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Abstract. A geometric algebra provides a single environment in which
geometric entities can be represented and manipulated and in which
transforms can be applied to these entities. A number of versions of
geometric algebra have been proposed and the aim of the paper is to
investigate one of these as it has a number of advantageous features.
Points, lines and planes are presented naturally by element of grades 1,
2, and 3 respectively. The self-reverse elements in the algebra form a
field. This allows an equivalence relation between elements of grade 2 to
be defined so that, although not every grade 2 element corresponds to
a line, each equivalence class does, and vice versa. Examples are given
to illustrate the ease in which geometric objects are represented and
manipulated.

Keywords. Geometric algebra, Point, Line, Plane, Self-reverse element.

1. Introduction

Geometry is concerned with the properties of objects such as points and
lines and whether these remain invariant under various transforms. In the
1800s, work by researchers such as Clifford, Grassmann and Hamilton sought
means to represent transforms (particularly rigid-body transforms) such as
rotations and translations. What emerged were various approaches includ-
ing the quaternions and the Clifford and Grassmann algebras [1,7–9,18,19].
However, these ideas lay dormant for the early part of the 1900s and trans-
forms were studied using 4 × 4 matrices and homogeneous coordinates [29].
The algebra-based ideas started to reappear towards the end of the 1900s
as they provided a more robust means for dealing with transforms in such
applications as computer games [20].
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Of the algebra-based ideas, the quaternions and dual quaternions can be
used as a means for handling rigid-body transforms of 3D space in a compact
way [9,17,18,22]. While they allow points to be defined, they are limited in
their ability to represent other geometric objects (lines, planes, etc.).

The algebras of Clifford and Grassmann have evolved into the ideas of
geometric algebra which provides a single framework for dealing with both
geometric objects (such as points, line and planes) and the transformations
acting upon them. A number of versions of geometric algebra have been
proposed [27] which have somewhat different properties and are therefore
better suited to specific applications. Perhaps the version most frequently
used is the conformal geometric algebra (CGA) [2,7,33].

Other versions include the homogeneous model [10,11,30,31] and pro-
jective geometric algebra (PGA) [12,13] which are created by extending a
real vector space of dimension 4, with the introduction of a multiplication
in which the square of one of the basis vectors is zero. This has the effect of
relating vectors in the algebra to planes in the geometry, which seems unnat-
ural, rather than to points which seems more natural. An alternative version,
G4, of this algebra has been proposed [3,23,24] in which the square of the
particular basis element is made (effectively) infinite. This has the effect of
associating vectors in the algebra with points. Both the homogeneous model
and G4 use an underlying vector space of dimension 4 to describe 3D space,
the CGA uses dimension 5. The differences in these dimensions is considered
in [21].

The purpose of this paper is to study geometric attributes of G4 in more
detail. In particular, three significant properties are dealt with. The first is
that points, lines and planes are represented naturally in the algebra by el-
ements of grades 1, 2 and 3 respectively. A self-reverse element is a linear
combination of elements of grade 0 and grade 4, and the second property
is that the set of self-reverse elements forms a field. While lines are repre-
sented by elements of grade 2, not every such element corresponds to a line.
However, the second property leads to the third: there is an equivalence re-
lation between elements of grade 2, and every line corresponds to a unique
equivalence class and vice versa.

To make this paper more self-contained, Sect. 2 provides an overview
of how the geometric algebra G4 is formed, and Sect. 3 discusses self-reverse
elements and their properties. Sect. 4 shows how geometric objects (points,
lines and planes in three dimensions) are represented in G4. Lines are con-
sidered further in Sect. 5 where, as noted above, not all elements of grade 2
represent lines, but every equivalence class of such elements does. This sec-
tion also discusses results relating geometric properties to relations between
the elements representing them. Sect. 6 applies these results to two geometric
applications [4]: proofs of Desargues’s theorem and of Fermat’s triangle the-
orem. Finally, Sect. 7 draws conclusions: the geometric algebra G4 provides
a single environment in which three-dimensional geometric entities (such as
points, line and planes) can be represented in a natural way and rigid-body
transforms can be applied to them. Elements representing geometric objects
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are shown to have a particular “grade” and the algebra is rich enough to
allow use of the grade as a means of distinguishing object types.

2. Geometric Algebra G4

There are various versions of geometric algebra. These include the conformal
geometric algebra (CGA) [2,7,33], the homogeneous model [10,11,30,31], and
the projective geometric algebra (PGA) [12,13].

The version used here is called G4. This is discussed in greater detail
elsewhere [3,23,24] and what follows here is an overview of its construction.
The G4 version is used here since the purpose of this paper is to investigate
its properties which are different from other versions of geometric algebra:
in particular and importantly, as discussed in Sect. 3, the subalgebra of self-
reverse elements forms a field.

The algebra G4 can be regarded as a real vector space of dimension 16
which has basis elements denoted by eσ where σ is an ordered subset of the
set of subscripts {0, 1, 2, 3}. The basis vectors are the elements e0, e1, e2, e3.
A multiplication is created on the basis elements by defining the following
products of basis vectors

eiej = eij , eiejek = eijk, e0e1e2e3 = e0123,

where i < j < k (0 ≤ i, j, k ≤ 3) are distinct subscripts. Additionally the
following definition is made

ejei = −eiej = −eij , for i < j. (2.1)

The squares of the basis vectors are defined to be

e2
1 = e2

2 = e2
3 = 1, e2

0 = ε−1, (2.2)

where ε is a symbol which can be regarded as a small real quantity.
The typical element a of G4 is a linear combination of basis elements

a =
∑

σ

aσ eσ, (2.3)

where the aσ are real coefficients. The multiplication is extended to the prod-
uct of two such general elements by multiplying out on a term-by-term basis.
The basis vector eφ corresponding to the empty set acts as unity with respect
to multiplication and is identified with the real number 1. The basis element
e0123 is denoted by ω:

eφ = 1, e0123 = ω.

The quantity ε is carried through all multiplications. This means that the
coefficients of the basis elements become polynomials in ε, and, as a result of
other operations, they can also become power series in ε. So an alternative
view is that the typical element a in (2.3) is a linear combination of basis
elements with coefficients aσ lying in the field R((ε)) of formal (Laurent)
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power series in ε. Such a coefficient is here called an ε-scalar and has the
form

∞∑

i=m

αiε
i,

where the αi are real numbers and m is a finite integer (possibly negative).
Assuming that αm is non-zero, it is called the leading coefficient, and m is
the leading power. An element a ∈ G4 is said to be of order εi if the leading
power of each of its non-zero coefficients is at least i, and one is equal to i.
This is written a = O(εi). Similarly, a � b denotes that a − b = O(ε).

The grade of the basis element eσ is the size of the subset σ. More
generally, if an element is a linear combination of basis elements of a single
grade, then this is also the grade of the element. Elements of grade 1 are called
vectors; those of grade 2 are bivectors; and grade 3 elements are trivectors.
An element of the form α + εβω where α and β are ε-scalars is called a
self-reverse element.

The reverse of a basis element is obtained by reversing the order of its
subscripts. For example

e123
† = e3e2e1 = e1e3e2 = −e1e2e3 = −e123.

The reverse of the general element of (2.3) is obtained by taking the reverse
of each of its summands.

An inner and outer product of any two elements x, y ∈ G4 are defined
by equations

x � y = 1
2 (xy + yx),

x � y = 1
2 (xy − yx).

Note that this is different from other definitions [7,25] which rely upon finding
components of a particular grade within a product. The above definitions deal
entirely with addition, subtraction and multiplication of elements within the
algebra.

In addition, if a, b, c ∈ G4 are any three elements, their triproduct is
defined to be the following.

[a, b, c] = 1
6 (abc + bca + cab − acb − bac − cba).

The following result is immediate.

Lemma 2.1. If a, b, c ∈ G4 are three elements, then
1. [a, b, c] = [b, c, a] = [c, a, b] = − [a, c, b] = − [b, a, c] = − [c, b, a];
2. if any two of a, b, c are equal, then [a, b, c] = 0.

�

The next two results look to relating the triproduct to the inner and
outer products when the three elements involved have the same grade.

Lemma 2.2. If x, y ∈ G4 have the same grade k, then the inner product x � y
commutes with all elements of grade k.
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Proof. Firstly note that x� y has even grade and is equal to its own reverse.
Hence it is a self-reverse element. Since ω commutes with all even-grade
elements of G4, this proves the result when k is 0, 2 or 4.

If k is 1 or 3, there is not enough scope for any ω component to appear
in the products forming x � y and so it is a pure ε-scalar and the result is
trivial. �

Lemma 2.3. If a, b, c ∈ G4 are three elements of the same grade, then

(a � b) � c = (b � c) � a = (c � a) � b = [a, b, c] .

Further

[a, b, c] = 1
2 (abc − cba) = 1

2 (bca − acb) = 1
2 (cab − bac).

Proof. Multiplying out the first three product gives

(a � b) � c = 1
2 (ab − ba) � c = 1

4 (abc − bac + cab − cba)

(b � c) � a = 1
2 (bc − cb) � a = 1

4 (bca − cba + abc − acb)

(c � a) � b = 1
2 (ca − ac) � b = 1

4 (cab − acb + bca − bac).

The difference of the first two gives

(a � b) � c − (b � c) � a = 1
4 (−bac + cab − bca + acb)

= 1
4 ((ca + ac)b − b(ac + ca))

= (a � c) � b

= 0 (2.4)

since a � c commutes with b by Lemma 2.2. So

(a � b) � c = (b � c) � a,

and, by symmetry, these are also equal to the third of the products; call this
common value t. Then adding the expressions for the three products gives

3t = 1
2 (abc + bca + cab − acb − bac − cba),

so that t = [a, b, c].
Also, from Eq. (2.4), it is seen that

−bac + cab = bca − acb.

By symmetry, this common values is also equal to abc− cba and the last part
of the lemma follows. �

As discussed in Sect. 4, a point in three-dimensional space is represented
by the vector

p = We0 + Xe1 + Y e2 + Ze3,

where W is the additional coordinate and the cartesian coordinates of the
point are (X/W,Y/W,Z/W ). Products of vectors representing points are
now considered.
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Lemma 2.4. If p1, p2, p3 ∈ G4 are three vectors, then

[p1, p2, p3] = (p1 � p2) � p3 =

∣∣∣∣∣∣∣∣

e123 W1 W2 W3

−e023 X1 X2 X3

e013 Y1 Y2 Y3

−e012 Z1 Z2 Z3

∣∣∣∣∣∣∣∣
.

Proof. The first equality is from Lemma 2.3. The second follows by multiply-
ing out the triproduct. �
Corollary 2.5. Three vectors p1, p2, p3 are linearly dependent if and only if
[p1, p2, p3] is zero. �
Lemma 2.6. If p1, p2, p3, p4 are four vectors, then

((p1 � p2) � p3) � p4 =

∣∣∣∣∣∣∣∣

W1 W2 W3 W4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

∣∣∣∣∣∣∣∣
ω = 6(W1W2W3W4)V ω,

where the Wi are the additional coordinates of the vectors pi, and V is the
volume of the tetrahedron formed by the points corresponding to the four
vectors.

Proof. This is derived from Lemma 2.4 by taking the outer product with p4.
�
Corollary 2.7. Four vectors p1, p2, p3, p4, with non-zero additional compo-
nents, represent coplanar points if and only if

((p1 � p2) � p3) � p4 = 0.

�
Corollary 2.8. If pi = e0 + qi for i = 1, 2, 3, 4 are four vectors with each
qi = xie1 + yie2 + zie3 independent of e0, then

e0((q2 − q1) � (q3 � q4) + (q4 − q3) � (q1 � q2)) = ((p1 � p2) � p3) � p4 = 6V ω

where V is the volume of the tetrahedron formed by the pi.

Proof. Using Lemma 2.3

(q2 − q1) � (q3 � q4) + (q4 − q3) � (q1 � q2) = [q2, q3, q4] − [q1, q3, q4]
+ [q1, q2, q4] − [q1, q2, q3]

From Lemma 2.4,

[q2, q3, q4] =

∣∣∣∣∣∣

x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣
e123

with similar expressions for the other triple products.
Combining the determinants gives

(q2 − q1) � (q3 � q4) + (q4 − q3) � (q1 � q2) =

∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣
e123
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and the result follows from the last lemma. �

Lemma 2.9. For any elements a, b, c ∈ G4

a � (b � c) = (a � b) � c − (a � c) � b.

Proof. Expanding the right hand side gives the following

4 {(a � b) � c − (a � c) � b} = (ab + ba)c + c(ab + ba)
− (ac + ca)b − b(ac + ca)

= abc − acb − bca + cba

= a(bc − cb) − (bc − cb)a
= 4a � (b � c).

�

3. Self-Reverse Elements

The only elements of G4 that have grade 4 are non-zero multiples of ω =
e0123. It anticommutes with every element of odd grade, commutes with every
element of even grade, ω2 = ε−1, and ω† = ω.

More generally, an element of the form

γ = α + εβω, (3.1)

where α and β are ε-scalars, is called a self-reverse element. Such elements
are the only ones of even grade equal to their own reverse.

The conjugate of a self-reverse element is the result of changing the sign
of ω.

γ∗ = (α + εβω)∗ = α − εβω.

Theorem 3.1. The self-reverse elements form a field.

Proof. The only property that is not immediately obvious is the existence of
multiplicative inverses. If γ = α+εβω is a non-zero self-reverse element, then
it has a multiplicative inverse in the element

γ−1 =
γ∗

γγ∗ =
α − εβω

α2 − εβ2
.

Consideration of powers of ε in the denominator shows that it cannot be zero
since α and β are not both zero. �

The next results consider when a self-reverse element can have a square
root. Such roots are used in other forms of geometric algebra including the
CGA [6].

Lemma 3.2. Suppose that α is an ε-scalar with a positive leading coefficient.
Then

(i) if its leading power is even, α has a square root which is an ε-scalar;
(ii) more generally, α has a square root which is a self-reverse element.
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Proof. In case (i), the element has the form

α = ε2iα0

[
1 + εα1 + ε2α2 + . . .

]
= ε2iα0 [1 + εβ] ,

where the αi are real numbers, α0 > 0, and β has non-negative leading power.
Then, using the binomial expansion, α has two square roots, namely

√
α = ±εi(

√
α0)

[
1 + 1

2 (εβ) − 1
8 (εβ)2 + 1

16 (εβ)3 − 5
128 (εβ)4 + . . .

]
.

In case (ii), if the leading power of α is even, case (i) applies. If it is odd,
then, since εω2 = 1, α can be written as α = ω2(εα) and its square roots are
±ω

√
[εα] which exist by case (i). �

Lemma 3.3. Suppose that γ = α + εβω is a self-reverse element where α has
zero leading power and positive leading coefficient, and the leading power of
β is non-negative. Then γ has a square root.

Proof. Since α is non-zero, the self-reverse element can be expressed as

γ = α [1 + εφω] ,

where φ = β/α. Here φ is an ε-scalar whose leading power is non-negative.
Lemma 3.2 shows that α has a square root. Hence, using the binomial

series, the following are square roots of γ:

±√
α

[
1 + 1

2εφω − 1
8εφ2 + 1

16ε2φ3ω − 5
128ε2φ4 + 7

256ε3φ5ω − 21
1024ε3φ6 + . . .

]
.

Since the power series being used are treated as “formal”, the question
of their convergence is not important. However, it can be noted that the series
appearing in the last two lemmas are derived from standard convergent series
and hence are themselves convergent for suitably small values of ε.

4. Points and Planes

The typical vector in G4 is the element

p = We0 + Xe1 + Y e2 + Ze3.

This is used to represent the point (W,X, Y, Z) in the projective space R((ε))3,
and the point (X/W,Y/W,Z/W ) in RP((ε))3. By letting ε become zero, it
also represents a point in Euclidean space R

3, assuming that the components
remain finite.

An element of G4 is said to be in standard form if the coefficients of its
components have non-negative leading powers and at least one leading power
is zero. This definition is only used here with respect to the particular choice
of basis vectors. However, it is independent of that choice provided the new
set of basis vectors satisfies (2.1) and (2.2). Clearly, any element can be put
into standard form by multiplying by a power of ε, and any ε-scalar multiple
of a point p corresponds to the same point in Euclidean space.

Conversely, the point (x, y, z) is represented by the vector W (e0 +xe1 +
ye2 + ze3) ∈ G4 for any non-zero choice of the ε-scalar W .

A vector in G4 is also called a point. When required to avoid confusion,
the corresponding entity in Euclidean space is called a geometric point. The
component W of the vector p is the additional coordinate, and p, in standard
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form, is said to be finite if W has zero leading power, and normalized if
W = 1.

A vector of the form

xe1 + ye2 + ze3

is regarded as a direction.
In Euclidean geometry, three geometric points which are not collinear

define a plane. If p1, p2, p3 ∈ G4 represent three such points, then the plane
is represented by the triproduct Π = [p1, p2, p3]. It is assumed that Π is non-
zero and this happens if the points are indeed not collinear as shown in the
following lemma

Lemma 4.1. Suppose that Π = [p1, p2, p3] is the triproduct of three points.
Then

(i) Π is non-zero if and only if the points are linearly independent (so that
they do indeed form a plane);

(ii) a point q lies in the plane Π if and only if Π � q = 0;
(iii) if Π is a plane and q1, q2, q3 are three points in the plane which are not

collinear then [q1, q2, q3] is the product of Π and a non-zero ε-scalar.

Proof. Lemma 2.4 expresses Π as a determinant, and this is non-zero if and
only if the points are linearly independent. This gives (i). Part (ii) follows
from Corollary 2.7.

For (iii), choose two independent directions u and v in the Euclidean
plane, and suppose that p0 is a point in the plane, with

p0 = W0 + X0e1 + Y0e2 + Z0e3

u = u1e1 + u2e2 + u3e3

v = v1e1 + v2e2 + v3e3.

Then

pi = p0 + λiu + μiv, for i = 1, 2, 3,

for ε-scalars λi and μi. Column operations on the determinant in Lemma 2.4
show that Π is a non-zero ε-scalar multiple of

∣∣∣∣∣∣∣∣

e123 W0 0 0
− e023 X0 u1 v1

e013 Y0 u2 v2

− e012 Z0 u3 v3

∣∣∣∣∣∣∣∣
.

Similarly, [q1, q2, q3] is also a (possibly different) non-zero ε-scalar multiple of
this determinant as required. �

This means that the triproduct Π for a plane is independent of the
choices of points chosen within the plane up to multiplication by a non-zero
ε-scalar.

Lemma 4.2. If q is a point in a plane Π, or a combination (by addition and/or
multiplication) of such points, then q and Π commute.
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Proof. Suppose that Π = [p1, p2, p3] where p1, p2, p3 are three points defining
the plane. If q is a point in the plane, then Corollary 2.7 says that Π � q = 0
and so Π and q commute. The extension to a combination of points in the
plane is immediate. �

5. Lines

The previous section shows that points and planes correspond precisely to
elements of grades 1 and 3 respectively in G4. This section considers lines and
the situation is not as simple. A line is defined as the outer product of two
points and as such is an element of grade 2. However not every element of
grade 2 in G4 is a line. It is shown that an equivalence relation can be estab-
lished between elements. This relies upon the result, Theorem 3.1, that the
self-reverse elements form a field. It can then be shown that lines correspond
precisely to the associated equivalence classes (Theorem 5.13). Additionally,
this section provides some results relating geometric properties of lines to ex-
pressions involving elements of G4. Lines appear in other forms of geometric
algebra (e.g. [11,13,14,16]).

A line in G4 is defined to be the outer product p1 � p2 of two vectors.
It is a finite line if it is non-zero and the two vectors are finite and represent
different geometric points.

Lemma 5.1. Suppose that 
 = p1 � p2 is a finite line. Then
(i) if q ∈ G4 is a finite vector corresponding to a point on the line joining the

geometric points p1 and p2, then p1 �q and p2 �q are ε-scalar multiples
of 
;

(ii) if q1, q2 ∈ G4 are finite vectors corresponding to points on the line joining
the geometric points p1 and p2, then q1 � q2 is an ε-scalar multiple of 
.

Proof. In case (i), q = λ1p1 + λ2p2 where λ1 and λ2 are ε-scalars, so that
p1 � q = λ2
 and p2 � q = −λ1
.

Case (ii) is an obvious extension of (i). �

Thus any line in Euclidean space is represented by the element 
 =
p1 � p2 where p1 and p2 correspond to geometric points on the line. Except
for multiplication by a non-zero ε-scalar, the element is independent of the
choice of the points.

Lemma 5.2. If p1 and p2 are vectors with pi = Wie0 +Xie1 +Yie2 +Zie3 for
i = 1, 2, then 
 = p1 � p2 is given as


 = (W1X2 − W2X1)e01 + (W1Y2 − W2Y1)e02 + (W1Z2 − W2Z1)e03

+ (X1Y2 − X2Y1)e12 + (X1Z2 − X2Z1)e13 + (Y1Z2 − Y2Z1)e23

Proof. The proof is by multiplying out the product. �

Note that the coefficients in p1 � p2 are the Plücker coordinates of the
line joining the points showing that representation of a line as a bivector is
closely related to other representations and also to the associated theory of
screws [26,28,31].
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Lemma 5.3. Every line 
 is a bivector and 
†
 is an ε-scalar.

Proof. Suppose that 
 = p1 � p2 where p1 and p2 are vectors. Then Lemma
5.2 shows that 
 is a bivector, and, using the notation of that lemma,


†
 = −
2 = a + 2bω,

where

a = ε−1(W1X2 − W2X1)2 + ε−1(W1Y2 − W2Y1)2 + ε−1(W1Z2 − W2Z1)2

+ (X1Y2 − X2Y1)2 + (X1Z2 − X2Z1)2 + (Y1Z2 − Y2Z1)2,
b = (W1X2 − W2X1)(Y1Z2 − Y2Z1)

− (W1Y2 − W2Y1)(X1Z2 − X2Z1)
+ (W1Z2 − W2Z1)(X1Y2 − X2Y1)

= W1X2Y1Z2 − W1X2Y2Z1 − W2X1Y1Z2 + W2X1Y2Z1

− W1X1Y2Z2 + W1X2Y2Z1 + W2X1Y1Z2 − W2X2Y1Z1

+ W1X1Y2Z2 − W1X2Y1Z2 − W2X1Y2Z1 + W2X2Y1Z1

= 0,

so that 
†
 = a is an ε-scalar. �

Corollary 5.4. If 
 = p1 � p2 is a line, then ε
†
 � (W1W2)d2 where d is the
distance between the points p1 and p2, and W1 and W2 are their additional
coordinates.

Proof. From the proof of the Lemma 5.3,

ε
†
 = (W1X2 − W2X1)2 + (W1Y2 − W2Y1)2 + (W1Z2 − W2Z1)2 + O(ε)
� W1W2[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2],

where (x1, y1, z1) and (x2, y2, z2) are the cartesian coordinates of the points.
This proves the result. �

Lemma 5.5. If 
 ∈ G4 is a line, and q ∈ G4 is a point, then 
 � q = 0 if
and only if the geometric point represented by q lies on the geometric line
represented by 
.

Proof. If 
 = p1 � p2, then 
 � q = [p1, p2, q]. By Lemma 2.4 and Corollary
2.5, this is zero if and only if vectors p1, p2, q are linearly dependent, which in
turn happens if and only if the corresponding geometric points are collinear.
�

The following question is now considered. If b is a bivector, is it neces-
sarily a line: that is, can it be expressed as the outer product of two vectors?

Any bivector b ∈ G4 can be written as

b = e0v + b1, (5.1)

where v and b1 are a vector and a bivector respectively which do not involve
e0. A bivector is called finite if it is in standard form and v is non-zero and
has leading power zero.

Lemma 5.6. A finite line is a finite bivector.
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Proof. A finite line has the form 
 = p1�p2 where p1 and p2 are finite vectors.
Suppose that

p1 = W1(e0 + q1)
p2 = W2(e0 + q2),

where q1, q2 are vectors independent of e0, and (e0+q1) and (e0+q2) represent
different geometric points. Then


 = (W1W2) [e0q2 − e0q1 + (q1 � q2)] = (W1W2) [e0(q2 − q1) + (q1 � q2)] ,

and it is seen that 
 is a finite bivector. �

Lemma 5.7. If b is a finite bivector, then εb†b is a self-reverse element with
a square root.

Proof. Firstly, εb†b is certainly a self-reverse element since it has even grade
and is equal to its own reverse.

Writing b = e0v + b1 as in (5.1), it follows that

εb†b = ε(− e0v − b1)(e0v + b1)
= ε(− e0ve0v − e0vb1 − b1e0v − b1b1)
= ε(ε−1v2 − e0vb1 − e0b1v − b1b1)

= v2 − 2εe0(v � b1) + εb1
†b1.

The first summand here is v2 which is a non-zero ε-scalar with zero leading
power (from the definition of b as a finite bivector). The other summands
have a factor of ε. So Lemma 3.3 applies and completes the proof. �

If b is a finite bivector, then its size is the self-reverse element defined
by

‖b‖ = +
√

εb†b. (5.2)

The square root is an ε-scalar of the form in (3.1) with coefficients α
and β. The plus sign means choosing the root whose α has strictly positive
leading coefficient if α is non-zero; otherwise choosing the β with strictly
positive leading coefficient. (If both are zero, then b is itself zero.)

A finite bivector is said to be normalized if it has unit size.
Note that in stating some of the following results the reverse of the

bivector b is used. This is to show the symmetry involved. The results could
be restated simply in terms of b itself since

b† = − b.

Lemma 5.8. Suppose that b ∈ G4 is a non-zero bivector and that p ∈ G4 is a
point. Set

q = 1
2ε

[
b†bp − b†pb

]
.

Then q is a point if and only if b†b is an ε-scalar.
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Proof. Note that γ = b†b is certainly a self-reverse element, and that q has
odd grade. The reverse of q is given by

q† = 1
2ε

[
pγ − b†pb

]
= 1

2ε
[
pγ∗ − b†pb

]
.

So q† = q if and only if γ∗ = γ, and this is the case if and only if γ is an
ε-scalar. �

Lemma 5.9. If b ∈ G4 is a finite bivector with b†b being an ε-scalar, and
p ∈ G4 is a finite vector, then q = 1

2ε
[
b†bp − b†pb

]
is a finite point.

Proof. The last lemma shows that q is a vector, so it remains to show that
it is finite.

Suppose that

p = α0e0 + p1

b = e0v + b1,

where p1, v are vectors, b1 is a bivector and all three are independent of e0.
Then

(b†b)p = − (e0v + b1)(e0v + b1)(α0e0 + p1)
� −α0e0ve0ve0 + x

= ε−1α0v
2e0 + x,

and

b†pb = − (e0v + b1)(α0e0 + p1)(e0v + b1)
� −α0e0ve0e0v + y

= −α0ε
−1v2e0 + y,

where x and y are independent of e0.
Hence q � α0v

2e0 + 1
2ε(x−y) and the coefficient of e0 has leading power

zero. �

Lemma 5.10. Suppose that b is a non-zero bivector for which b†b is an ε-scalar
and that p is a point. Set q = 1

2ε[b†bp − b†pb]. Then b � q = 0.

Proof. Note that b† = −b and that b2 commutes with all elements of G4 since
it is an ε-scalar. So

b � q = 1
2ε [bq + qb]

= 1
2ε

[
bb†bp − bb†pb + b†bpb − b†pbb

]

= 1
2ε

[−bpb2 + b2pb − b2pb + bpb2
]

= 0.

�

Lemma 5.11. Any non-zero finite bivector b ∈ G4 for which b†b is an ε-scalar
is a finite line, that is b is the outer product of two finite vectors.
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Proof. Choose two finite points p1, p2 and set

qi = 1
2ε

[
(b†b)pi − b†pib

]
, for i = 1, 2,

which are again two finite points.
Note that if

vi = pi � b = 1
2 [pib − bpi] ,

then

qi = εbvi = − εvib.

Since vi has odd grade and is equal to its own reverse, vi is a vector.
Consider the outer product of q2 and q1.

q2 � q1 = 1
2 [q2q1 − q1q2]

= 1
2ε2

[− v2b
2v1 + v1b

2v2

]

= 1
2ε2b2 [− v2v1 + v1v2]

= ε2b2(v1 � v2).

Using Lemma 2.9,

v1 � v2 = v1 � (p2 � b)
= (v1 � p2) � b − (v1 � b) � p2.

Considering part of the second summand here

v1 � b = (p1 � b) � b

= 1
2 (p1b − bp1) � b

= 1
4 (p1bb − bp1b + bp1b − bbp1)

= 0.

In the first summand, α = (v1 � p2) is the inner product of two vectors and
hence is an ε-scalar. Thus

v1 � v2 = αb

q2 � q1 = (ε2b2α)b.

Since p1 and p2 are open to choice, p1 can be chosen arbitrarily, and then p2

chosen such that α is non-zero. Then εb2 and εα are non-zero ε-scalars with
zero leading powers. Thus q1/(εb2) and q2/(εα) are finite vectors whose outer
product is b, as required. �

Two elements of G4 are said to be equivalent if one is the product of the
other and a self-reverse element. Since the self-reverse elements form a field,
this is an equivalence relation.

Lemma 5.12. Suppose that b is a finite bivector of size γ (cf. Lemma 5.7),
then B = γ−1b is a normalized bivector equivalent to b.

Proof. It is clear that B is equivalent to b, and

εB†B = εγ−2b†b = εγ−2(ε−1γ2) = 1.

�
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Theorem 5.13. Every non-zero finite bivector b ∈ G4 is equivalent to a finite
line, and, if b†b is an ε-scalar, then b is itself that line.

Proof. If b†b is an ε-scalar, then Lemma 5.11 says that b is a finite line. If
not, then by the last lemma, b is certainly equivalent to a bivector B such
B†B = ε−1, and B is a finite line by Lemma 5.11. �

Now consider four finite points in G4

a = Wa(e0 + â)

b = Wb(e0 + b̂)

c = Wc(e0 + d̂)

d = Wd(e0 + d̂)

where â, b̂, ĉ, d̂ do not involve e0. Let A, B, C, D denote the corresponding
geometric points.

Then

a � b = WaWb

[
e0(b̂ − â) + (â � b̂)

]

c � d = WcWd

[
e0(d̂ − ĉ) + (ĉ � d̂)

]

so that

ε(a � b) � (c � d) = εWaWbWcWd[e2
0(b̂ − â) � (ĉ − d̂)

+ e0((b̂ − â) � (ĉ � d̂) + (d̂ − ĉ) � (â � b̂))

+ (â � b̂) � (ĉ � d̂)]

The first term in the square brackets is essentially the scalar product of two
vectors. Lemma 2.6 and Corollary 2.8 can be applied to the second term. The
third term can be ignored because of the ε multiplier. Hence

ε(a � b) � (c � d) � WaWbWcWd [Δ(a, b)Δ(c, d) cos α + 6εV ω]

where Δ(p, q) is used to denote the Euclidean distance between the geometric
points corresponding to points p, q ∈ G4, α is the angle between lines AB and
CD (when viewed along their common normal), and V is the volume of the
tetrahedron formed by the four points in Euclidean space.

Using traditional geometry, the volume of the tetrahedron is given by
the following as shown in Lemma 8.1 in the Appendix.

V = 1
6Δ(a, b)Δ(c, d) sin α.

Thus

ε(a�b)�(c�d) = (WaWbWcWd)Δ(a, b)Δ(c, d) [ε(sin α)ω − (cos α)] . (5.3)

This gives the inner product of two lines. In particular, taking c = a, d = b
and setting 
 = a � b, the inner product of a line with itself is given by

ε
†
 = −ε
 � 
 = (a0b0)2 Δ(a, b)2,

so that, using (5.2),
‖
‖ = a0b0Δ(a, b). (5.4)
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(5.3) and (5.4) provide the proof of the following result which extends the
idea of the scalar product of two ordinary vectors. Not only does it gives
the angle between two lines, but also it provides the distance between them.
There are related results in other forms of geometric algebra (e.g. [5,11]).

Theorem 5.14. Suppose that a, b, c, d ∈ G4 are finite points and 
 = a � b and
m = c � d are finite lines, then

ε(
 � m)ω = ‖
‖ ‖m‖ [ (sin α)h − (cos α)ω ] ,

where α is the angle between the lines (when viewed along their common
normal), and h is the distance between them.

�
This result allows more insight to be provided into the choice of points

made in the proof of Lemma 5.11. These points are the feet of perpendiculars
dropped from the chosen points onto the line represented by the bivector in
that result. This is shown by the following lemma.

Lemma 5.15. If 
 ∈ G4 is a finite line and p ∈ G4 is a finite point, then
(i) ε(p � 
)
 is the point on 
 nearest to p;
(ii) (
p
p − p
p
) is the line through p perpendicular to 
.

Proof. Set

q = ε (p � 
) 
 = 1
2ε

(
p
2 − 
p


)
,

which has odd grade. Since 
2 = −
†
 is an ε-scalar (Lemma 5.3), it commutes
with all elements of G4, and hence q† = q. Thus q is indeed a point (vector).

To check that q lies on 
, note that

q � 
 = 1
4ε(p
3 − 
p
2 + 
p
2 − 
2p
) = 1

4ε(p
3 − 
2p
) = 0,

and Lemma 5.5 applies.
The line joining p and q is

m = p � q = 1
4ε(p2
2 − p
p
 − p
2p + 
p
p) = 1

4ε(
p
p − p
p
),

which is the expression in (ii).
Then

m � 
 = 1
8ε(
p
p
 − p
p
2 + 
2p
p − 
p
p
) = 1

8ε
(−p
p
2 + 
2p
p

)
= 0,

so that, by Theorem 5.14, the lines are perpendicular (and zero distance
apart). �

Lemma 5.16. Suppose that Π is a plane and 
 and m are two lines within it.
Then q = ε(
 � m)Π is their point of intersection.

Proof. First note that q is an element of odd grade and is equal to its own
reverse. Hence q is a point.

Since 
 is the outer product of two points in Π, Lemma 4.2 says that Π
commutes with 
. Hence, using Lemmas 2.3 and 2.1,


 � q = 
 � (ε(
 � m)Π) = ε(
 � (
 � m))Π = ε [
,m, 
] Π
= 0.
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So, by Lemma 5.5, point q lies on line 
. Similarly, q lies also on m and so q
is the point of intersection of the lines. �

Finally, in this section, suppose that 
1 and 
2 are two lines, and consider
their outer product. It certainly has even grade and is equal to minus its own
reverse. Hence it has grade 2. So it is equivalent to a line. This raises the
question: what line is it? The following result provides the answer.

Theorem 5.17. The outer product of two distinct lines is equivalent to the
line which is their common normal.

Proof. As before, let 
1 and 
2 be the lines. Let

m = γ(
1 � 
2),

where γ is the appropriate self-reverse element, be the line equivalent to their
outer product.

Since γ commutes with all even-grade elements, it is seen that

m � 
1 = γ [
1, 
2, 
1] = 0,

using Lemmas 2.3 and 2.1. Theorem 5.14 now shows that line m is normal
to line 
1. Similarly, it is normal to line 
2 and hence is the required common
normal. �

6. Geometry

This section shows how the geometric algebra G4 can be used to deal with
geometrical applications. It makes use of the fact that G4 has both a model
of projective space (and hence Euclidean space) and the ability to generate
rigid-body transforms. These ideas are used to present a proof of Desargues’s
theorem and Fermat’s triangle theorem [4]. Different proofs using others form
of geometric algebra are given in [15,32].

Some preliminary ideas and results about G4 and transforms of Eu-
clidean space are required for the Fermat result. These are dealt with first
and are discussed in the case of two-dimensional space. They are particular
cases of more general results [24].

Any element S ∈ G4 defines a map FS of G4 to itself given by

FS(x) = S†xS, for x ∈ G4.

If S has even-grade and x is a vector, then FS(x) is an element of odd
grade equal to its own reverse and so is also a vector. Hence FS generates a
transform of Euclidean space. Further, this is a linear transform [24].

There are two particular cases of importance. The even-grade elements

RO = (cos 1
2φ) + (sin 1

2φ)e12

T = 1 + 1
2ε(ue01 + ve02)

generate transforms which are respectively: a rotation through angle φ about
the z-axis or equivalently about the origin O when considered as a transform
of the plane; and a translation in the plane through distance u in the x-
direction and v is the y-direction. (It is straightforward to check the actions
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of these elements by multiplying out the appropriate products.) Further, these
elements are normalized in the sense that

RO
†RO = RORO

† = 1 = T †T = TT †.

A rotation about the Euclidean point Q corresponding to the vector e0 +
ue1 + ve2 can be formed by translating this point to the origin, performing
the rotation about the origin, and then translating back again. Thus the
even-grade element which generates such a rotation is RQ = T †ROT and
multiplying out gives the following result.

Lemma 6.1. The even-grade element

RQ = T †ROT = (cos 1
2φ) + (sin 1

2φ)(e12 + εve01 − εue02)

lies in the subalgebra of G4 generated by e0, e1, e2. It generates a transform
which is an anticlockwise rotation of two-dimensional Euclidean space through
angle φ about the point Q with coordinates (u, v). Further RQ

†RQ = 1 =
RQRQ

†.

�
Application to the proofs of the two theorems are now given.

6.1. Desargues’s Theorem

Desargues’s theorem is stated below and is illustrated in Fig. 1. Note that it is
not a requirement that the points are all coplanar. In the version given here, it
is assumed that the six points A1, A2, B1, B2, C1, C2 are distinct. This is the
version usually illustrated in text books. The result holds in some other cases
(possibly trivially) and the proof given here can be modified appropriately.

Theorem 6.2. (Desargues). Suppose that I is a point in three-dimensional
space and that A1, A2, B1, B2, C1, C2 are six distinct points, such that
IA1A2, IB1B2, IC1C2 are three distinct straight lines. Then I, B1, B2, C1,
C2 are coplanar and hence lines B1C1 and B2C2 intersect. Let X denote this
intersection. Similarly, let Y be the intersection of lines C1A1 and C2A2, and
let Z be the intersection of lines A1B1 and A2B2. Then X, Y , Z are collinear
points.

Proof. Regard the points indicated in the theorem as being normalized vec-
tors in G4. The collinearity of points I, A1, A2 means that A2 is a linear
combination of I and A1. Similar considerations apply to the other two orig-
inal lines and so

A2 = α1A1 + α2I

B2 = β1B1 + β2I

C2 = γ1C1 + γ2I

where the coefficients are ε-scalars. (If I coincides with one of the other six
points, then assume, without loss, that the other point has subscript 2. Then
the corresponding expression above remains valid with the coefficient of I
being unity and the other coefficient zero.)
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Figure 1. Desargues’s theorem

The lines B1C1 and B2C2 are represented by the following elements


 = B1 � C1

m = B2 � C2,

and


 � m = (B1 � C1) � (B2 � C2)
= ((B1 � C1) � B2) � C2 − ((B1 � C1) � C2) � B2

= [B1, C1, B2] � C2 − [B1, C1, C2] � B2.

The two lines IB1B2 and IC1C2 form a plane which can be represented by
the triproduct

Π = [I,B1, C1] ,

which is non-zero as the lines are distinct. It follows that

[B1, C1, B2] = β2Π
[B1, C1, C2] = γ2Π.

Since points B2 and C2 commute with Π (Lemma 4.2), and εΠ2 is an ε-scalar,
Lemma 5.16 yields

X = ε(
 � m)Π = β2C2 − γ2B2.

By cyclic symmetry, the following also hold

Y = γ2A2 − α2C2
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Figure 2. Fermat’s triangle theorem

Z = α2B2 − β2A2.

Hence

X � Y = γ2α2(B2 � C2) + β2γ2(C2 � A2) + γ2
2(A2 � B2),

and then

[X,Y,Z] = (X � Y ) � Z

= −γ2α2β2 [B2, C2, A2] + β2γ2α2 [C2, A2, B2]
= 0.

Thus the points X, Y , Z are linearly dependent and form a line (Lemma
4.1). �

6.2. Fermat’s Triangle Theorem

Fermat’s triangle theorem relates to the construction shown in Fig. 2. Here A,
B, C are three non-collinear points in the plane. On each side of the triangle
ABC an equilateral triangle is constructed lying outside triangle ABC. The
additional vertices are points X, Y , Z.

Theorem 6.3. (Fermat). The lines AX, BY , CZ have the same length and
they intersect in a single point, F , called the Fermat point.

Proof. Let A,B,C ∈ G4 be normalized vectors representing the vertices of
the original triangle. For simplicity, assume that these vertices lie in the xy-
plane. This is the plane Π = e012, and then A, B, C depend only on e0, e1,
e2.

Let RA, RB , RC ∈ G4 be even-grade elements which generate anticlock-
wise rotations through angle π/3 about the points A, B, C respectively. As
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in Lemma 6.1, RA, RB , RC lie in the subalgebra generated by e0, e1, e2,

RA
†RA = RB

†RB = RC
†RC = 1,

and

RC
†BRC = X, RC

†Y RC = A,

RA
†CRA = Y, RA

†ZRA = B,

RB
†ARB = Z, RB

†XRB = C.

The lines AX, BY , CZ are represented by the following even-grade elements.

x = A � X, y = B � Y, z = C � Z.

So

RB
†xRB = (RB

†ARB) � (RB
†XRB)

= Z � C

= −z,

and similarly

RC
†yRC = −x, RA

†zRA = −y.

Then, from (5.2),

‖z‖2 = εz†z = εRB
†x†xRB = RB

†‖x‖2RB = ‖x‖2.

Hence ‖x‖ = ‖y‖ = ‖z‖ and the lengths of the three lines are equal by (5.4).
Set s = x + y + z. It is clear that s is an even-grade element. As s has

no component of e3, s†s is an ε-scalar. Hence, by Theorem 5.13, s is a line,
assuming it is non-zero. The aim is now to deduce that s = 0 by showing
that, if it is non-zero, then A, B, C all lie on it.

Consider

s � A = x � A + y � A + z � A = [A,X,A] + [B, Y,A] + [C,Z,A] .

The repetition in the first triproduct means it is zero (Corollary 2.1). Consider
the effect of rotation RA on the third triproduct:

RA
† [C,Z,A] RA =

[
RA

†CRA, RA
†ZRA, RA

†ARA

]
= [Y,B,A]

The triproduct [C,Z,A] represents the plane generated by C, Z, A and this is
Π. Hence [C,Z,A] is an ε-scalar multiple of Π (Lemma 4.1), and it commutes
with RA (Lemma 4.2) and so [C,Z,A] = − [B, Y,A].

So it follows that s � A = 0, and point A lies on line s. Similarly s � B
and s�C are also zero. Since A, B, C are not collinear, the assumption that
s is a line is invalid and so

s = x + y + z = 0.

It follows that

x � y = y � z = z � x,

and that

ε(x � y)ω = ε(y � z)ω = ε(z � x)ω.
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Now Lemma 5.16 shows that the lines x, y, z have a common point of inter-
section. �

7. Conclusions

The ideas of geometric algebra grew out of a desire to be able to represent,
within a single environment, geometric entities and the transforms that can
act upon them. Several versions of such algebras have been proposed.

A particular formulation, G4, has been discussed here. Differently to
other formulations, it represents points, lines and planes as elements within
the algebra of grades 1, 2 and 3 respectively. This is natural in the sense that
the grade reflects the dimension of the entity concerned. In order to achieve
this correspondence, it is necessary to treat the square of one of the basis
vectors of the algebra as being infinite. It has been seen that this can be
achieved by defining the square to be the reciprocal of a symbol representing
a small positive quantity, ε. An alternative view is to regard the scalars for
the algebra as being members of the field of formal power series in ε.

This has been seen to lead to a significant property of G4, namely that its
self-reverse elements form a field. Again this is different to other formulations.
It means that an equivalence relation between elements of grade 2 can be
defined. While every geometric line can be represented by an element of grade
2, not every grade 2 element represents a line directly. However, what has also
been shown is that each geometric line corresponds to a unique equivalence
class of grade 2 elements, and vice versa. So the result of evaluating any
expression in G4 corresponds to something geometrically. For example, it
is immediate that the outer product of two distinct lines, which certainly
has grade 2, must correspond to another line, the line associated with the
appropriate equivalence class. Indeed it has been seen that this new line is in
fact the common normal to the original two lines.

The ability of G4 to handle combinations of geometric objects has been
demonstrated by its use in obtaining proofs of Desargues’s theorem and Fer-
mat’s triangle theorem.
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Appendix: Volume of a Tetrahedron

This appendix provides a formula for the volume of a tetrahedron. This is
working in conventional Euclidean space and using ordinary position vectors,
denoted by bold symbols.

Lemma 8.1. Suppose there are two line segments in 3D space of lengths d1

and d2. Let h be the length of their common normal and α the angle between
the segments (when viewed along the line of the common normal). The four
end points of the segments form a tetrahedron. The volume of the tetrahedron
is

1
6d1d2h sin α.

Proof. The situation is shown in Fig. 3. On the left, the figure shows a general
view; on the right is a view along the common normal to the two segments.

Let the end points of one segment be p1 and p2, and those of the
other q1 and q2. Suppose that t is a parameter which goes between 0 and 1
along the common normal. Then a planar slice perpendicular to the common
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Figure 3. Views of slice through a tetrahedron perpendic-
ular to the common normal to a pair of opposite sides; view
along the common normal on right
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normal cuts four sides of the tetrahedron (that is those sides which are not
the original segments) in the following points:

r11 = (1 − t)p1 + tq1

r12 = (1 − t)p1 + tq2

r22 = (1 − t)p2 + tq2

r21 = (1 − t)p2 + tq1.

Taking differences, it is seen that the slice is a parallelogram and the following
are vectors along the sides:

r12 − r11 = r22 − r21 = t(q2 − q1)
r21 − r11 = r22 − r12 = (1 − t)(p2 − p1).

The vector product of these gives the following vector along the common
normal whose magnitude is the area of the parallelogram

A = (r12 − r11) × (r21 − r11) = t(1 − t)d1d2(sin α)n,

where n is a unit vector along the common normal. If the slice is given a
thickness (h dt), then the element of volume is

dV = Ah dt = t(1 − t)d1d2h sin α dt.

Integrating this between 0 and 1 gives the required result. �
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