical data
assimilation problems.

The proposed method can be improved in several aspects. First, in this work we have
mainly considered problems where the marginal state space is of rather low dimensions. On
the other hand, for problems of high dimensions, it becomes challenging to accurately estimate
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the IS weights in each step. This issue needs to be addressed so that the MPF type of methods
can apply to high-dimensional problems. Second, as has been discussed in [18], computing
the IS weights in each time step is of M2 complexity, where M is the number of particles, and
as a result the method become prohibitively expensive for problems requiring a large number
of particles. It has been suggested in [18] that some approximation techniques such as the fast
multipole method [14] can be used to reduce the computational cost, but further improvement
of the efficiency is still needed to make the method useful in large scale problems. Third we
reinstate it here that the proposed DMPF scheme does not require the IS distribution to be
the EnKF approximation, and rather it can be used with any desired IS distribution. For
example, one can design mixtures to approximate the marginal posteriors [3, 32, 5] and use
them as the IS distribution in the defensive scheme. Finally, a difficulty in the particle-based
methods is that the underlying dynamical system is often computationally intensive, and
considerable efforts have been devoted to accelerating the computation, including surrogate
models [22, 23], multilevel methods [16], and dimension reduction techniques [31], just to
name a few. We expect that these techniques can be used to accelerate the DMPF algorithm
as well. We hope to study these issues and improve the DMPF method in the future.
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