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Abstract 27 

Recent work demonstrated that it is possible to identify motor unit discharge times from high-density 28 

surface EMG (HDEMG) decomposition. Since then, the number of studies that use HDEMG 29 

decomposition for motor unit investigations has increased considerably. Although HDEMG 30 

decomposition is a semi-automatic process, the analysis and interpretation of the motor unit pulse trains 31 

requires a thorough inspection of the output of the decomposition result. Here, we report guidelines to 32 

perform an accurate extraction of motor unit discharge times and interpretation of the signals. This 33 

tutorial includes a discussion of the differences between the extraction of global EMG signal features 34 

versus the identification of motor unit activity for physiological investigations followed by a 35 

comprehensive guide on how to acquire, inspect, and decompose HDEMG signals, and robust 36 

extraction of motor unit discharge characteristics. 37 

 38 

Introduction 39 

The generation of movement is accomplished by the transmission of synaptic inputs to motoneuron 40 

pools. The transducer of synaptic input into forces is the motor unit, which comprises a group of muscle 41 

fibres (muscle unit) and an alpha motor neuron. The neural information is transmitted by the motor unit 42 

through axonal action potentials (neural drive to the muscle) that elicit action potentials in the innervated 43 

muscle unit (motor unit action potentials, Figure 1). The summation and time-course of the motor unit 44 

action potentials determine the characteristics of the surface electromyogram (EMG) recorded with 45 

electrodes placed on the skin during motor tasks (Day and Hulliger, 2001; Fuglevand et al., 1992; 46 

Heckman and Enoka, 2012; Milner-Brown et al., 1973). The shapes of the surface-recorded motor unit 47 

action potentials are influenced by the properties of the volume conductor (Dimitrov and Dimitrova, 48 

1974; Enoka and Duchateau, 2015; Farina et al., 2002b; Mañanas et al., 2016; Merletti et al., 2003; 49 

Stegeman et al., 1997). 50 

Due to the physiological safety factor at the neuromuscular junction, the identification of motor unit 51 

action potentials from the interference EMG signals informs us about the discharge activity of individual 52 

motoneurons (Desmedt and Godaux, 1977; Duchateau and Enoka, 2011; Enoka and Duchateau, 2015; 53 

Gandevia et al., 1990; Henneman et al., 1965; Milner-Brown et al., 1973; Milner-Brown and Stein, 54 

1975). Based on this approach, the motoneuron is the only nerve cell that can be noninvasively 55 

recorded in humans. For these reasons, several surface EMG decomposition methods have been 56 

proposed over the past three decades (Chen et al., 2018; Chen and Zhou, 2016; De Luca et al., 2006; 57 

Farina et al., 2010; Gazzoni et al., 2004; Holobar et al., 2014; Holobar and Zazula, 2007; Kumar et al., 58 

2020; Nawab et al., 2010; Negro et al., 2016a). Of these methods, in this tutorial we focus exclusively 59 

on those based on blind source separation (BSS) methods applied to high-density surface EMG. 60 

Over the past two decades, non-invasive high-density surface EMG (HDEMG) electrodes have been 61 

used to identify motor unit discharge times  (Drost et al., 2001; Farina et al., 2002a; Gazzoni et al., 62 

2005; Masuda and De Luca, 1991; Merletti et al., 2008, 1999; Zwarts and Stegeman, 2003). These 63 

recordings provide a spatial sampling of the motor unit action potentials at the skin surface (Holobar et 64 
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al., 2010; Merletti and Farina, 2016; Negro et al., 2016a; Zwarts and Stegeman, 2003). From these 65 

recordings, blind source separation (BSS) procedures can identify motor unit discharge times (Chen 66 

and Zhou, 2016; Holobar et al., 2010; Negro et al., 2016a) during a range of isometric tasks (A Del 67 

Vecchio et al., 2019c; Gallego et al., 2015; Martinez-Valdes et al., 2017). Although BSS decomposition 68 

procedures are performed in an automatic way, they require user-inspection of the identified motor unit 69 

spike trains (Enoka, 2019). 70 

The aim of this tutorial article is to provide guidelines for the decomposition of HDEMG recordings. 71 

Moreover, we discuss the limits, the potential, and how to further validate the results obtained with 72 

HDEMG decomposition. The future advances needed in EMG decomposition are also discussed, with 73 

an emphasis on the computational challenges required to remove the subjectivity during visual editing 74 

of the motor unit spike trains. 75 

 76 

1 – Extracting neural information from high-density EMG signals: Global EMG estimates vs. 77 
decomposition 78 

Since the surface EMG signal is the algebraic summation of motor unit action potentials (Day and 79 

Hulliger, 2001), it is influenced by both the discharge times and the waveforms of the action potentials 80 

of the active motor units (Figure 1).  81 

 82 

Figure 1  The one-to-one correspondence between axonal action potentials and motor unit action 83 
potentials. A pool of motoneurons discharges a series of action potentials (left) that are transformed by 84 
the muscle unit in a time series of motor unit action potentials (right). The motor unit action potential 85 
vary in amplitude and these differences are not always associated with the size of the motor unit, due 86 
to the influence of the volume conductor. The summation of the motor unit action potentials corresponds 87 
to the recorded EMG signals. Due to these effects, the association between the strength of the neural 88 
drive to the muscle and EMG amplitude is not always linear. Rather, the neural drive to the muscles 89 
can only be estimated from the motor unit discharge times, such as by decomposition of high-density 90 
surface EMG recordings (line 1 in orange). Conversely, conventional EMG analyses often estimate the 91 
neural drive to the muscle by extracting global features of the signal, such as amplitude or spectral 92 
moments. The decomposition of the EMG signal identifies the series of action potentials for individual 93 
motor units (red spikes). Due to several limitations with the global EMG, however, it is not always correct 94 
to infer the motoneuron population activity from global EMG signals, for example, because of the effects 95 
of amplitude cancellation and the non-linear relation between action potential sizes and recruitment 96 
thresholds. *Note that the innervation zones of the motoneurons are shown in largely different positions 97 
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of the muscle only to improve figure clarity while often the innervation zones are clustered in relatively 98 
small muscle portion. 99 

The characteristics of the motor unit action potentials depend on many factors; for example, action 100 

potential amplitude and conduction velocity, which scale with the diameter of the muscle fibre 101 

(Håkansson, 1956; Plonsey and Barr, 1988). The amplitude of the motor unit action potentials also 102 

depends on the number of innervated muscle fibres, which is associated to the motor unit recruitment 103 

threshold (the voluntary force level corresponding to the first discharge of a motor unit) (Milner-Brown 104 

and Stein, 1975). However, this association is confounded by the influence of the volume conductor 105 

and, therefore, by the distance between the muscle fibres and the recording electrodes (Besomi et al., 106 

2019) Consequently, the association between recruitment threshold and motor unit action potential 107 

amplitude is usually weak (Del Vecchio et al., 2017; Keenan et al., 2006), which influences the 108 

associations between EMG amplitude and the strength of the neural drive to the muscle and between 109 

EMG amplitude and force (Del Vecchio et al., 2017; Dideriksen et al., 2011; Fuglevand et al., 1993; 110 

Keenan et al., 2006; Komi and Viitasalo, 1976). It also makes it challenging to compare EMG amplitude 111 

across subjects, muscles, and time (Besomi et al., 2019).  112 

Experimental results on the association between the amplitude of motor unit action potentials and motor 113 

unit size, which are consistent with simulation results of EMG generation (Farina et al., 2014), indicate 114 

that the amplitude of the EMG is only a crude indicator of the neural strategies used to control muscle 115 

force (Enoka, 2019; Enoka and Duchateau, 2015). Figure 2, for example, shows that the amplitude of 116 

the action potential waveforms for three motor units can be unrelated to the recruitment thresholds (Del 117 

Vecchio et al., 2017).   118 
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 119 

Figure 2 Association between motor unit action potential properties and recruitment threshold. A 
Eight double-differential EMG signals of the tibialis anterior muscle during an isometric ankle-
dorsiflexion contraction at up to 70% of maximal voluntary force at a rate of 5% MVC/s (thick black 
trace). B 500 ms of EMG activity for the 8 channels. C Motor unit action potentials were identified 
by EMG decomposition and spike-triggered averaging. D-E-F Three representative motor unit 
action potentials with recruitment thresholds 24.9, 6.2, and 63.9 % of maximal force. The estimated 
conduction velocity, root mean square amplitude, and mean power spectral frequency are also 
shown for each motor unit action potential. (a.u = arbitrary units, scaled amplitude of the EMG). 
Reproduced with permission from Del Vecchio et al. (2017).  
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Contrary to surface action potential amplitude, the estimated conduction velocity of the motor unit action 120 

potentials has been shown to be associated with motor unit recruitment threshold across subjects and 121 

muscles, and to be influenced by different types of training interventions (Andreassen and Arendt-122 

Nielsen, 1987; Casolo et al., 2019; Del Vecchio et al., 2017; Gazzoni et al., 2005; Martinez-Valdes et 123 

al., 2018; Masuda et al., 1996; Masuda and De Luca, 1991; Zwarts and Arendt-Nielsen, 1988). The 124 

conduction velocity estimated from the global EMG signal is the weighted average of the motor unit 125 

conduction velocities.  126 

Due to the challenges associated with interpreting the features extracted from the surface EMG (Del 127 

Vecchio et al., 2017; Farina et al., 2014, 2004), intramuscular (LeFever et al., 1982; LeFever and De 128 

Luca, 1982; McGill et al., 2005; Stashuk and de Bruin, 1988) and surface EMG decomposition methods 129 

have been proposed (Chen et al., 2018; Chen and Zhou, 2016; De Luca et al., 2006; Farina et al., 2010; 130 

Gazzoni et al., 2004; Holobar et al., 2014; Holobar and Zazula, 2007; Nawab et al., 2010; Negro et al., 131 

2016a). These methods identify individual motor unit action potentials during voluntary contractions 132 

and, therefore, allow the comparison of motor unit properties across subjects and time. Moreover, the 133 

same motor unit can be tracked over time (Del Vecchio and Farina, 2019; Martinez-Valdes et al., 2017) 134 

and compared across sessions including before and after training interventions (A Del Vecchio et al., 135 

2019a; Martinez-Valdes et al., 2018). In contrast to global EMG analysis, the identification of the 136 

discharge times of individual motor units provides a direct estimate of the neural drive to muscle.  137 

As an example of the information that can be obtained when decomposing EMG signals with respect 138 

to global analysis, we recently showed that the activity of motoneurons identified by EMG decomposition 139 

is predictive of the maximal rate of force development (A Del Vecchio et al., 2019c). Similarly, the 140 

detrimental influence of aging on force steadiness was shown to be associated with the variability in the 141 

common synaptic input to motoneurons, as estimated by EMG decomposition (Feeney et al., 2018). 142 

Researchers now have a new tool to observe the neural code for movement in humans directly with a 143 

non-invasive approach that can be used in a variety of conditions. Nonetheless, surface EMG 144 

decomposition must be used carefully and requires expertise in signal acquisition, interpretation of 145 

results, and manual assessment of decomposition quality. After testing the validity of HDEMG 146 

decomposition algorithms in several methodological studies (e.g., Holobar et al., 2010, 2014; Marateb 147 

et al., 2011; Negro et al., 2016a; Del Vecchio & Farina, 2019a), here we now share guidelines on how 148 

to perform HDEMG decomposition by BSS accurately and how to identify motor unit properties reliably.  149 

 150 

2 - High-density surface EMG signals: acquisition 151 

Prior to applying the high-density electrode grids (Figure 2C), the skin should be shaved, lightly 152 

abraded, and cleansed with an alcoholic solution and with abrasive paste (Piervirgili et al., 2014). 153 

Source separation is based on the assumption that action potential waveforms of motor units are unique 154 

when recorded by the grid. Therefore, the EMG electrodes should be placed in a location that assures 155 

maximal variations in shape of the action potentials of different motor units. For example, when 156 

recording from fusiform muscles, it is preferable to position the EMG array with its centre approximately 157 
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above a primary innervation zone. In other types of muscles (e.g., pennate muscles) the BSS is less 158 

sensitive to the position of the electrode array, although the electrodes will still need to be placed over 159 

the muscle belly. Interestingly, these requirements for decomposition are opposite to those often 160 

discussed for extracting global features from the EMG (Barbero et al., 2012). 161 

The interelectrode distances used for HDEMG usually range from 3-4 mm to 10 mm  (Drost et al., 2001; 162 

Merletti and Muceli, 2019; Zwarts and Stegeman, 2003; Del Vecchio et al., 2018; Farina et al., 2010; 163 

Feeney et al., 2018; Gazzoni et al., 2005; Holobar et al., 2010; Negro et al., 2016a). It should be noted 164 

that the electrode array does not need to satisfy the requirement for spatial Nyquist sampling frequency 165 

for successful BSS. Whether or not the spatial Nyquist criterion needs to be met depends on how the 166 

decomposition results will be used; for example, high spatial sampling may be necessary when 167 

analysing the spatial distribution of the identified motor unit action potentials (Merletti and Muceli, 2019). 168 

Therefore, the choice of the interelectrode distance is usually dictated by practical criteria, such as the 169 

size of the muscle.  170 

After the electrode grids are applied, the signals should be assessed for quality. This should preferably 171 

be done by displaying the signals as monopolar recordings, as these signals are the most sensitive to 172 

interference. The visual inspection of monopolar signals allows the operator to find and remove the 173 

sources contaminating the recordings. The monopolar derivation is usually the most sensitive to signal 174 

interferences and therefore poses the highest constraints on signal quality, whereas the bipolar 175 

derivation better reveals the short-circuited EMG channels and also their spatial diversity. When the 176 

main sources of EMG signals are located at greater distances, it is not uncommon to observe EMG 177 

signals with high amplitudes in monopolar derivation but small amplitudes in bipolar derivation, because 178 

of the filtering of common spatial signal components by the bipolar system. In such cases, the spatial 179 

variation across different EMG channels is substantially reduced, effectively decreasing the number of 180 

useful EMG channels and, thus, the yield of BSS techniques. Accepted baseline noise levels for 181 

HDEMG signals are in the order of 10 – 40 µV RMS, but this requirement may vary with contraction 182 

intensity. From empirical experience, at low EMG amplitudes signal noise should be no more than one 183 

half of the power of the signal to ensure reliable decomposition (Del Vecchio et al., 2017; A Del Vecchio 184 

et al., 2019a). Aside from the electrode-skin and electronic-amplification noise (signal noise), EMG 185 

decomposition can only identify relatively few active motor units. The activity of the unidentified motor 186 

units is an additional, and often the main, source of noise for the decomposition process.  187 

The EMG signals are usually band-pass filtered between 10-20 Hz at the low end and 400-500 Hz at 188 

the high end. This range keeps most of the EMG signal power while filtering out the contributions of 189 

signal noise. The decomposition process will be influenced by the choice of filter settings as this may 190 

alter the action potential waveforms. In general, the smaller the bandwidth, the greater the similarity of 191 

action potentials for different motor units. However, a smaller bandwidth does decrease the level of 192 

noise. The use of zero-phase filters, when possible, is recommended to avoid variable delays 193 

introduced for action potentials of different motor units and to keep the energy of motor unit action 194 

potentials concentrated in short intervals of time. Nonlinear filtering techniques change the EMG mixing 195 

model and should be avoided. 196 
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Noise may differ across channels and it may be necessary to remove some channels from the analysis. 197 

Among the methods that can be used to identify channels with low signal-to-noise ratio, one approach 198 

is to check the quality of the signal by estimating the power spectral density for each electrode in the 199 

grid and comparing it with the baseline. Figure 3 shows an example of 63 (from a total of 64) signals 200 

with high signal-to-noise ratio and shows how channels with poor signal quality can be identified. After 201 

having identified the electrodes showing high signal-to-noise ratio, potential power line interferences 202 

can be removed with filtering techniques (e.g., notch filters). Similar considerations apply for notch filters 203 

as for the choice of the bandpass filters discussed above.  204 

After the EMG signal quality check, visual confirmation, and filtering of the EMG signals, the BSS 205 

decomposition can be initiated.  206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

Figure 3 Example of detection and visual display of channels with poor signal-to-noise ratio. A Sixty-222 
four monopolar EMG signals from the tibialis anterior muscle during a contraction at 35% of maximal 223 
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force. Two signals (channel 59 and 60) are highlighted and displayed in B. The force trace is indicated 224 
by the red lines. The 60th channel shown in C has a high level of noise at baseline, as it can be seen 225 
from its power spectral density (D) and from the baseline amplitude of the EMG. D. The power spectral 226 
density of each of the 64 channels, as computed from the full contraction duration (~24 s). Note that 227 
one channel (in the inset, grey line) shows higher power at lower frequencies than all the others. This 228 
indicates poor signal-to-noise ratio (channel 60, au for auxiliary units) E. Three standard deviations from 229 
the EMG root mean square (RMS) baseline across the grid shows the outlier channel. 230 

3 - High-density surface EMG signals: decomposition 231 

High-density EMG signals are decomposed into individual motor unit action potentials with methods 232 

that have limited a-priori information. Figure 4 shows an overview of the decomposition process: 233 

acquisition of HDEMG recordings, separation of sources (motor units) via BSS, visual inspection, and 234 

raster plot of the reliably identified motor units. BSS procedures usually estimate one motor unit spike 235 

train at a time by iteratively optimizing the motor unit separation filter and applying it to the recorded 236 

EMG signals. Importantly, optimization of the motor unit filter builds on a measure of sparseness for the 237 

motor unit spike train based on a predefined time interval. Different measures of spike-train sparseness 238 

have been proposed (Chen and Zhou, 2016; Holobar and Zazula, 2007; Negro et al., 2016a), but they 239 

all require relatively long EMG recordings for the spike train to be estimated reliably. Consequently, 240 

current BSS algorithms should be applied to EMG signals that last at least 5 s.  241 

 242 

 243 

Figure 4 Example of high-density surface EMG decomposition with blind-source separation and visual 244 
inspection of the signals. A. Tibialis anterior monopolar EMG activity during an isometric contraction. 245 
The rate of force development was 5% MVC/s with a plateau phase of 10 s. One column of the high-246 
density EMG grid (64 electrodes in total, with 8 mm of interelectrode distance, au arbitrary units) is 247 
shown color-coded. Specifically, the channels highlighted by the dotted black trace (over the muscle, 248 
left side of the figure) are shown in A. In this example, the signal-to-noise ratio is similar for all 64 249 
electrodes in the matrix. B. Extraction of motor unit pulse trains by blind-source separation. The 64 250 
channels are decomposed blindly, and the output of the algorithm are impulse trains with heights 251 
corresponding to the weights of the motor unit action potential shapes in the matrix obtained by the 252 
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independent component analysis process. The two insets in B (b and bi) show the motor unit impulses 253 
extracted by blind-source separation for each motor unit. The next iteration is to check each motor unit 254 
action potential visually, as shown in bi, and reiterate the source separation manually by triggering the 255 
motor unit action potential in a fixed time window, usually in the order of 3-5 s, as shown in bi and C. 256 
After visual inspection of all the motor unit spike trains, it is possible to observe the raster plot of all 257 
identified motor units (D). The motor unit waveforms in C represents the motor unit waveforms 258 
corresponding to 12 electrodes after spike-triggered averaging.  259 

 260 

4 - High-density surface EMG signals: visual inspection of decomposition results 261 

Due to the sparseness of the motor unit spike train, BSS calculates the motor unit separation filter from 262 

those time instants in the EMG recording when the motor unit was likely to be active. Once the motor 263 

unit spike train is identified, the motor unit filter can be re-calculated based only on the identified motor 264 

unit spikes, in an iterative way. This can be accomplished by inspecting the results of the BSS algorithm, 265 

so that the operator can manually identify and remove from the calculation of the separation filter the 266 

spikes of lower quality. Note that this partly manual selection is for the calculation of the separation filter 267 

only and not for the output of the decomposition (see also below). This selection can often improve the 268 

motor unit separation filter estimates beyond the level achieved by the BSS algorithm used fully 269 

automatically. For example, when decomposing EMG signals that contain artefacts, the BSS algorithm 270 

will try to optimize the motor unit filter on all the motor unit spikes, including those occurring concurrently 271 

with artefacts. It is exactly this noise and the residual activity of the other motor units that is measured 272 

by some signal-based metrics of accuracy, such as the pulse-to-noise ratio (Holobar et al., 2014).  273 

Under assumption of nonstationary noise and artefacts, following the initial automatic decomposition it 274 

is always possible to identify the portions of a spike train with low pulse-to-noise ratio and exclude those 275 

portions from the motor unit filter calculation. It is not a simple matter to implement the exclusion of the 276 

low-quality portions of the motor unit spike train automatically in a BSS algorithm. Indeed, the pulse-to-277 

noise ratio (and therefore the quality of spike train portions) may change due to many factors such as 278 

the contraction level (increase of contraction level increases the contributions of other motor units), 279 

changes of skin-electrode contact noise, instrument noise, and signal artefacts. The human operator 280 

builds on the knowledge of the experimental protocol and currently can decide which signal intervals to 281 

exclude from the motor unit filter optimization better than a BSS algorithm, which has no knowledge on 282 

the experimental conditions.  283 
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After exclusion of spike-train intervals with poor signal quality, the motor unit filter should be re-284 

calculated and re-applied to the entire EMG signal in order to re-estimate (objectively, without any 285 

manual intervention) the entire motor unit spike train. An example of this procedure if shown in Figure 286 

5.  287 

 288 

 289 

 290 

A 

B 

C 

D 

E 

Figure 5. Visual reiterations of the motor unit discharge times identified by blind source 
separation (A-D). The blind source separation automatically identified the discharge times of a 
motor unit. In A, the left plot depicts the identified spike train with many spikes below the average 
spike height. Automatically identified motor unit firings are depicted by blue circles. The 
discharge times of the motor unit (right plot) show a strong mismatch with the average motor unit 
discharge rate and force trace in red. In these instances, a time window of ~3 s is centred in the 
location of interest (red dashed lines in E). Within this location, the motor unit filter is 
reconstructed after removing the firings below a certain threshold, as depicted in B. The motor 
unit filter is then reapplied to the HDEMG signals, yielding a new spike train estimate that is 
depicted in C. Afterwards, two more spikes are recognized as motor unit firings and manually 
added in D. In this way, the motor unit filter that was identified by blind source separation is 
visually edited and yields a robust estimate of the motor unit firings.  
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Manual exclusion of spike-train intervals in manual optimization of the motor unit filter may or may not 291 

rely on the human knowledge of motor unit firing regularity. Although this additional information may be 292 

beneficial, it may also bias the selection of motor unit spikes that are taken into consideration when 293 

manually re-calculating motor unit filters. Importantly, manual spike selection should only be used for 294 

motor unit filter optimization. Afterwards, manually optimized motor unit filters should be applied to the 295 

entire EMG signal and objective spike segmentation procedures need to be followed to discriminate 296 

spikes from baseline noise in the identified motor unit spike train. Subjective selection of motor unit 297 

spikes in the final motor unit spike train (final decomposition result) should be avoided as it may lead to 298 

biasing the decomposition results.  299 

 300 

5 - High-density surface EMG signals: decomposition accuracy 301 

The extraction of motor unit action potentials from high-density EMG signals has been extensively 302 

validated, but mainly during isometric contractions. The current accepted approach for the validation of 303 

surface EMG decomposition is a variant of the two-source method previously introduced by Mambrito 304 

& De Luca (1984) for intramuscular EMG decomposition. With this method, intramuscular and HDEMG 305 

signals are concurrently recorded and the results of their decomposition compared (Holobar et al., 2014, 306 

2010; Hu et al., 2014; Marateb et al., 2011). Figure 6 shows a raster plot of motor units concurrently 307 

identified from surface and intramuscular signals, with the respective accuracies.  308 

 309 

Figure 6 Two-source method to assess accuracy. The intramuscular electromyogram(iEMG) is 310 
recorded concurrently with high-density surface EMG (sEMG) from the abductor digiti minimi muscle at 311 
5% of the maximal voluntary contraction. The sensitivity and false positive rate for discharge time 312 
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identification are computed by comparing the output of intramuscular and surface EMG decomposition. 313 
In this example, the bottom raster plot shows the motor unit discharge times that were identified from 314 
the intramuscular EMG signal decomposition and, at the top, those identified by blind-source separation 315 
of the HDEMG signals. The top plot in each pair shows the distribution of amplitude of the motor unit 316 
action potential waveforms over the high-density EMG grid. The sensitivity of the high-density EMG 317 
(right) represents the number of discharge times that are concurrently identified by the surface and 318 
intramuscular EMG decomposition divided by the total number of discharges identified from the 319 
intramuscular EMG. The percent of false positives corresponds to the number of discharges identified 320 
by the surface but not by the intramuscular EMG decomposition, divided by the total number of 321 
discharges identified from the intramuscular EMG. MU, motor unit. Reproduced with permission from 322 
Farina et al. 2010.  323 

Indirect methods of validating surface EMG decomposition use shape analysis of two-dimensional 324 

motor unit action potentials identified by BSS (Del Vecchio and Farina, 2019; Hu et al., 2015, 2013a; 325 

Thompson et al., 2018) and simulation approaches (Farina et al., 2010; Holobar and Zazula, 2007). For 326 

example, accuracy measures, such as pulse-to-noise ratio (Holobar et al., 2014), the silhouette 327 

measure (Negro et al., 2016a), or the motor unit action potential similarity after spike-triggered 328 

averaging (see below) across the contractions with or without injection of gaussian noise (Del Vecchio 329 

and Farina, 2019; Thompson et al., 2018), can be used to infer the accuracy of motor unit spike 330 

identification. All of these measures are asymptotic and increase their precision with the number of 331 

identified spikes in the spike train. Therefore, they should not be used to assess the accuracy of spike 332 

trains with less than 30 spikes (Holobar et al., 2014) or to assess the accuracy of each individual spike 333 

in a spike train.   334 

Some information about accuracy can be obtained from the spike-triggered averaging of EMG signals 335 

(Del Vecchio and Farina, 2019; Hu et al., 2015, 2013b; Thompson et al., 2018). With this approach, the 336 

discharge times of identified motor units are used as triggers for an average that is accumulated over 337 

time intervals of 25 to 100 ms. Due to the possibility that motor unit action potential shapes change 338 

during an isometric contraction, a relatively small number of motor unit discharge times should be used 339 

in the spike-triggered average. We empirically observed that 3 s to 5 s (~30-100 spikes) are sufficient 340 

to robustly extract motor action potential waveforms during sustained and fast isometric contractions (A 341 

Del Vecchio et al., 2019c). Also, the reliability of an identified motor unit pool can be examined by 342 

identifying the same motor units across days (see Motor unit Tracking).  343 

6 – Assessment of motor unit properties 344 

From the discharge times of identified motor units, the characteristics of the engaged motor units can 345 

be identified. One key characteristic is the recruitment threshold, which corresponds to the force when 346 

the first motor unit action potential occurs. The ensuing force that is produced by the muscle fibres 347 

innervated by the motoneuron (the muscle unit) occurs with a delay that depends on the axonal 348 

conduction velocity and on the properties (active and passive) of the muscle fibres. To obtain reliable 349 

estimates of recruitment and derecruitment thresholds, subjects must practice performing slow linear 350 

ramp contractions.  351 

A common approach used to estimate recruitment threshold and to measure the discharge 352 

characteristics of motor units is the performance of trapezoidal force trajectories with controlled rates 353 

of increase and decrease in force (5-20% MVC/s) to a moderate plateau force (35-70% of maximal 354 
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force). Given the current limitations in HDEMG decomposition analysis in uniformly sampling motor 355 

units across recruitment thresholds, it is best practice to use a range of target forces (30 to 70-90% of 356 

maximum force) depending on the test muscle and type of contraction.  357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

Figure 7 shows the raster plot of discharge times of 32 motor units during a trapezoidal contraction up 366 

to 35% of the maximum force of the tibialis anterior muscle. The recruitment and derecruitment 367 

thresholds are highlighted in Figure 7A-C. Once the interspike intervals are known, the motor unit 368 

discharge rates can be determined during the recruitment, plateau, and derecruitment phases, as 369 

shown in Figure 7E for three representative motor units.  370 

 371 

Figure 7.  Motor unit properties: recruitment thresholds and discharge rates during an isometric 
trapezoidal contraction (plateau 35% of maximum). A. Raster plot of 32 identified motor units during 
an isometric contraction of the tibialis anterior muscle. The black boxes highlight the recruitment (B) 
and derecruitment (C) phases for three motor units with the specific force indicated with a black 
arrow. D. The association between recruitment threshold and derecruitment thresholds. E. The 
instantaneous discharge rate (the inverse of the interspike interval) as a function of time for the three 
representative motor units. The force trace is in red colour.  
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Estimates of motor unit recruitment threshold during fast contractions can provide a measure of the 372 

speed of recruitment (Fig. 8).  373 

 374 

 375 

 376 

 377 

From the discharge times of the motor units, it is possible to extract characteristics of the common 378 

synaptic input to the motoneuron pool. These measures can be obtained in both the time and frequency 379 

domain. One time domain approach is to compute the cross-correlogram between motor unit discharges 380 

(Nordstrom et al., 1992). This method, originally proposed for pairs of motor units, can be extended to 381 

populations of motoneurons by summing the motor unit spike trains (binary signal) to generate the 382 

cumulative spike trains (CST). The cross-correlogram is then performed between the CSTs of randomly 383 

permuted groups of motor units (Figure 9). The rate of increase in correlation between CSTs when the 384 

number of motor units used for the CST calculation increases is associated to the relative proportion of 385 

common input with respect to independent input. This proportion can also be quantified by non-linear 386 

fitting of the peak correlation values in the frequency domain (Negro et al., 2016b), or in the time domain. 387 

These estimates provide information on a bandwidth of motor neuron input that depends on the filtering 388 

Figure 8 Motor unit recruitment during fast contractions. A. Three rapid isometric contractions of the tibialis 
anterior muscle. The plateau of the force is ~80% of maximum (red-trace). B. One representative contraction 
during the first 100 ms. The discharge times of identified motor units are shown as tick marks. C. Motor unit 
recruitment speed represents the time interval between the first discharge times of consecutive motor units 
(B). This value is calculated by taking the average of the derivative of the first discharge times of the motor 
unit pool (sorted by recruitment order). The x-axis label in C is sorted with respect to the motor units showing 
the smallest time interval. In this example, all the identified motor units were recruited in a small time window 
(<50 motor units/ms).  
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of the CSTs. For example, by using a Hanning window of 25-ms (A Del Vecchio et al., 2019b), the 389 

analysed bandwidth is approximately 40 Hz. 390 

 391 

 392 

Figure 9. Calculation of the proportion of common input from the cross-correlogram. A Raster plot of 393 
21 motor units during a fast contraction. B The cross-correlogram was obtained in 100-ms time windows 394 
with a 5-ms overlap. Each shaded grey line corresponds to a time window. For each calculation, the 395 
motor unit spike trains were divided in two equally sized groups and convolved with a 25-ms Hanning 396 
window. C Individual subject data (color-coded) for the strength of correlation between CSTs as a 397 
function of the number of motor units used for each CST. The inset in C shows three representative 398 
subjects with standard deviation across three rapid contractions (shaded colour). Modified from Del 399 
Vecchio et al. 2019 with permission.  400 

 401 

It is further possible to estimate the frequency bands of the input shared by motoneurons (in the 402 

assumption of an approximate linear input-output relation for the motoneuron population) during steady 403 

contractions that last at least 20-30 s with the use of coherence functions. The coherence function 404 

provides a cross-correlation analysis in the frequency domain. Figure 10 shows the procedure for this 405 

calculation. Only motor unit spike trains without silent periods (>500 ms) should be included in this 406 

analysis. The coherence function can be also applied to study the shared synaptic inputs within the 407 

discharge timings of the populations of motoneurons. For this purpose, the coherence function is 408 

applied to groups of motor units that belong to different muscles, as described previously (Del Vecchio 409 

et al., 2019; Laine et al., 2015). 410 

Another information that can be extracted from the motor unit discharge times is an estimate of the 411 

strength of persistent inward currents (PICs) to motoneurones from the discharge rates at recruitment 412 
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and derecruitment (Gorassini et al., 2002; Heckman et al., 2005). This measure reflects 413 

neuromodulatory input received by motoneurones and has been recently performed from HDEMG 414 

signal decomposition (Hassan et al., 2020). 415 

From the shape of the motor unit action potential waveform it is also possible to extract other 416 

physiological information. This information includes analysis of the motor unit waveform, such as 417 

amplitude and conduction velocity (see paragraph 1-2 and Figure 2). The analysis of the motor unit 418 

discharge times and action potential waveforms enables the analysis of neural and peripheral properties 419 

concurrently. For example, the strong association between motor unit recruitment thresholds and motor 420 

unit conduction velocities that have been reported for different muscles (Andreassen and Arendt-421 

Nielsen, 1987; Del Vecchio et al., 2018; Hogrel, 2003; Masuda and De Luca, 1991) is consistent with 422 

the size principle. Although in some cases this information has been used to infer the type of recruited 423 

(fast-twitch or slow twitch) muscle fibres, in-vivo studies show that there is no clustering of conduction 424 

velocity values but rather a continuous distribution of conduction velocities and estimated muscle fibre 425 

diameters (Del Vecchio et al., 2018; Troni et al., 1983), which agrees with basic physiological studies 426 

(see Enoka et al., 2015 for review). 427 
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 428 

Figure 10 A. Raster plot of motor unit discharge times from the tibialis anterior muscle during a steady contraction 429 
at 10% of maximal voluntary force. B. The coherence function was calculated between increasing numbers of 430 
motor units (color coded) for a contraction at 10 and one at 30% of the maximum. Note that the increase in the 431 
number of motor units corresponds to an increase in the frequency coupling in all frequency bands above 432 
significance (the significant level was computed as the maximal value of coherence above 100 Hz). C. The 433 
correlation in the time domain obtained by the cross-correlogram in 100-ms windows.  434 

7 - Motor unit tracking 435 

The comparison of motor unit properties during longitudinal studies, such as after a rehabilitation 436 

intervention, is only possible if the same motor unit can be identified before and after the intervention. 437 

One advantage of HDEMG recordings is that they usually provide high spatial resolution of the motor 438 

unit action potentials. There is a small likelihood that two motor units would show exactly the same 439 

action potential waveforms in all channels for a large electrode grid (Farina et al., 2008), which means 440 

that motor units can be tracked over multiple sessions when the grid is placed in a similar location in 441 

each session (Del Vecchio and Farina, 2019; Martinez-Valdes et al., 2017). 442 
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Figure 11 shows an example of motor unit tracking during an isometric contraction with the ankle 443 

dorsiflexors. In this example, only some of the identified motor units could be tracked across 444 

experimental sessions. In our experience, approximately 30% of the identified units can be tracked over 445 

weeks in the tibialis anterior muscle. Motor unit tracking requires consistent placement of the high-446 

density grid and the establishment of a threshold in cross-correlation between motor unit action 447 

potentials. When multiple motor units have a high cross-correlation between each other, which happens 448 

occasionally, these motor units should be removed from the tracking (see Figure 3 in (A Del Vecchio et 449 

al., 2019a)).  450 

The motor unit tracking technique can also be used to test decomposition accuracy. Figure 11 shows 451 

two pools of motor units identified during two experimental sessions four weeks apart during isometric 452 

trapezoidal contractions of the tibialis anterior muscle. The action potential waveforms of these motor 453 

units were used to track the motor units over time (Fig 11B). Once the motor units are tracked, it is 454 

possible to test the accuracy and reliability of the discharge characteristics of the motor units, such as 455 

discharge rate and recruitment thresholds. Figure 11C-D shows that the tracked motor units exhibited 456 

strong reliability in discharge rate and recruitment threshold. It is important to note that the tracking 457 

technique uses the 2D action potential waveforms, therefore the physiological properties of the motor 458 

units are not taken into account during tracking. It is unlikely that a pool of motor units shows the same 459 

discharge characteristics across days (as demonstrated by comparing random motor units across 460 

sessions; Martinez-Valdes et al., 2017) if the motor unit tracking and the initial decomposition were not 461 

performed correctly (Figure 11).  462 

 463 
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 464 

Figure 11.  Motor unit tracking.  One method that can be used to assess decomposition accuracy is to 465 
track the same motor unit across time. A. Two isometric contractions were performed by the same 466 
subject with 4 weeks between contractions. The number of identified motor units (green vs purple) 467 
differs in the two contractions. B. The same motor unit is tracked across time by matching the action 468 
potential waveforms. Eight motor units that were successfully tracked in the two contractions. Note the 469 
similar smoothed discharge rate (C), the instantaneous discharge rate (D), and the recruitment 470 
thresholds (the tracked motor units are color-coded). The scatter plot in D shows a strong correlation 471 
(P<0.0001) for recruitment thresholds before and after four weeks, thereby underscoring the accuracy 472 
in decomposition. 473 

 474 

8 – Influencing factors in motor unit decomposition: the influence of muscle, volume conductor, 475 

and target force 476 

There are three major limitations that limit the applicability of surface EMG decomposition in some 477 

experimental conditions. The output of the decomposition is sensitive to the muscles investigated, the 478 

volume conductor properties of the specific subject, and the contraction intensity. These limitations are 479 

due to anatomical constraints (the volume conductor between the recording electrodes and the muscle 480 
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units) and superimposition of the muscle fibre action potentials. With increasing contraction forces, the 481 

number of motor units that can be identified by decomposition usually decreases. For example, in the 482 

tibialis anterior muscle, which is a reliable muscle for decomposition (Del Vecchio and Farina, 2019; 483 

Negro et al., 2016a), we observed a 30% reduction in the number of motor units that can be identified 484 

when the target force increases from 35% to 70% of maximum force. Similarly, there is a trend for a 485 

lower number of identified motor units for subjects with a thicker subcutaneous layer. These trends are 486 

due to the decrease in discriminative information in the action potential waveforms of different motor 487 

units when the signal bandwidth is reduced by the volume conductor (Farina et al., 2008). There are 488 

still not sufficient data to reach a conclusion on the number of identified motor units between sexes.  489 

 490 

Figure 12 shows the number of identified motor unit across muscles, sex, and contraction intensity for 491 

a relatively large dataset of decomposed signals collected in the laboratories of the Authors. Some 492 

muscles yield higher numbers of motor units irrespective of the contraction intensity (such as tibialis 493 

anterior, see Fig 12). We have noted that muscles with fibres that are not all parallel to each other 494 

usually yield a greater number of identified motor units by decomposition. This  is likely due to the larger 495 

discriminative information between motor unit action potentials of different units in muscles with varying 496 

anatomy.  497 

 498 

 499 
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 500 

Figure 12 Number of identified motor units across muscles and contraction intensities. The average 501 
number (black dots) and standard deviation (black line) across subjects (color-coded), muscles, and 502 
contraction intensities. The red line and x dots for three muscles at ≤20% MVC indicate data for women. 503 
Note that some muscles yield a greater number of identified motor units irrespective of the contraction 504 
intensity. The data shown here are from recordings from the laboratories of the Authors. All the motor 505 
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units reported in this graph were decomposed with a pulse-to-noise ratio >30dB and were visually 506 
inspected as described in this tutorial.    507 

 508 

Conclusions 509 

In this tutorial we present guidelines for the extraction of motor unit discharge characteristics from 510 

HDEMG signals. This article provides an overview of the rationale for decomposition of EMG signals 511 

and then describes the step-to-step guidelines on how to perform an accurate decomposition, 512 

interpretation, and analysis of motor unit discharge times. Although the advances in software and 513 

hardware technology obtained in the last two decades potentially allows any experimenter to record 514 

motor units, there are many challenges that need to be overcome and many limitations that need to be 515 

solved thorough experimental testing and the development of additional software and hardware. We 516 

emphasise that the output of decomposition must be inspected carefully. Moreover, progress is still 517 

needed to improve surface EMG decomposition to reduce the limitations associated with variability of 518 

performance due to muscle and subject anatomy.  519 
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