Conditioned suppression and freezing as measures of aversive Pavlovian conditioning: effects of discrete amygdala lesions and overtraining.
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Abstract

Freezing and suppression are measures of conditioned fear that correlate in unlesioned animals. Both the basolateral (BLA) and central (CeN) nuclei of the amygdala are required for conditioned freezing, though there can be recovery with overtraining. The neuroanatomical substrates of conditioned suppression are less clear, with evidence both for a specific requirement of the CeN and for disruption by BLA lesions. The present study investigated the impact of selective excitotoxic lesions of the BLA and CeN upon the acquisition and expression of conditioned fear, measured by freezing and both on-baseline and off-baseline conditioned suppression in the same rats. BLA and CeN lesions both abolished all measures of conditioned fear after 9 trials of fear conditioning. However, when conditioning was extended to 33 trials, whereas rats with combined lesions of both the BLA and CeN continued to show no conditioned fear responses, there was a pattern of recovery observed after selective lesions. There was a partial recovery of freezing with both lesions, and full recovery of conditioned suppression, except for off-baseline suppression in CeN lesioned rats. These results indicate that with few conditioning trials, both the BLA and CeN are required in a serial manner for conditioned fear responses, but that overtraining can mitigate such impairments, likely involving parallel pathways in and through the amygdala.

Introduction

The amygdala has long been known to be involved in Pavlovian fear conditioning. Temporal lobe ablation in monkeys produces a range of emotional changes [30], replicated by more discrete lesions of the amygdala [60], including an inability to acquire fear conditioning. Several behavioural measures of fear conditioning exist, all of which are impaired by amygdala lesions. In particular, conditioned freezing is disrupted by lesions of the basolateral (BLA) [13, 19, 37] and central (CeN) [2, 6, 19] nuclei of the amygdala, indicating that both areas are required for fear conditioning. However, whereas one study of conditioned suppression, the suppression by fear of an appetitive motivated behaviour, showed impairments following BLA lesions [54], another demonstrated that conditioned suppression was impaired by CeN, but not BLA, lesions [28]. Therefore the role of the BLA and CeN in fear conditioning may not be as straightforward as indicated by studies of conditioned freezing.

Freezing is a robust index of conditioned fear [8], and in unlesioned rats it correlates with the conditioned suppression of three baseline measures: lever pressing, licking and spontaneous activity [10]. It has been proposed that conditioned suppression is simply a result of freezing [24, 25, 39]. However lesions of the ventral periaqueductal grey (vPAG), which abolish freezing, have no effect upon conditioned suppression [3]. Nevertheless, in unoperated animals, response competition may account for some degree of the suppression of responding: animals that are freezing cannot make instrumental responses.

A prominent hypothesis of fear conditioning, consistent with the results of conditioned freezing studies, emphasises the role of serial processing within the amygdala [32, 36]. This hypothesis states that information about the CS and US converge onto single neurons in the lateral nucleus (LA) of the BLA [53], and that the LA is the site of plasticity during fear conditioning [12, 34, 41, 52]. Activation of the BLA by the CS at test results in activation of the CeN, which recruits the downstream systems involved in the expression of the reflexive, behavioural, autonomic and neuroendocrine responses characterising conditioned fear. Therefore the LA is considered to be both the sensory gateway to the amygdala [33] and the site of plasticity, whereas the CeN is held to be the “output pathway” of the amygdala, recruiting autonomic, endocrine and behavioural response mechanisms. However there is evidence that the CeN itself receives in parallel direct afferents from the same sensory areas that project to the BLA [40, 51, 57], and is therefore is potentially able to function independently of the BLA. Furthermore, the BLA has efferent projections to structures in addition to the CeN, including direct projections to the thalamus, hypothalamus, hippocampal formation, prefrontal cortex and striatum, thereby placing the BLA in a position to influence the activities of many upstream and downstream systems independently of the CeN [1, 16, 20, 49, 55]. Thus the anatomy and connectivity of the amygdala is such that the BLA and CeN can operate both in series and in parallel.

Most problematic for the serial processing hypothesis is the observation that conditioned suppression of lever pressing is impaired by lesions of the CeN, but not the BLA [28]. This casts doubt upon the role of the BLA as the necessary site of plasticity in fear conditioning, and indicates both that after Pavlovian conditioning the CeN can utilise its direct inputs from sensory areas in order to activate downstream systems, and that plasticity can occur within such a pathway, either in the CeN, or in the source of its afferents, not including the BLA. However, it has been suggested that the lack of effect of BLA lesions on conditioned suppression was a result of overtraining [43]. Most studies of fear conditioning involve few CS-US pairings, ranging from a single shock to around 10 presentations, whereas Killcross et al (1997) used over 100 CS-US pairings. Indeed suppression of licking is BLA-dependent when few CS-US pairings are used [54], although overtraining has been reported not to mitigate impairments in conditioned freezing [35]. Therefore it is important to characterise further the impact of selective BLA and CeN lesions on conditioned freezing and conditioned suppression, and any mitigation by overtraining.

Following preliminary experiments (Experiment 1) using to determine the extent of overtraining required to produce a recovery in on-baseline conditioned suppression, a combined on- and off-baseline conditioning procedure was designed and employed in order to test both conditioned suppression and conditioned freezing in the same animals after a few (9) and many (33) CS-US pairings. This procedure consisted of one stimulus (ON) being conditioned while the animals were lever pressing for food (INSTR), and another (OFF) being conditioned in a different, non-instrumental context (PAV). Both stimuli were then presented in each context. Therefore there were four test conditions (Table 1): ON in INSTR (on-baseline conditioned suppression); OFF in INSTR (off-baseline conditioned suppression); ON in PAV (conditioned freezing); the final condition (OFF in PAV) represents the assessment of conditioned freezing to a stimulus in the same context in which that stimulus was conditioned. The impact of pretraining selective excitotoxic BLA and CeN lesions (Experiment 2), and combined lesions of the BLA and CeN (Experiment 3), on these indices of Pavlovian conditioned fear was assessed.

	Stimulus
	Context

	
	INSTR

(instrumental)
	PAV

(Pavlovian conditioning)

	ON

(on-baseline)
	On-baseline

conditioned suppression
	CS freezing

	OFF

(off-baseline)
	Off-baseline

conditioned suppression
	CS and contextual freezing


Table 1: Experimental protocol for a combined on-baseline and off-baseline conditioned suppression procedure. The presentation of the ON and OFF CSs in the two contexts produces four measures of conditioned fear.

Materials and Methods

Subjects

The subjects used were 106 adult male Lister Hooded rats (Charles River, UK), ranging from 275 g to 325 g in weight. They were housed in pairs, and kept in holding rooms maintained at 21(C on a reverse light cycle (12 hours light: 12 hours dark; lights on at 1900 hr). Following recovery from surgery, water was freely available throughout the experiment, but food (rodent laboratory chow, Purina, UK) was restricted to 15 g/day during instrumental training and conditioned suppression in order to maintain the animals at 85% free feeding weight.

Surgery

The rats were anaesthetised using Avertin (1.0 ml/100 g body weight, i.p.; 2,2,2-tribromoethanol, 2-methylutan-2-ol, in tertiary amyl alcohol; Sigma, UK). Intracerebral infusions were made via a 5 (l syringe (SGE, Australia) connected to a 28 gauge cannula (Plastics One, Semat Technical (UK) Ltd.) with polyethylene tubing. Sham and lesion rats were injected with vehicle (0.1 M phosphate buffer, pH 7.4), and excitotoxin (0.06 M ibotenic acid for CeN lesions and 0.09 M quinolinic acid for BLA and amygdala lesions), respectively [22, 47]. The incisor bar was set at –3.3 mm, and the co-ordinates with respect to Bregma were (in mm): BLA lesion, AP (antero-posterior) -2.3 and -3.0, ML (medio-lateral) (4.6, DV (dorso-ventral, from dura) -7.8; CeN lesion, AP -2.2 and -2.7, ML (4.0, DV -7.8 (from skull surface); amygdala lesion, AP -2.2 and -2.8, ML (4.3, DV -7.8 (from skull surface). Infusions were made at a rate of 0.2 (l/min, with a volume of 0.2 (l in the anterior sites and 0.1 (l in the posterior sites for BLA and CeN lesions, and 0.3 (l in both sites for combined lesions. The infusions were followed by a diffusion time of 2 minutes for BLA and combined lesions, and 10 minutes for CeN lesions, before withdrawal of the injector. After surgery the rats were placed individually in cages on heated pads overnight, with free access to food and water, before being returned to their home cages. A minimum of 7 days recovery period was allowed before behavioural testing began. In Experiment 1, ten animals received excitotoxic lesions of the BLA, 12 had CeN lesions, and there were 10 sham controls (5 each of BLA shams and CeN shams). In Experiment 2, ten animals received excitotoxic lesions of the amygdala, and 8 received sham lesions.

Behavioural Apparatus

Training and testing took place in four operant chambers (Paul Fray Ltd., Cambridge, UK). Two contexts were created in this apparatus – designated “INSTR” and “PAV”. The PAV context, for fear conditioning and measuring of freezing, was characterised by illuminating all three lights on the side wall as well as the house light, and removing the pellet tray. The INSTR context was illuminated only by the houselight and had the left lever extended into the chamber, as well as the pellet tray in place. The room lighting (white or red), odours (acetic acid or detergent) and time of day were also used as contextual discriminators. Each context was associated with a specific odour, time of day and lighting in order to facilitate discrimination between the contexts.

Behavioural Procedures

Preliminary experiments were conducted as below, but used the INSTR context only, with one stimulus paired with footshock, and another unpaired. For the combined on- and off-baseline conditioning procedure animals from each group were randomly assigned to different experimental protocols, according to which stimulus (3 kHz tone or 10 Hz clicker; 80 dB) was to be used in on-baseline conditioning in the INSTR context (the other being conditioned in the PAV context; there was no unpaired stimulus). Conditions were counterbalanced with respect to whether on-baseline conditioning took place in the morning or afternoon, in the presence of odour 1 or 2, and in red or white light. The training and testing procedure is described below, a schematic for which is illustrated in Fig 1.
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Fig. 1: Schematic representing the behavioural procedure. 7 days of instrumental training precede 3 days of fear conditioning and an extinction test. Then follow 4 days of overtraining and a second extinction test.
Days 1-7 (Instrumental acquisition)

The animals were placed in the chambers in the INSTR context. The sessions began with illumination of the house light, followed by extension of the left lever 10 s later. Reinforcement of lever pressing occurred under an incremental variable interval (VI) schedule, with delivery of one food pellet as the reinforcer, accompanied by illumination of the tray light, which was extinguished by the nosepoke response to retrieve the food pellet. The schedule of reinforcement was set at VI 2-s for 3 sessions, and was increased to VI 15-s and then VI 30-s for 3 sessions. The sessions lasted for 30 min, at the end of which the house light and tray light were extinguished and the lever was retracted. The number of lever presses was recorded in 30-s bins. All animals had an additional habituation session of 30 min in the PAV context on each day in order to equate the level of exposure to both contexts and hence the subsequent rate of conditioning to the context and cue.

Days 8-10 (Conditioning)

On-baseline

Lever pressing was maintained by the VI 30-s schedule of food reinforcement in the INSTR context (20-min session), but superimposed on this baseline was a series of 3 non-contingent presentations of one auditory stimulus (2 min; 4-min inter-stimulus interval (ISI)), which were always reinforced by an electric shock (0.5 s), delivered at a random time within the duration of the stimulus. No shocks were given in the ISI. The chambers were cleaned between sessions in order to minimise any fear-related olfactory stimuli. The intensity of shock was set at 0.20 mA on day 8, rising to 0.35 mA on day 9, and 0.50 mA on day 10. This was to minimise the possibility that stimulus-induced analgesia would influence conditioning in the initial trials [61].
Off-baseline

In the PAV context, the animals underwent fear conditioning training with the second auditory stimulus (2 min; 4-min ISI; 20-min session). One shock was delivered at random during each of three CS presentations, and the shock intensity was the same as that used in the on-baseline conditioning sessions.

Day 9 (Test 1)

Twelve minute extinction tests were carried out with a single presentation of each of the 2 min CSs in a random order across rats with a 4-min ISI. These tests took place in each context, with suppression ratios calculated for both stimuli, and behaviour video recorded in the PAV context for the subsequent analysis of freezing behaviour. Suppression ratios were calculated using the formula a/(a+b) where a and b are the number of lever presses in the first 60 s of the CS and preceding 60 s of the ISI, respectively. The videos were analysed for freezing, defined as the lack of movement except for breathing, at 5-s intervals to give a percentage freezing time during the first 60 s of the CS and the previous 60 s of the ISI.

Days 11-14 (Overtraining)

Conditioning continued for 4 sessions in both contexts but with an increased density of CS-US pairing. There were only two presentations of the CS per 12-min session, but three shocks (0.50 mA, 0.5 s) were randomly delivered during each CS. Thus, there were 6 CS-US pairings per session during overtraining, compared to 3 pairings per session during initial conditioning.
Day 15 (Test 2)

A further extinction test was carried out, exactly as before on Day 9.

Statistical Analysis

As all animals contributed to all test measures, mixed factor repeated measures ANOVAs were performed on the results. Simple effects were analysed using a procedure taken from [23], p 469] which pools error terms and thus gains degrees of freedom, and Tukey’s test was used for post-hoc analyses. For comparison of baseline rates of lever pressing, a repeated measures ANOVA with factors GROUP (BLA vs. CeN vs. Sham) and SESSION (final day of instrumental acquisition vs. Test 1 vs. Test 2) was performed on the baseline lever pressing rates (mean 60 s ISI preceding CS presentation for the test measures). The conditioned suppression data was analysed with factors GROUP and TEST (ON and OFF CSs at Tests 1 and 2). The freezing data was treated similarly, with the CS freezing levels being analysed with factors GROUP and TEST. Freezing levels were then analysed for the lesion groups only, introducing the pre-CS baseline freezing data, and factors INTERVAL (ISI vs. CS) and TEST (Test 1 vs. Test 2), in order to assess whether the animals showed conditioned freezing to the CS before and after overtraining.

Histology

After completion of behavioural testing, animals were killed with an overdose of sodium pentobarbitol (1.5 ml per animal i.p., Euthatal, Rhone Merieux, UK), and perfused through the ascending aorta with 0.01M PBS (pH 7.4) for 2 min, followed by 4% paraformaldehyde (PFA) for 5 min. The brains were removed and postfixed in 4% PFA for at least 2 hr before being transferred to 20% sucrose in 0.01M PBS for cryoprotection. Coronal sections (60 (m) were cut using a freezing microtome (Leica, Germany). Every second section was mounted on gelatin-covered glass slides, air dried, and stained with cresyl violet (5 g Cresyl Fast Violet (Raymond Lamb, UK), 600 ml ddH2O, 60 ml acetic acid). Assessment of the extent of lesions was conducted by an observer blind to the experimental results, through assessment of neuronal loss and associated gliosis under high magnification. Schematic diagrams of the lesions were mapped onto a standard stereotaxic atlas of the rat brain [48], assessing sections between -1.80 and -3.14 mm from Bregma.

Results
Experiment 1

Preliminary experiments were conducted in order to determine both whether overtraining would mitigate the deleterious effect of BLA and CeN lesions upon conditioned suppression, and also the extent of overtraining required for such recovery. The lesions were made in the same manner as in Experiment 2, and the acquisition of the instrumental lever pressing response for food reinforcement was also the same as observed in Experiment 2, and hence they are not illlustrated here. For both lesions, there were differences in baseline lever pressing rates between the lesion group and its sham-operated counterpart (all p’s>0.14).


Figs. 2 and 3 show the suppression ratios for the BLA and CeN lesions respectively. Both BLA and CeN lesions impaired on-baseline conditioned suppression at Test 1, but showed complete recovery with overtraining. There were significant GROUP x TEST interactions, which indicate that both the BLA (F(2.2,37.9)=7.155, p<0.003) and CeN (F(2.7,54.3)=4.590, p<0.01) lesions affected conditioned suppression. Further analysis of simple main effects revealed that at Test 1, the lesions impaired conditioned suppression to the CS+ (BLA - F(1,68)=18.8, p<0.001; CeN - F(1,79)=9.403, p<0.005), but there was no difference with respect to controls in the responses to the CS- (BLA - F(1,68)=1.095, p>0.29; CeN - F(1,79)=0.735, p>0.39). Thus both BLA and CeN lesions impaired conditioned suppression after 9 CS-US pairings. In contrast there was no effect of BLA and CeN lesions on conditioned suppression to the CS+ (BLA - F(1,68)=0.061, p>0.80; CeN - F(1,79)=0.003, p>0.95) or the CS- (BLA - F(1,68)=1.711, p>0.19; CeN - F(1,79)=2.831, p>0.09) at Test 2. Finally, rats with either lesion showed significant conditioned suppression to the CS+ compared to the CS- at Test 2 (BLA - F(1,8)=29.440, p<0.01; CeN - F(1,7)=24.338, p<0.01). 

[image: image2.png]Suppression Ratio

Test 1
0.8
0.6
04
0.2

0
Sham BLA
Group

Test 2

0.8 OcCs-
0.6 W CS+
04
0.2
0
Sham BLA

Group




Fig. 2: Conditioned suppression of lever pressing in BLA lesioned animals. BLA lesions impaired conditioned suppression at Test 1, but not at Test 2 (suppression ratio of 0.5 represents no suppression; <0.5 indicates CS-induced suppression). Data represent group means + s.e.m.
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Fig. 3: Conditioned suppression of lever pressing in CeN lesioned animals. CeN lesions impaired conditioned suppression at Test 1, but not at Test 2. Data represent group means + s.e.m.
The results of Experiment 1 showed that overtraining with 33 CS-US pairings mitigated the impairments in conditioned suppression observed after rapid conditioning in animals with either BLA or CeN lesions. Therefore we used the same lesion and training parameters to investigate the effects of overtraining on both conditioned suppression and conditioned freezing in rats with BLA or CeN lesions.

Experiment 2

Histological assessment

Photomicrographs showing sections from typical lesion and sham animals are shown in Fig. 4. Two sham-operated animals died during surgery, reducing the control group to 8 (5 BLA shams and 3 CeN shams). The remaining sham-operated animals had no damage to any region of the brain. The BLA shams and CeN shams did not differ in any of the behavioural measures and so were combined into one group for statistical analysis.

Fig. 5A shows schematic representations of the BLA lesions. Of a total of 10 lesioned animals, one was excluded on the basis of histological assessment, leaving 9 animals in the BLA lesioned group. The BLA lesions typically encompassed the full rostro-caudal extent of the BLA including the basal magnocellular and parvicellular divisions of the basal nucleus, as well as the lateral and accessory basal nuclei. Four of the animals had minor unilateral damage to the capsular portion of the CeN, but no damage extended into the lateral or medial divisions in any of the animals. Five of the animals had unilateral damage to the endopiriform nucleus, and one animal had partial unilateral damage to piriform cortex, but no damage extended to the perirhinal, entorhinal or agranular insular cortices, or to the medial and cortical nuclei of the amygdala.
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Fig. 4: Photomicrographs of sections from representative brains with a sham lesion (A, E), with lesions of the BLA (B, F) and CeN (C, G), and with a combined lesion of both amygdala nuclei (D). Panels show low (x5; A-D) and high (x10; E-G) magnifications, with all sections except G being taken from the right side of the brain. The LA, Bmc and CeN are labelled, where visible and undamaged, as are the external capsule (ec) and the optic tract (ot), where visible. Lesions are marked with the ( symbol, and cannula tracts are marked with the ( symbol.

Fig. 5B shows schematic representations of the CeN lesions. Of a total of 12 lesioned animals, 5 were excluded on the basis of histological assessment, leaving 7 animals in the CeN lesioned group. The CeN lesions typically included the full extent of the CeC, CeM and CeL, with no bilateral damage to the BLA. Two animals had minor unilateral damage extending into the dorsolateral and ventromedial portions of the LA, and three animals had more substantial unilateral damage to much of the BLA. No damage with seen in any subjects within the medial or cortical regions of the amygdala or in adjacent entorhinal, piriform, perirhinal and agranular insular cortices.
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Fig. 5: Schematics representing the smallest (black) and largest (gray) extents of lesions of the BLA (A) and the CeN (B). Sections extend from -1.80 to -3.40 mm from Bregma.

Instrumental Acquisition

There was no difference between the groups in the acquisition of lever pressing for food

(Fig. 6). A baseline rate of responding of approximately 16 lever presses per minute was achieved by each group (GROUP x SESSION: F(12,126)=0.77, p>0.68; GROUP: F(2,21)=1.70, p>0.20). Thus neither BLA nor CeN lesions impaired the acquisition of an instrumental response for food reinforcement.
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Fig. 6: Acquisition of instrumental responding for food. Discrete lesions of the BLA and CeN had no effect on instrumental acquisition compared to sham lesioned controls.

Conditioned suppression

Fig. 7 shows the suppression ratios of the lesion and sham groups. Both BLA and CeN lesions impaired conditioned suppression to both stimuli at the first extinction test. BLA-lesioned animals recovered completely with overtraining, but CeN-lesioned animals only suppressed to the ON CS after overtraining, remaining impaired in off-baseline conditioned suppression.

For both tests, baseline lever pressing rates were similar to those observed on the final session of instrumental acquisition (GROUP x SESSION (F(4,42)=0.35, p>0.82); GROUP (F(2,21)=0.71, p>0.50); SESSION (F(2,42)=0.01, p>0.98)).

[image: image7.jpg]Conditioned Suppression

Test 1
ONCS OFF CS D:E:m
|
2 06 06 BCeN
S 05 0.5
S 04 0.4
@ 03 0.3
0 02 0.2
& 0.1 0.1
3
® 0 0
Test 2
ON CS OFF CS
-% 0.6 - 06
¢ 05 - 05
5§04 0.4 -
w 03 - 03 -
£ 02 02 -
201 0.1
2 - 0 -





Fig. 7: Conditioned suppression of lever pressing. Sham lesioned controls suppressed responding to both CSs at both tests. Lesions of the BLA and CeN impaired conditioned suppression to both CSs at Test 1. At Test 2, BLA lesioned animals recovered to suppress normally to both CSs, but CeN lesioned animals remained impaired specifically in suppressing to the OFF CS. Data represent group means + s.e.m.

There was a significant GROUP x TEST interaction, which indicates that the BLA and CeN lesions affected conditioned suppression (F(6,63)=2.28, p<0.05). Further analysis of simple effects revealed that at Test 1, there was an effect of GROUP for both stimuli (OFF CS - F(2,67)=6.54, p<0.003; ON CS - F(2,67)=7.07, p<0.002). Thus both BLA and CeN lesions impaired conditioned suppression to both stimuli after rapid conditioning. In contrast there was no difference between the groups for suppression to the ON CS at Test 2 (F(2,67)=0.37, p>0.69). However, for suppression to the OFF CS at the Test 2, there was a difference between the groups (F(2,67)=3.48, p<0.036). Post-hoc analysis (P<0.05) revealed that this was due to a significant difference between the sham-operated controls and the CeN-lesioned animals. Thus whereas overtraining resulted in both lesion groups recovering to perform as well as controls when suppressing to the CS conditioned on-baseline, only the CeN-lesioned animals remained impaired with respect to the OFF CS.

Conditioned freezing

Fig. 8 shows the percentage time freezing of the lesion and sham groups. Both BLA and CeN lesions impaired conditioned freezing to both stimuli at both tests. However, there was also evidence that overtraining resulted in partial recovery of freezing in both lesion groups.

[image: image8.jpg]Conditioned Freezing

Test 1

ON CS OFF CS OSham
EBLA

o 20 50 - OCeN
= 40 - 40- T
(]
2 30 - 30 -
2 20 - 20
= 9@ - 10
®

0 0.
Test 2

ON CS OFF CS

o 50 50 -
= 40 40 -
Q
230 - 30
g 20 - 20 -
10 A 10 -
X

0 - 0 |





Fig. 8: Conditioned freezing. BLA and CeN lesions impaired conditioned freezing to both CSs at both tests, compared to sham lesioned controls, but both lesion groups did display conditioned freezing at Test 2, and not at Test 1. Data represent group means + s.e.m.

There was a significant effect of GROUP upon freezing to each CS (F(2,21)=30.44, p<0.001), with no GROUP x TEST interaction (F(6,63)=0.77, p>0.59), indicating that the lesions impaired freezing at all tests. Post-hoc analysis (P<0.05) confirmed that both BLA and CeN lesion groups were impaired relative to the sham-lesioned controls. Nevertheless, it appeared that both lesion groups did increase in freezing levels following overtraining, and this was confirmed by statistical analysis comparing the levels of freezing to the CS and during the preceding ISI. Analysing the freezing data from the lesion groups only, there was both a main effect of INTERVAL (F(1,14)=35.95, p<0.001) and an INTERVAL x TEST interaction (F(1,14)=19.12, p<0.002), with no added effect of GROUP (INTERVAL x GROUP: F(1,14)=3.75, p>0.07; INTERVAL x TEST x GROUP: F(1,14)=1.00, p>0.33), indicating that the lesioned animals did increase their freezing to the CS relative to the ISI with overtraining. Furthermore, analysis of Test 1 alone failed to reveal strong evidence that lesioned animals showed conditioned freezing (INTERVAL: F(1,14)=4.46, p>0.05; INTERVAL x GROUP: F(1,14)=1.54, p>0.23). 

A correlational analysis of all the data from the first test showed significant correlations between all measures (Table 2). Thus after rapid conditioning, BLA and CeN lesions both impair fear conditioning as measured by both conditioned suppression and conditioned freezing.

	
	On-suppression
	Off-suppression
	On-freezing
	Off-freezing


	On-suppression
	-
	 0.663
	-0.670
	-0.798

	Off-suppression
	 0.663
	-
	-0.760
	-0.659

	On-freezing
	-0.670
	-0.760
	-
	 0.685

	Off-freezing
	-0.798
	-0.659
	 0.685
	-


Table 2: Correlation of measures taken at the first extinction test. All measures correlate significantly with each other (Pearson Correlation Coefficient, 2-tailed, n=30, =0.05).

Experiment 2

Histological assessment

Photomicrographs showing sections from typical lesion and sham animals are shown in Fig. 4. None of the sham-operated animals had any damage to the amygdala or other areas of the brain. One amygdala-lesioned rat was sacrificed during training. Of the remaining nine, two were excluded from the analysis of behavioural results after histological assessment, leaving 7 animals in the lesion group and 8 in the sham group. Only animals with bilateral lesions encompassing both the BLA and CeN (using the same criteria as before) were included in the analysis. Schematics of the lesions show the minimum (grey) and maximum (black) extents of damage (Fig. 9).
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Fig. 9: Schematics representing the smallest (black) and largest (gray) extents of the amygdala lesions. Sections extend from -1.80 to -3.40 mm from Bregma.

Instrumental Acquisition

There was no difference between the groups in the acquisition of lever pressing for food

(Fig. 10). A baseline rate of responding of approximately 16 lever presses per minute was achieved by the end of acquisition (GROUP x SESSION : F(6,126)=1.66, p>0.14; main effect of GROUP: F(1,13)=0.23, p>0.64). Thus large amygdala lesions had no effect on the acquisition of an instrumental response for food reinforcement.
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Fig. 10: Acquisition of instrumental responding for food. Amygdala lesions of both the BLA and CeN had no effect on instrumental acquisition compared to sham lesioned controls.

Conditioned Suppression

Figure 11 shows the suppression ratios of the lesion and sham groups. Amygdala lesioned animals were impaired in conditioned suppression to both stimuli at both tests.

For both tests, baseline lever pressing rates were similar to that observed on the final session of instrumental acquisition (GROUP x SESSION (F(2,26)=3.25, p>0.054); GROUP (F(1,13)=4.26, p>0.059)).

There was a significant main effect of GROUP (F(1,13)=27.82, p<0.001), which indicates that amygdala lesioned animals were impaired in comparison to sham-operated controls. However there was no significant GROUP x TEST interaction (F(3,39)=2.46, p>0.076), revealing that the amygdala lesioned animals were impaired with respect to controls to a similar degree at all tests. Furthermore, analysis of Test 2 alone revealed a significant effect of GROUP (F(1,13)=5.53, p<0.04). Thus there was no evidence of recovery of conditioned suppression after overtraining.
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Fig. 11: Conditioned suppression of lever pressing. Sham lesioned controls suppressed responding to both CSs at both tests, whereas amygdala lesions impaired conditioned suppression to both CSs at both tests. Data represent group means + s.e.m.

Conditioned Freezing

Figure 12 shows the percentage time freezing of the lesion and sham groups. Amygdala lesions impaired conditioned freezing to both stimuli at both extinction tests, with no evidence for any recovery with overtraining.

Amygdala lesioned animals were impaired relative to controls (F(1,13)=24.55, p<0.001), with a GROUP x TEST interaction (F(3,39)=3.01, p<0.05). Further analysis of simple effects revealed that this significant interaction was due to there being no difference between the lesion and sham groups in freezing to the OFF CS at Test 1 (F(1,13)=1.84, p>0.19). In order to determine whether amygdala-lesioned animals showed any recovery of conditioned freezing, the levels of freezing to the CS and during the preceding ISI from the lesion group only were compared. There was no effect of INTERVAL (F(1,6)=0.49, p>0.50) nor an INTERVAL x TEST interaction (F(3,18)=1.07, p>0.38), and so the lesioned animals did not freeze more to the CS relative to the ISI at any test. This shows that in animals with lesions of the BLA and CeN, conditioned freezing is abolished, and cannot be mitigated by overtraining.
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Fig. 12: Conditioned freezing. There was no evidence of conditioned freezing in amygdala lesioned animals at any test, and compared to sham lesioned controls, amygdala lesions impaired conditioned freezing to both CSs at Test 2, and to the ON CS at Test 1. Data represent group means + s.e.m.

Discussion

These experiments demonstrated that after rapid conditioning with 9 CS-US pairings, both BLA and CeN lesions impaired similarly two measures of conditioned fear, freezing and conditioned suppression. However, when training was extended to many CS-US pairings, animals with discrete lesions of the BLA or CeN recovered to perform identically to controls in an on-baseline conditioned suppression task. After overtraining, while animals with BLA or CeN lesions did display significant conditioned freezing, they were still impaired relative to controls. Finally, large lesions of the amygdala, encompassing both the BLA and the CeN, abolished both freezing and conditioned suppression, even after overtraining. This suggests that the recovery of conditioned fear in animals with discrete lesions may reflect preserved function in the unlesioned amygdala nucleus, such that in animals with BLA lesions, the CeN supports conditioned fear and vice versa.

Conditioned freezing

Lesions of the BLA, CeN or both nuclei, all abolished conditioned freezing after rapid conditioning with 9 CS-US pairings. Sham-operated controls, in contrast, exhibited robust freezing during the first 60 s of the CS. These data reaffirm previous findings that the BLA and CeN are required for the acquisition of conditioned freezing [19, 44]. Large amygdala lesions also abolished conditioned freezing after extended training. However, animals with BLA and CeN lesions, though impaired relative to sham lesioned controls, did show significant conditioned freezing to the CS. Overtraining with up to 75 CS-US pairings has been shown previously not to lead to any recovery in conditioned freezing to discrete stimuli in animals with BLA lesions [35], though there is mitigation of impairments in contextual fear [21, 35, 45]. In contrast, no studies of the effects of overtraining have been conducted in animals with CeN lesions, and so this is the first evidence for an enduring deficit in conditioned freezing in the face of destruction of this nucleus.

In many studies, animals with BLA lesions do exhibit some freezing [11]. The present results show that after overtraining, animals with BLA and CeN, but not large amygdala, lesions did freeze, albeit at a significantly lower level than that of controls. Rather than being unable to acquire conditioned freezing, animals with BLA and CeN lesions may be slower to acquire. It is uncertain whether, with further overtraining, these animals would recover fully to perform at control levels as has been shown for conditional freezing to contextual stimuli after 75 conditioning trials, and so it is also possible that they have a lower asymptote of performance. No conditioned freezing is observed in animals with large amygdala lesions. The extent of these lesions was equivalent to a combination of the individual BLA and CeN lesions. Therefore the partial recovery of conditioned freezing in BLA and CeN lesioned animals is unlikely to be supported by residual, intact, tissue in the lesioned nucleus, or by extra-amygdala structures, but rather is likely to depend upon preserved function in the intact unlesioned nuclei.
suppression

Lesions of the BLA impaired both on-baseline and off-baseline conditioned suppression after 9, but not 33, CS-US pairings. This initial deficit, with recovery after extended training, reconciles the apparently contradictory results of two previous studies [28, 54]. These had shown independently that suppression of licking was impaired by BLA lesions when conditioning consisted of 5 CS-US pairings, but suppression of lever pressing was not affected following over 100 CS-US pairings. Therefore, with overtraining, lesioned animals can compensate for the loss of the BLA in conditioned suppression, and thereby recover to perform at control levels.

CeN lesions produced the same effect on on-baseline conditioned suppression as those of the BLA (early impairment with recovery after overtraining). In contrast, for off-baseline conditioned suppression, the CeN group remained impaired with respect to sham-lesioned animals after overtraining. These results differ from those of Killcross et al (1997), which showed an apparent enduring deficit in an on-baseline conditioned suppression procedure. However the more complex design of the Killcross et al (1997) study, with a parallel conditioned punishment protocol, may account for this contrast in results.

Lesions of the amygdala that included both the BLA and CeN caused an enduring impairment in suppression of instrumental behaviour to cues conditioned both on- and off-baseline, and therefore contrasts with the recovery observed in animals with lesions to the individual nuclei (i.e. either the BLA or CeN). This suggests firstly that such recovery may reflect preserved function in the unlesioned nucleus, and further that parallel pathways exist within and through the amygdala, which support fear conditioning. Thus for rapid conditioning with 9 CS-US pairings, as in the majority of fear conditioning studies, both the BLA and CeN are required, possibly in a serial manner [31] with the LA as the locus of plasticity [4, 41, 53], and the CeN orchestrating downstream suppression and freezing response pathways [3, 14, 29, 50, 58]. After extended training, beyond the level that is generally used in studies of conditioned fear, alternative pathways may be recruited likely involving the BLA and CeN in a parallel manner, such that freezing-like behaviour and on-baseline conditioned suppression can be supported in animals with discrete lesions of these nuclei. However in unlesioned animals, the serial BLA-CeN pathway undoubtedly remains important during the overtraining of fear conditioning as assessed with the reflexive responses of freezing and suppression. Further experiments involving post-training lesions will be required to determine whether the parallel pathways which support fear conditioning following BLA or CeN lesions are also recruited during overtraining when the serial pathway remains intact.

The relative roles of the BLA and CeN in fear conditioning

The pattern of recovery of conditioned fear with overtraining has two implications. Firstly, the CeN must receive sensory inputs directly as well as from the BLA, and can therefore support fear responses in the absence of the BLA. This may also implicate the CeN, or sources of afferents other than the BLA, in plastic processes related to fear conditioning. Secondly, the BLA can activate downstream systems relevant for conditioned fear without projecting to the CeN.

The CeN may operate independently of the BLA

The CeN has been proposed to be a site of plasticity that, complementary to the putative CS-US association encoded in the BLA, may form CS-UR (unconditioned response) associations [16], or support the conditioning of motivation or attention to the CS [22, 26, 27]. Such BLA-independent associations may thus be able to support fear conditioning in BLA lesioned animals. However, CS-UR associations would not be able to support conditioned freezing as the UR to footshock is not freezing, but activity and escape [17, 18]. Presentation of the footshock US results in a general state of increased motivation or arousal, and this state can be associated with the CS. At test, CS presentation would elicit a representation of the aversive motivational state, which conflicts with the appetitive motivation previously associated with the instrumental context through multiple sessions of responding for food reward. Such conflict between motivational states could inhibit appetitive behaviours by reducing the overall appetitive motivation [42], and this would result in a suppression of lever pressing for food.

A similar explanation can be used to account for the partial recovery in conditioned freezing observed in animals with BLA lesions. Locomotor activity is increased in an environment paired with food [38], whereas fear conditioning causes a reduction in locomotor activity in response to the CS [10]. Activity levels are attenuated by an aversive motivational state, and such conditioned suppression of activity will result in an increase in freezing. Freezing levels are measured by making instantaneous assessments of whether the animal is freezing or not, at 5 second intervals. Thus, with a suppression of activity levels, there is a greater likelihood of the animal being stationary at any given moment, resulting in an increased probability of observing freezing. This accounts for the low level of freezing observed after overtraining in BLA lesioned animals, whereas the serial BLA ( CeN ( vPAG pathway mediates a much greater level of freezing due to the complete cessation of motor activity [8]. Thus conditioned motivation can account for the observed recoveries in conditioned suppression and conditioned freezing. This putative BLA-independent association may require extended conditioning because, although conditioned motivation or arousal is acquired rapidly [27], it may only become sufficiently potent and aversive to suppress behaviour and activity after many CS-US pairings.

The BLA may operate independently of the CeN

CeN-lesioned animals show conditioned suppression after extended training to a stimulus conditioned on-baseline, but not to a stimulus conditioned off-baseline. The critical difference between these two situations is whether the animals experience the footshock while lever pressing for food. There are two putative BLA-mediated mechanisms that can account for such a dissociation: avoidance and fortuitous punishment. During on-baseline conditioned suppression, animals spend more time away from the lever and pellet tray than during instrumental training [7], which has been attributed to the fact that animals are more likely to receive footshock while in the vicinity of the lever and pellet tray. This may reflect either conditioned place aversion or active or passive avoidance, of which only active avoidance is dependent upon the BLA [46, 54, 56], as well as being independent of the CeN [15]. Though active avoidance can be acquired with just a few CS-US pairings, the present experiments involved extended exposure to the instrumental context prior to fear conditioning, and it has been shown that acquisition of active avoidance is slowed when animals are pre-exposed to the conditioning chamber and stimuli [59].

Fortuitous presentations of the shock, temporally contiguous with a lever press, may punish the lever press response [5, 7]. Conditioned punishment is impaired by BLA, but not CeN, lesions [28], but see [43], and has been suggested to be mediated by BLA-striatal interactions [28], although there is no direct evidence to support such an interaction. Therefore, the suppression of lever pressing observed in CeN-lesioned animals after overtraining may be due to punishment of the lever press response following fortuitous lever-shock pairings. This would be expected to develop more slowly than CS-US mediated suppression due to the lower frequency of lever-shock presentations, and there is evidence that lever-shock learning is slower than CS-shock learning [9].

The recovery of on-baseline conditioned suppression in CeN lesioned animals observed in this study contrasts with the sustained impairment demonstrated by Killcross et al (1997). However in that study, the training protocol employed was a combined suppression and punishment paradigm. An important implication of such a design is that at the time of the conditioned suppression test, the CeN lesioned animals had already directed responding away from the punished lever, and so were pressing primarily on a lever that was not subject to response-shock contingencies. Furthermore, the animals received fewer footshocks in the vicinity of this lever compared to the area surrounding the punished lever. Therefore, neither fortuitous punishment nor conditioned avoidance strategies could have resulted in conditioned suppression of unpunished lever pressing in the CeN lesioned animals in the Killcross et al (1997) study, as is hypothesised to occur in the present study.

In conclusion, it has been shown that lesions of the BLA and CeN that abolish conditioned freezing also impair conditioned suppression after rapid conditioning.  Therefore, conditioned freezing appears to be a robust measure for rapidly acquired conditioned fear, correlating with at least one other measure of fear conditioning. Recovery was observed in on-baseline conditioned suppression after overtraining in BLA or CeN lesioned animals, but not in animals with combined lesions of both BLA and CeN. One implication of this recovery is that on-baseline conditioned suppression may be the product of a variety of behavioural processes. Serial processing within the amygdala, involving both the BLA and the CeN, can support conditioned suppression, and response competition between freezing and lever pressing may also reduce instrumental responding. Furthermore, the CeN receives direct afferents from the brainstem, thalamus and cortex in parallel with the BLA to form a pathway that can support conditioned suppression after extended training. Finally, punishment of the instrumental response, or avoidance of the lever and its vicinity, may also result in a suppression of lever pressing. Only a partial recovery in conditioned freezing was observed with overtraining, which may indicate a greater reliance of this reflexive conditioned response upon serial processing in the amygdala. The interpretation presented here is therefore consistent with an extension of the serial processing model, whereby the BLA and CeN are involved in Pavlovian fear conditioning in both a serial and parallel manner. Hence both structures are involved in the learning as well as the performance of conditioned fear.
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