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First-principles calculations are performed in order to calculate the energies of formation of different

point defects in the ordered B2 phase of the Ti–Al system. The dominant point defects in the sublattice

of the B2-TiAl structure are determined to be either substitutional vacancies or anti-site defects. Based

on the results of first-principles calculations, substitutional vacancies are considered in the sublattice

for the CALPHAD assessment ðAl,Ti,VaÞ0:5 : ðAl,Ti,VaÞ0:5. A self-consistent set of thermodynamic parameters

is obtained. Phase equilibria in the Ti–Al binary system are reproduced using these thermodynamic

parameters.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

High strength b-Ti alloys were developed specifically for
aerospace applications. The Boeing 777 aircraft for example was
the first commercial airplane for which the volume of b alloys
outnumbered the volume of Ti–6Al–4V [1]. The high strength of
these alloys is affected by the a precipitation during the aging
process, which is commonly related with the concentrations of
thermal vacancies induced by the ordered structure—B2 [2,3].
The B2 structure has been found in many b alloy systems, such as
Ti–25V–15Cr–6Al [4], Ti–Al–Nb [5], Ti–Al [6]. The present work
treats the modelling of point defects (substitutional vacancy and
anti-site defect) in the B2 structure of the Ti–Al system. First-
principles calculations are used to study which are the predominant
point defects, which then leads to a revised CALPHAD assessment
of the B2 phase in the Ti–Al system.
2. Background

In recent thermodynamic descriptions of the Ti–Al binary sys-
tem, the B2 phase is modelled using either a two-sublattice model
ðAl,TiÞ0:5 : ðAl,TiÞ0:5, or a three-sublattice one ððAl,TiÞ0:5 : ðAl,TiÞ0:5 :
Va3 which takes into account anti-site defects only [6–8]. This
treatment differs from a previously proposed thermodynamic model
ll rights reserved.

ken).
for the B2 phase ðAl,Ni,VaÞ0:5 : ðAl,Ni,VaÞ0:5 in Ni–Al binary system,
which considers both anti-site defects and substitutional vacan-
cies [9]. Since the thermodynamic model of the B2 phase should
reflect sound physical background, it is necessary to re-consider the
model of the B2 phase on the basis of its known crystal structure.

Experimental studies of point defects in the B2 phase in the
Ti–Al systems are hampered by the fact that bcc phase is not
stable on the Al-rich side of the system. First-principles calcula-
tions are one way to overcome this limitation and to provide
useful hints about the substitutional vacancy. Of course, results
are limited, as calculation can only be done for the ground state.
In order to overcome this limitation Hagen and Finnis [10]
developed a method to study the point defects in the ordered
alloys at finite temperatures which was then successfully applied
to the B2 phase in the Ni–Al system. This method was used in the
present work to calculate the concentration of different point
defects located in different sites. The results of which were used
to improve the thermodynamic model in the CALPHAD assess-
ment of the Ti–Al binary system.
3. Methodology

3.1. First-principles calculations

The energies of various types of point defects were calculated
by first-principles density functional theory, using a supercell
approach which contains one defect (vacancy or antisite) in a
large supercell (54-atom 3�3�3). The all-electron Blöchl’s

www.elsevier.com/locate/calphad
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Table 1
The calculated enthalpy of formation of the B2-TiAl compared to various sources;

hcp Ti �7.8 eV/atom and fcc Al �3.7 eV/atom are used as reference state (Wan,

2004). Note the abbreviations are: PBE, Perdew–Burke–Ernzerhof parameterisa-

tion; GGA, generalised gradient approximation; EAM, embedded atom method;

LAPW, linearised augmented planewave method; FLASTO, full-potential linearised

augmented Slater-type orbital; LDA, local-density approximation; US-PP, ultrasoft

pseudopotentials.

Values (kJ/mol) Methods Sources

�26.9 PBE/GGA Present work

�26.1 EAM [24]

�28.0 LAPW/GGA [24]

�25.1 FLASTO/LDA [25]

�25.9 US-PP/GGA [19]

�39.4 CALPHAD [26]

�37.2 CALPHAD [6]
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projector augmented wave approach [11,12] was used in the
calculations within the generalized gradient approximation pot-
paw_GGA, as implemented in the VASP software [13]. The
Perdew–Burke–Ernzerhof (PBE) parameterisation [14,15] was
used for the potpaw_GGA exchange-correlation functional. The
valence configurations used for Ti are 4s3d, and those for Al are
3s3p. All the atoms were fully relaxed to the equilibrium posi-
tions. The other settings included plane-wave energy cutoff
(450 eV), forces convergence cutoff (0.01 eV/Å) and Monk horst
k-point meshes for Brillouin zone (10�10�10).

3.2. CALPHAD assessment

Ti-rich part of the Ti–Al phase diagram was re-optimised,
while the Gibbs energies of all phases in the Al-rich part remained
the same as the author’s previous work [8]. Based on the results of
the present work, the ordered bcc phase B2 and the correspond-
ing disordered A2 phase are modelled as ðAl,Ti,VaÞ0:5 : ðAl,Ti,VaÞ0:5
and ðAl,Ti,VaÞ1, respectively. The hcp and Ti3Al phases are
modelled in accordance with the previous optimisation as
ðAl,TiÞ1 and ðAl,TiÞ0:75 : ðAl,TiÞ0:25. Parameters were optimised
using the Thermo-Calc software [16].
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Fig. 1. The enthalpies of formation of five alloys.
4. Results and discussion

4.1. The site preference of point defects

In order to calculate the energies of formation of different
point defects, and thus to determine the thermodynamic model
for the ordered B2 phase, the total energy Epure of the perfectly
stoichiometric TiAl was calculated first. After that the deviation
from stoichiometry was taken into account by introducing four
different point defects—one vacancy in Ti sublattice EVaTi , one Al
atom in Ti sublattice E

AlTi , one vacancy in Al site EVaAl , and one Ti
atom in Al site E

TiAl . All calculations were performed in the ground
state, i.e., at zero temperature (T¼0) and zero pressure (p¼0).
With these energies, it is still not possible to determine the
preference of any sort of point defect, since it is not appropriate
to simply compare the difference between the cases of substitu-
tional vacancy and anti-site defect. In order to overcome this
shortcoming, the enthalpies of formation of the point defects are
calculated by using the rescaled total energies.

Define H
ik

(note: in this work the subscript ik represents atom/
vacancy i¼Al, Ti, Va in sublattice k¼Al, Ti) as the enthalpy of
formation of an alloy with respect to the energy of the standard
states of the pure components (per atom) e

TiTi (hcp Ti) and e
AlAl

(fcc Al)

HVaAl ¼ ðEVaAl�27 � e
TiTi�26 � e

AlAl Þ=53 ð1Þ

H
TiAl ¼ ðETiAl�28 � e

TiTi�26 � e
AlAl Þ=54 ð2Þ

HVaTi ¼ ðEVaTi�26 � e
TiTi�27 � e

AlAl Þ=53 ð3Þ

H
AlTi ¼ ðEAlTi�26 � e

TiTi�28 � e
AlAl Þ=54 ð4Þ

Hpure ¼ ðEpure�27 � e
TiTi�27 � e

AlAl Þ=54 ð5Þ

For simplicity, the standard states of the two elements (fcc-Al
and hcp-Ti) are used as reference states [17]. The calculated
enthalpy of formation of the B2-TiAl is listed in Table 1 compared
to various sources. Good agreement can be found between the
present work and previous theoretical results. In Fig. 1, the
calculated enthalpies of formation of the five blocks given above
are plotted as four different branches. The point defects are
sufficiently dilute in the calculations thus the enthalpies of
formation of the alloys scale linearly with the atomic
concentrations of the point defects (note: the concentrations in
the present work refer to concentrations per site, or site fraction).
These four branches can be divided into two sets, one on each side
of the perfect stoichiometric composition, corresponding to sub-
stitutional alloys containing anti-site defects and structural
vacancies respectively. Point defects with lower enthalpy of
formation are unambiguously more stable. Thus for Ti-rich alloys,
the anti-site Ti defect is more stable than the vacancy, while in Al-
rich alloy, the vacancy in the Ti sublattice is slightly more stable
than the anti-site Al defect. This indicates that the preferred type
of point defect is different on the Ti and Al side of the stoichio-
metric composition, with antisite atoms on the Ti side and
vacancies Al on the Al rich side. This preference is confirmed by
the calculation of point defect concentrations at finite tempera-
ture, as will be shown later. Some calculated enthalpies of
formation are given in Table 2, such as those of isolated point
defects (using Eqs. (6)–(9)), complex concentration-conserving
defects and interbranch excitation

HF
VaAl ¼ 53 � ðHVaAl�HpureÞ ð6Þ

HF
TiAl ¼ 54 � ðH

TiAl�HpureÞ ð7Þ

HF
VaTi ¼ 53 � ðHVaTi�HpureÞ ð8Þ



Table 2
The enthalpies of formation of isolated defects, complex concentration-conserving

defects, and interbranch excitations in TiAl (hcp Ti �7.8 eV/atom and fcc Al

�3.7 eV/atom are used as reference state (Wan, 2004)).

Name Designation or quasichemical reaction HF
ik ðeVÞ

Intrinsic point defects

Ti in Al TiAl 0.38

Vacancy in Al VaAl 1.54

Al in Ti AlTi 1.15

Vacancy in Ti VaTi 0.55

Concentration-conserving defect complexes

Triple Ti (TT) 0-2VaTi
þTiAl 1.49

Divacancy (DV) 0-VaAl
þVaTi 2.10

Volume (E) 0-TiAl
þAlTi 1.53

Triple Al (TA) 0-2VaAl
þAlTi 4.23

Interbranch excitation

Interbranch Ti TiAl
-2VaAl 2.70

Interbranch Al 2VaTi-AlTi 0.04

Table 3

The enthalpies of formation of the point defects ðHf
ik
Þ based on different reference

states: on the Ti-rich site, TiAl and Ti3Al ð�4:27 ev=atom for Al and �7.80 ev/atom

for Ti); on the Al-rich site, TiAl and Ti3Al5 (�3.28 ev/atom for Al and �8.79 ev/

atom for Ti) [19].

Name Point defects Hf
ik ðeVÞ

Ti in Al TiAl �0.20

Vacancy in Al VaAl 1.26

Al in Ti AlTi �0.25

Vacancy in Ti VaTi �0.15

Interbranch Ti excitation TiAl
-2VaAl 2.70

Interbranch Al excitation 2VaTi-AlTi 0.04

Fig. 2. The calculated concentrations of individual type of point defects at 627 1C:

Ti anti-site defect, Al anti-site defect, Ti vacancy and Al vacancy.
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HF
AlTi ¼ 54 � ðH

AlTi�HpureÞ ð9Þ

It should be pointed out that an alternative way to subtract
reference states is also presented as described by Zhang and

Northrup [18]. On the Ti-rich site, the two defects VaAl and TiAl are

described with respect to TiAl and Ti3Al : e
TiTiþe

AlAl ¼ ETiAl;

3� e
TiTiþe

AlAl ¼ ETi3Al. On the Al-rich site, the other two defects VaTi

and AlTi are referred to TiAl and Ti5Al3 : e
TiTiþe

AlAl ¼ ETiAl; 5�

e
TiTiþ3� e

AlAl ¼ ETi5Al3
(note the total energies of the compounds

are taken from Ghosh and Asta [19]). The calculated enthalpies of
formation of the defects are listed in Table 3. It is found that the
values of the enthalpies of formation of the defects are different, but
the interbranch excitation of Ti and Al defects does not depend on the
choice of the reference states, which has been mentioned in the work
by Hagen and Finnis [10]. It is also noteworthy that since the enthalpy
of formation of the interbranch Al defect is small (this enthalpy of
formation is also affected by the calculation errors and atoms
relaxations), a competition between triple and interbranch Al defects
on the Al-rich side can be expected. Nevertheless, considering the
present calculations, constitutional vacancies need be taken into
account in the CALPHAD optimisations and this can be confirmed
by predicting concentrations of the thermal defects which follows.

4.2. Vacancies at finite temperature

In this section, the concentration of substitutional vacancies at
finite temperatures are evaluated. The concentrations of point
defects are determined by using the results of first-principles
calculations.
A linear relationship between the enthalpy of formation of an
alloy H

ik
ði¼ Al,Ti,Va, k¼ Al,TiÞ and the concentrations of the

point defects x
ik
ði¼ Al,Ti,Va, k¼ Al,TiÞ is given by

H
ik
¼Hpureþ

X
i

X
k

HF
ik

x
ik

ð10Þ

where Hpure corresponds to the enthalpy of formation of an alloy
without point defects, and HF

ik
ði¼ Al,Ti,Va, k¼ Al,TiÞ is the

enthalpy of formation of one point defect, either anti-site defect
or substitutional vacancy. In order to introduce temperature
dependency, entropy needs to be taken into account; for the sake
of simplicity only configurational entropy of the alloy is consid-
ered, such that

S¼ k ð1þxVaAlþxVaTi Þ ln
1þxVaAlþxVaTi

2

� �
�
X

i

X
k

x
ik

ln x
ik

 !
ð11Þ

The equilibrium concentrations of the point defects are then
calculated by combining minimisation of the Gibbs free energy
ðG¼H�TS¼min:Þ with mass-balance constraints, consistent with

x
AlAlþx

TiAlþxVaAl ¼ 1 ð12Þ

x
TiTiþx

AlTiþxVaTi ¼ 1 ð13Þ

x
AlAlþx

AlTi ¼ xAl ð14Þ

x
TiTiþx

TiAl ¼ xTi ð15Þ

where xAl and xTi are the total mole fraction of Al and Ti in the
alloy, respectively. An analytical solution of this model, as derived
in Refs. [10,20,21], is used in the present work. This yields the
concentrations of point defects as functions of alloy composition
and temperature.

The predicted concentrations of various point defects at 627 1C
are plotted against the mole fraction of Al in Fig. 2. It becomes
clear that substitutional vacancies are the major point defects on
the Al-rich side. On the Ti-rich side the major point defects are
anti-site Ti atoms, but the concentration of substitutional vacan-
cies on the Ti sublattice is still relatively high. Higher concentra-
tions of vacancies can be expected at higher temperatures than
627 1C. The high concentration of substitutional vacancies is
consistent with the experimental results, which indicates that
ordering raises the vacancy concentration [2,3]. These results also
illustrate the importance of including substitutional vacancies
into the thermodynamic model for the B2 phase.

It is also interesting to separate structural from thermal point
defects. Structural point defects are induced by the deviation from
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the exact stoichiometry. They are present at both 0 K and finite
temperatures, while thermal point defects are present only at
finite temperatures. In the following, only the major point defects
obtained in Fig. 2 are considered (anti-site Ti defects on the Al
sublattice and vacancies on the Ti sublattice). The concentrations
of the thermal defects xt

ik
ði¼ Al,Ti,Va, k¼ Al,TiÞ can be obtained

as described by Lozovoi et al. [20]:

xt
ik
¼ x

ik
�x0

ik
ð16Þ

where x
ik

and x0
ik
ði¼ Al,Ti,Va, k¼ Al,TiÞ are the concentrations of

various types of point defects at finite temperature and 0 K, respec-
tively. At 0 K two cases need be considered, depending on which is
the dominant point defect on the sublattice under consideration:
(i)
Fig.
defe
anti-site defect:

x0
ik
¼ 2xi�1 ð17Þ
(ii)
 substitutional vacancy:

x0
ik
¼ 1�ð1�xiÞ=xi ð18Þ
Table 4
Thermodynamic parameters of the phases in the Ti-rich part of Ti–Al binary

system (note that the parameters of the A2 phase are originally from [27], and the

Gibbs energy functions GALHCP, GHSERAL and GHSERTI are from [28]).

Thermodynamic

parameters

Value (J/mol)

G(BCC_A2,AL,TI;0) �121 785þ34.0nT

G(BCC_A2,AL,VA;0) 60 000

G(BCC_A2,TI,VA;0) 150 000

G(BCC_B2,AL:AL;0) 0
in which xi ði¼ Al,TiÞ is the total mole fraction of i atoms in the i-
rich alloy. The calculated concentrations of thermal defects are
shown in Fig. 3. Interestingly vacancies on the Ti sublattice are the
main point defects on the Ti-rich side, at an increasing concen-
tration towards the stoichiometric composition, i.e. increasing Al
alloy compositions. Similar behaviour is observed for anti-site Ti,
but at lower defect concentrations. Above the stoichiometric
composition ð450 at% AlÞ the concentration of Ti vacancies
steeply drops and thermal Ti vacancies are absent at any higher
Al compositions. Similar behaviour is also found in the Ni–Al
system, where it is attributed the interbranch Al excitation
2VaTi-AlTi (see Table 2) [20]. Anti-site Al atoms are the
dominant thermally induced point defects on the Al-rich side of
the stoichiometry. Anti-site Ti is predicted at similar concentra-
tion close to the stoichiometric composition, but quickly drops to
much lower values at higher Al alloy compositions.

4.3. Phase diagram

The thermodynamic description of the Ti–Al binary system
was revised, based on the information on point defects presented
in this work. The revised description is largely based on a
3. The calculated concentrations of thermal defects at 627 1C: Ti anti-site

ct, Al anti-site defect, Ti vacancy and Al vacancy.
previously published assessment [22]. In order to reflect the
influence of point defects, substitutional vacancies were added
into the thermodynamic model of the ordered B2 phase—ðAl,Ti,
VaÞ0:5 : ðAl,Ti,VaÞ0:5, and the model for the corresponding disor-
dered A2 phase therefore becomes ðAl,Ti,VaÞ1. These changes also
affect the parameters of the a and a2 phases, the revised
parameters of these are given in Table 4 and the corresponding
phase diagram is shown in Fig. 4. Furthermore, Table 5 shows the
temperatures and compositions of the two relevant peritectoid
reactions in comparison to those found in other sources. Besides a
sounder physical description, a better consistency with experi-
mental data of phase equilibria is observed.

Fig. 5 shows the calculated Ti–Al phase diagram without the
ordered B2 phase. In this case the bcc2hcp does not show the
peculiar bending as seen in Fig. 4, and the a2 phase ðTi3AlÞ forms
congruently from the a (hcp) phase at 1164 1C. The same diagram,
calculated using the author’s previous description is also shown,
using dotted lines [8]. It can be seen that the temperature of
congruent formation of a2 has increased after the re-optimisation.
Taking the B2 phase into account will cause the bcc–hcp two
phase region to bend sufficiently to form the bþa-a2 peritectoid
reaction. However, the maximum temperature of this reaction
cannot be higher than the temperature of congruent formation of
a2. The introduction of point defects into the A2/B2 model and the
re-optimisation of the Ti rich part of the phase diagram did
increase the temperature of congruent a2 formation sufficiently,
to raise the temperature of the peritectoid reaction from 1160 1C
to 1198 1C. This is in very good agreement with the most recent
assessment of the Ti–Al phase diagram by Schuster and Palm [23].

Fig. 6 shows the vacancy concentration in the B2 phase versus
temperature as obtained from CALPHAD calculations for
Ti–30 at% Al. This alloy shows a B2 single phase region between
1210 1C and 1490 1C. An increase of the vacancy concentration
with temperature is found up to about 1200 1C followed by a
G(BCC_B2,TI:AL;0) �21 645þ3.1nT

G(BCC_B2,VA:Al;0) 5000�0.5nT

G(BCC_B2,AL:TI;0) �21 645þ3.1T

G(BCC_B2,TI:TI;0) 0

G(BCC_B2,VA:TI;0) 26 645�3.6nT

G(BCC_B2,AL:VA;0) 5000�0.5nT

G(BCC_B2,TI:VA;0) 26 645�3.1nT

G(BCC_B2,VA:VA;0) 0

G(BCC_B2,AL:TI,VA;0) �75 000

G(BCC_B2,TI,VA:AL;0) �75 000

G(BCC_B2,TI:AL,TI;0) �7080

G(BCC_B2,AL,TI:TI;0) �7080

G(BCC_B2,TI:AL,TI;1) �3150

G(BCC_B2,AL,TI:TI;1) �3150

G(HCP_A3,AL,TI:VA;0) �128 189þ35.2nT

G(HCP_A3,AL,TI:VA;1) 16 034.9�12.2nT

G(TI3AL,AL:AL;0) GALHCP

G(TI3AL,AL:TI;0) 32 363.6�8.25nT

þ0.75nGHSERALþ0.25nGHSERTI

G(TI3AL,TI:AL;0) �32 363.6þ8.25nTþ0.75

nGHSERTIþ0.25nGHSERAL

G(TI3AL,TI:TI;0) GHSERTI

G(TI3AL,AL,TI:AL;0) �71 277.9þ25.5nT

G(TI3AL,AL,TI:TI;0) �71 277.9þ25.47nT



Fig. 4. The calculated Ti–Al binary phase diagram versus experimental data.

Table 5
Calculated results of the invariant reactions involving the B2 phase in the Ti–Al

binary system compared with experimental or assessed phase equilibria.

Invariant reaction T (1C) x(Al) (at%) Ref.

b a a2

bþa-a2 � 1250 – – – [29]

1215 – – – [30]

� 1150 – – – [31]

� 1135 – – – [32]

� 1200 � 29 35 30 [33]

1196 28.7 32 31.3 [34]

1200710 � 28 33 32 [23]

1162 31.3 32.4 32 [8]

1198 30.2 30.8 30.5 This work

b a2 a
bþa2-a 117278 23.9 28 26 [35–37]

1100 15.5 25.3 23.5 [38]

1080720 15 22.5 17.5 [29,39]

1100 15.7 25.3 21 [40,41]

1180 18.7 26 � 30:7 [42]

1115 16 27 24 [30]

� 1150 24 26 25 [33]

1160710 21.5 26 25 [43]

1170710 25 27.5 27 [23]

1124 24.7 26.8 26 [8]

1172 23.0 25.3 23.6 This work
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1210 and 1490 1C from CALPHAD results) versus temperature.
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decrease at higher temperatures. This is consistent with creation
of vacancies due to increase of temperature, and their loss due to
reduced degrees of ordering, which reflects greater opportunity of
random arrangement of atoms in the crystal lattice. Calculations
of vacancy concentrations using CALPHAD can be very helpful to
explain vacancy related effects at high temperatures – such as
rapid precipitate growth in quenched alloys – especially when
extrapolated to more complex alloys.
5. Conclusions

The enthalpies of formation of different point defects in the B2
phase of the Ti–Al system are calculated using first-principles
calculations. The preference of the point defects is predicted—Ti
anti-site defect in the Al sublattice and vacancy in the Ti
sublattice. The concentrations of various types of point defects
were calculated at finite temperatures using first-principles



H. Wang et al. / CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 39 (2012) 21–2626
calculations. Substitutional vacancies were added into the ther-
modynamic model of the B2 phase, which is now modelled as
ðAl,Ti,VaÞ0:5 : ðAl,Ti,VaÞ0:5. The Ti–Al binary system was re-opti-
mised, which resulted in a better reproduction of experimental
phase equilibria.
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